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We will consider multiplication operators on a Hilbert space of analytic functions on a domain Ω ⊂ C. For a bounded analytic
function 𝜑 on Ω, we will give necessary and sufficient conditions under which the complement of the essential spectrum of 𝑀𝜑 in𝜑(Ω) becomes nonempty and this gives conditions for the adjoint of the multiplication operator𝑀𝜑 belongs to the Cowen-Douglas
class of operators. Also, we characterize the structure of the essential spectrum of a multiplication operator and we determine the
commutants of certain multiplication operators. Finally, we investigate the reflexivity of a Cowen-Douglas class operator.

1. Introduction

In this section we include some preparatory material which
will be needed later.

For a positive integer 𝑛 and a domain𝑈 ⊂ C, the Cowen-
Douglas class 𝐵𝑛(𝑈) consists of bounded linear operators 𝑇
on any fixed separable infinite dimensional Hilbert space 𝑋
with the following properties:

(a) 𝑈 is a subset of the spectrum of 𝑇.
(b) Ran(𝜆 − 𝑇) = 𝑋 for every 𝜆 ∈ 𝑈.
(c) dim[ker(𝜆 − 𝑇)] = 𝑛 for every 𝜆 ∈ 𝑈.
(d) Span{ker(𝜆 − 𝑇) : 𝜆 ∈ 𝑈} = 𝑋.

Here Span denotes the closed linear span of a collection of
sets in 𝑋. The classes 𝐵𝑛(𝑈) were introduced by Cowen-
Douglas (see [1]), and each element of 𝐵𝑛(𝑈) is called a
Cowen-Douglas class operator. By 𝐵𝑛, we mean 𝐵𝑛(𝑈) for
some complex domain 𝑈. For the study of Cowen-Douglas
classes 𝐵𝑛, we mention [1–7].

Recall that a bounded linear operator𝐴 on aHilbert space
is a Fredholm operator if and only if ran𝐴 is closed and
both ker𝐴 and ker𝐴∗ are finite dimensional. We use 𝜎(𝐴)
and 𝜎𝑒(𝐴) to denote, respectively, the spectrum of 𝐴 and the
essential spectrum of 𝐴.

Now let H be a separable Hilbert space and let B(H)
denote the algebra of all bounded linear operators on H.
Recall that if 𝐴 ∈ B(H), then Lat(𝐴) is by definition the

lattice of all invariant subspaces of 𝐴, and AlgLat(𝐴) is the
algebra of all operators𝐵 inB(H) such that Lat(𝐴) ⊂ Lat(𝐵).
An operator 𝐴 inB(H) is said to be reflexive if AlgLat(𝐴) =𝑊(𝐴), where 𝑊(𝐴) is the smallest subalgebra of B(H) that
contains 𝐴 and the identity 𝐼 and is closed in the weak
operator topology.

Also, if H is a Hilbert space of functions analytic on a
plane domainΩ, a complex-valued function𝜑 onΩ for which𝜑𝑓 ∈ H for every 𝑓 ∈ H is called a multiplier of H and
the multiplier 𝜑 on H determines a multiplication operator𝑀𝜑 on H by 𝑀𝜑𝑓 = 𝜑𝑓, 𝑓 ∈ H. The set of all multipliers
of H is denoted by 𝑀(H). Clearly 𝑀(H) ⊂ 𝐻∞(Ω), where𝐻∞(Ω) is the space of all bounded analytic function onΩ. In
fact ‖𝜑‖∞ ≤ ‖𝑀𝜑‖ (see [8]).

Let H be a Hilbert space of functions analytic on a
domain Ω ⊂ C satisfying the following axioms:

Axiom 1. For every point 𝜔 ∈ Ω, the functional of point
evaluation at 𝜔, is a nonzero bounded linear functional on
H.

Axiom 2. Every function 𝜑 ∈ 𝐻∞(Ω) is a multiplier ofH.

Axiom 3. If 𝑓 ∈ H and 𝑓(𝜆) = 0, then there is a function𝑔 ∈ H such that (𝑧 − 𝜆)𝑔 = 𝑓.
A spaceH satisfying the above conditions is calledHilbert

space of analytic functions on Ω (see [3, 9]). The Hardy and
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Bergman spaces are examples for Hilbert spaces of analytic
functions on the open unit disk.

Note that, by Axiom 1, there exists a reproducing kernel𝑘𝑤 ∈ H such that 𝑓(𝜔) = ⟨𝑓, 𝑘𝜔⟩ for all 𝑓 ∈ H. Also, by
using Axiom 2 and the closed-graph theorem, the operator of
multiplication by 𝜑, 𝑀𝜑, is a bounded linear operator onH.
So Axiom 2 says that𝑀(H) = 𝐻∞(Ω). If𝑀𝑧 is polynomially
bounded on H and Ω is the open unit disk, then 𝑀(H) =𝐻∞(Ω) (see [9, Theorem 1]). In the rest of the paper we
assume that H is a Hilbert space of analytic function on a
bounded plane domain Ω.

In this paper, we want to study some properties of
operators in 𝐵𝑛. We see that complement of the essential
spectrum of a multiplication operator 𝑀𝜑 is nonempty if
and only if the adjoint of 𝑀𝜑 belongs to some 𝐵𝑛. Also,
we investigate the intertwining multiplication operators and
reflexivity of the multiplication operator on 𝐵𝑛. For some
other source on these topics one can see [10–16].

2. Multiplication Operators with Adjoint in𝐵𝑛 and Its Spectra

Recall that if 𝑇 is a Cowen-Douglas class operator, then it
should be 𝜎(𝑇) \ 𝜎𝑒(𝑇) ̸= 0. For 𝜑 ∈ 𝐻∞(Ω), we would
like to give some necessary and sufficient conditions so that𝜎(𝑀𝜑) \ 𝜎𝑒(𝑀𝜑) becomes a nonempty open set. This implies
a sufficient condition for the adjoint of the multiplication
operator 𝑀𝜑 to be a Cowen-Douglas class operator.
Theorem 1. Let 𝜑 be a nonconstant function in 𝐻∞(Ω),𝜎(𝑀𝜑) \ 𝜎𝑒(𝑀𝜑) ̸= 0, and 𝑘𝑧/‖𝑘𝑧‖ → 0 weakly as𝑑𝑖𝑠𝑡(𝑧, 𝜕Ω) → 0. Then there exist a domain 𝑉 ⊂ 𝜑(Ω) and
a positive integer 𝑛 such that Ω ∩ 𝜑−1(𝜆) consists of 𝑛 points
(counting multiplicity) for every 𝜆 ∈ 𝑉.
Proof. First note that if 𝜆 ∈ 𝜑(Ω), then 𝜆 = 𝜑(𝜔) for some𝜔 ∈ Ω. But by Axiom 1, the functional of evaluation at 𝜔 is a
bounded point evaluation; thus the reproducing kernel 𝑘𝜔 is
defined and we have

𝑀∗𝜑𝑘𝜔 = 𝜑 (𝜔)𝑘𝜔. (1)

Thus 𝜆 ∈ 𝜎(𝑀𝜑) and clearly 𝜑(Ω) ⊂ 𝜎(𝑀𝜑). Now let 𝜆 ∉
𝜑(Ω). Then 𝜑 − 𝜆 is an invertible element of 𝐻∞(Ω). But by
Axiom 2, we have 𝑀(H) = 𝐻∞(Ω); thus 𝑀𝜑−𝜆 is invertible.
This implies that 𝜎(𝑀𝜑) ⊂ 𝜑(Ω); thus indeed 𝜎(𝑀𝜑) = 𝜑(Ω).
Now we prove that

𝜎 (𝑀𝜑) \ 𝜎𝑒 (𝑀𝜑) = 𝜑 (Ω) \ 𝜎𝑒 (𝑀𝜑) . (2)

For this it is sufficient to show that 𝜕𝜑(Ω) ⊂ 𝜎𝑒(𝑀𝜑). Let 𝜆 ∉𝜎𝑒(𝑀𝜑). If 𝜆 ∈ 𝜕𝜑(Ω), then there exists a sequence {𝑧𝑛}𝑛 ⊂ Ω
such that𝜑(𝑧𝑛) → 𝜆. By passing to a subsequence if necessary,
we may assume that {𝑧𝑛}𝑛 converges to a point in 𝜕Ω and so
by our assumptions 𝑘𝑧𝑛/‖𝑘𝑧𝑛‖ → 0weakly. On the other hand
we have

(𝑀𝜑 − 𝜆)∗( 𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩) = (𝜑 (𝑧𝑛) − 𝜆) 𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩
(3)

for all 𝑛 ∈ N. So we get
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(𝑀𝜑 − 𝜆)∗( 𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 󳨀→ 0 (4)

which contradicts the fact that (𝑀𝜑 − 𝜆)∗ is Fredholm. Thus
we have

𝜎 (𝑀𝜑) \ 𝜎𝑒 (𝑀𝜑) = 𝜑 (Ω) \ 𝜎𝑒 (𝑀𝜑) . (5)

Now, let 𝑉 be a connected component of the open set 𝜑(Ω) \𝜎𝑒(𝑀𝜑). Since 𝑉 ∩ 𝜎𝑒(𝑀𝜑) = 0, thus 𝑀𝜑 − 𝜆 is Fredholm for
every 𝜆 in 𝑉. Also, note that if (𝑀𝜑 − 𝜆)𝑓 = 0, then 𝑓 = 0 on
Ω \ (𝜑 − 𝜆)−1{0} which is open. Hence 𝑓 ≡ 0 and so 𝑀𝜑 − 𝜆
is injective. Thus

index (𝑀𝜑 − 𝜆)∗ = dim [ker (𝑀𝜑 − 𝜆)∗] (6)

for all 𝜆 in 𝑉. But the index function is continuous from the
set of semi-Fredholm operators into Z ∪ {±∞} with discrete
topology; thus, index(𝑀𝜑 − 𝜆)∗ is constant for all 𝜆 in𝑉. Put

dim [ker (𝑀𝜑 − 𝜆)∗] = 𝑛. (7)

If 𝑧 ∈ 𝑉, then 𝜆 = 𝜑(𝜆0) for some 𝜆0 ∈ Ω and so 𝑀∗𝜑𝑘𝜆0 =
𝜆𝑘𝜆0 .Thus 𝑘𝜆0 ∈ ker (𝑀𝜑 − 𝜆)∗. Since a finite subset of points𝜔 inΩ yields a linearly set independent set of functions 𝑘𝜔 in
H, thus Ω ∩ 𝜑−1(𝜆) consist of at most 𝑛 points for all 𝜆 in 𝑉.
So for each fixed 𝜆 ∈ 𝑉, there exist 𝜆1, 𝜆2, . . . , 𝜆𝑚 in Ω and𝑛1, 𝑛2, . . . , 𝑛𝑚 in N such that 𝑚 ≤ 𝑛 and for all 𝑧 ∈ Ω we have

𝜑 (𝑧) − 𝜆 = 𝜓 (𝑧) (𝑧 − 𝜆1)𝑛1 (𝑧 − 𝜆2)𝑛2 ⋅ ⋅ ⋅ (𝑧 − 𝜆𝑚)𝑛𝑚 , (8)

where 𝜓 belongs to 𝐻∞(Ω) and is nonvanishing on Ω. Now
by amethod used in the proof of [3, Proposition 3.1] we show
that the function 𝜓 is also bounded below on Ω. For this
choose 𝑟 > 0 such that 𝐵(𝜆, 𝑟) is contained in 𝑉. Put 𝐾 =𝜑−1(𝐵(𝜆, 𝑟)), and thus 𝐾 is a compact subset of Ω and so it
has a positive distance 𝛿 to 𝜕Ω. Now if𝜓 is not bounded below
onΩ, then there exists a sequence {𝑧𝑖} inΩ− {𝜆1, 𝜆2, . . . , 𝜆𝑛}
such that 𝜓(𝑧𝑖) → 0 as 𝑖 → ∞. Since 𝜓 is nonvanishing onΩ implies that 𝜑(𝑧𝑖) → 𝜆, so there exists a positive integer 𝑁
such that 𝜑(𝑧𝑖) ∈ 𝐵(𝜆, 𝑟) for all 𝑖 > 𝑁. Hence 𝑧𝑖 ∈ 𝐾 for all𝑖 > 𝑁 that is contradiction to 𝑧𝑖 → 𝜕Ω. Thus the function𝜓 is indeed bounded below on Ω. Now since 𝜓 is bounded
below and bounded above on Ω it is an invertible element of𝐻∞(Ω) and so the operator 𝑀𝜓 is invertible on H because𝑀(H) = 𝐻∞(Ω). Thus index(𝑀𝜓) = 0. Note that since

𝑀𝜑 − 𝜆
= 𝑀𝜓 (𝑀𝑧 − 𝜆1)𝑛1 (𝑀𝑧 − 𝜆2)𝑛2 ⋅ ⋅ ⋅ (𝑀𝑧 − 𝜆𝑚)𝑛𝑚 , (9)

we get

index (𝑀𝜑 − 𝜆) = 𝑚∑
𝑗=1

𝑛𝑗 (index (𝑀𝑧 − 𝜆𝑗)) . (10)
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But 𝑀𝜑 − 𝜆 is injective for all 𝜆 ∈ 𝑉; thus
index (𝑀𝜑 − 𝜆) = − dim [ker (𝑀𝜑 − 𝜆)∗] = −𝑛. (11)

Clearly, 𝑀𝑧 − 𝜆𝑗 is injective; thus
index (𝑀𝑧 − 𝜆𝑗) = − dim [ker (𝑀𝑧 − 𝜆𝑗)∗] (12)

for 𝑗 = 1, . . . , 𝑚. Note that, by Axiom 3 onH, ker(𝑀𝑧 − 𝜆𝑗)∗
is one-dimensional (see [17]); thus ∑𝑚𝑗=1 𝑛𝑗 = 𝑛 and therefore
Ω∩𝜑−1(𝜆) consists of exactly 𝑛 points (countingmultiplicity)
for every 𝜆 ∈ 𝑉 and now the proof is complete.

From the proof of Theorem 1, we can conclude the
following result.

Corollary 2. Let 𝜑 be a nonconstant function in 𝐻∞(Ω) and𝑘𝑧/‖𝑘𝑧‖ → 0 weakly as 𝑑𝑖𝑠𝑡(𝑧, 𝜕Ω) → 0. Then 𝜕𝜑(Ω) ⊂𝜎𝑒(𝑀𝜑).
Note that, by Axiom 3, for every 𝜆 ∈ Ω the operator𝑀𝑧−𝜆 is bounded below on H and also the space H ⊖ (𝑧 −𝜆)H is one-dimensional (see [3]). So the Hilbert space under

consideration,H, satisfies the conditions assumed by Zhu in
[7].

The following result was stated by Zhu in [7, Proposition5.2], but its proof is left to readers. For this reason we sketch
a proof of this proposition and although our proof might
seem more straightforward than the one stated by Zhu, we
emphasise that our main idea is given from [7].

Proposition 3. Suppose 𝜑 ∈ 𝐻∞(Ω) and 𝑉 is a domain
contained in 𝜑(Ω). If there exists a positive integer 𝑛 such thatΩ∩𝜑−1(𝜆) consists of 𝑛 points (counting multiplicity) for every𝜆 ∈ 𝑉, then the adjoint of the operator 𝑀𝜑 : H → H belongs
to the Cowen-Douglas class 𝐵𝑛(𝑈), where 𝑈 = {𝑧 : 𝑧 ∈ 𝑉}.
Proof. Let 𝜆 = 𝜑(𝜔) ∈ 𝑉. Then there exist an invertible
function 𝜓 ∈ 𝐻∞(Ω) and 𝑧1, 𝑧2, . . . , 𝑧𝑚 ∈ Ω ∩ 𝜑−1(𝜆) such
that

(𝑀𝜑 − 𝜆)∗
= 𝑀∗𝜓 (𝑀𝑧 − 𝑧1)∗𝑘1 (𝑀𝑧 − 𝑧2)∗𝑘2 ⋅ ⋅ ⋅ (𝑀𝑧 − 𝑧𝑚)∗𝑘𝑚 , (13)

where ∑𝑚𝑖=1 𝑘𝑖 = 𝑛. Axiom 3 implies that for all 𝑖 = 1, . . . ,𝑚, (𝑀𝑧 − 𝑧𝑖)∗ is onto (see [17]); thus for all 𝜆 ∈ 𝑉, (𝑀𝜑 − 𝜆)∗
is onto since𝑀𝜓 is invertible. Also, byAxiom3, dim[ker(𝑀𝑧−𝑧𝑖)∗] = 1 for 𝑖 = 1, . . . , 𝑚 and so

dim [ker (𝑀𝜑 − 𝜆)∗] = 𝑚∑
𝑖=1

𝑘𝑖 dim [ker (𝑀𝑧 − 𝑧𝑖)∗]

= 𝑚∑
𝑖=1

𝑘𝑖 = 𝑛.
(14)

Finally, we note that

Span {𝑘𝜔 : 𝜔 ∈ 𝜑−1 (𝑉)}
⊂ Span {ker (𝑀𝜑 − 𝜆)∗ : 𝜆 ∈ 𝑉} . (15)

Now, since 𝜑−1(𝑉) is open, Span{𝑘𝜔 : 𝜔 ∈ 𝜑−1(𝑉)} = H and
so the proof is complete.

Corollary 4. Under the conditions of Theorem 1, there exist a
positive integer 𝑛 and a domain 𝑈 in the complex plane such
that 𝑀∗𝜑 ∈ 𝐵𝑛(𝑈).
Proof. ByTheorem 1 and Proposition 3 it is clear.

Now we investigate the converse of Theorem 1.

Corollary 5. Let 𝜑 be a nonconstant function in 𝐻∞(Ω). If
there exists a domain 𝑉 ⊂ 𝜑(Ω) and a positive integer 𝑛 such
that Ω ∩ 𝜑−1(𝜆) consists of 𝑛 points (counting multiplicity) for
every 𝜆 ∈ 𝑉; then 𝑉 ⊂ 𝜎(𝑀𝜑) \ 𝜎𝑒(𝑀𝜑).
Proof. By Proposition 3, the adjoint of the operator 𝑀𝜑 :
H → H belongs to the Cowen-Douglas class 𝐵𝑛(𝑈), where𝑈 = {𝑧 : 𝑧 ∈ 𝑉}. Hence for all 𝜆 ∈ 𝑈, 𝑀∗𝜑 − 𝜆 is Fredholm
and so clearly 𝑉 ⊂ 𝜎(𝑀𝜑) \ 𝜎𝑒(𝑀𝜑).
Corollary 6. Let𝑀∗𝜑 ∈ 𝐵𝑛(𝑈) for some positive integer 𝑛 and
a complex domain𝑈. If 𝑘𝑧/‖𝑘𝑧‖ → 0 weakly as 𝑑𝑖𝑠𝑡(𝑧, 𝜕Ω) →0, thenΩ∩𝜑−1(𝜆) consists of 𝑛 point (counting multiplicity) for
every 𝜆 ∈ 𝑉 where 𝑉 = {𝑧 : 𝑧 ∈ 𝑈}.
Proof. First note that 𝑀∗𝜑 − 𝜆 is Fredholm for all 𝜆 ∈ 𝑈; thus

𝑉 ⊂ 𝜎 (𝑀𝜑) \ 𝜎𝑒 (𝑀𝜑) = 𝜑 (Ω) \ 𝜎𝑒 (𝑀𝜑) . (16)

But by Corollary 2, 𝜕𝜑(Ω) ⊂ 𝜎𝑒(𝑀𝜑); thus, 𝑉 ⊂ 𝜑(Ω). Now
if 𝜆 ∈ 𝑉, then 𝜆 = 𝜑(𝜔) for some 𝜔 ∈ Ω and clearly𝑘𝜔 ∈ ker(𝑀𝜑 − 𝜆)∗. Since dim[ker(𝑀𝜑 − 𝜆)∗] = 𝑛 and a
finite subset of points 𝜔 inΩ yields a linearly independent set
of functions 𝑘𝜔 in H, thus Ω ∩ 𝜑−1(𝜆) consist of at most n
points for all 𝜆 ∈ 𝑉. Now by the same method used in the
proof of Theorem 1, we can see that Ω ∩ 𝜑−1(𝜆) consists of
exactly 𝑛 points (counting multiplicity) for every 𝜆 ∈ 𝑉.
Example 7. Consider theHilbert Bergman space𝐿2𝑎(D)where
D is the open unit disc in the complex domain. Then 𝐿2𝑎(D)
holds in Axioms 1, 2, and 3 (see [17, Theorem 8.5, page 67]).
For the Bergman reproducing kernel function, 𝑘𝑧, clearly we
can see that ‖𝑘𝑧‖ → ∞ as dist(𝑧, 𝜕D) → 0. So if 𝑝 is a
polynomial, then

⟨𝑝, 𝑘𝑧󵄩󵄩󵄩󵄩𝑘𝑧󵄩󵄩󵄩󵄩⟩ = 𝑝 (𝑧)󵄩󵄩󵄩󵄩𝑘𝑧󵄩󵄩󵄩󵄩 󳨀→ 0 (17)

as dist(𝑧, 𝜕D) → 0. But polynomials are dense in 𝐿2𝑎(D); thus𝑘𝑧/‖𝑘𝑧‖ → 0 weakly as dist(𝑧, 𝜕D) → 0. Now by Theorem 1
and the proof of Corollary 5, we can see that𝑀∗𝜑 ∈ 𝐵𝑛(𝑈) for
some positive integer 𝑛 and a complex domain 𝑈 if and only
if 𝜎(𝑀𝜑) \ 𝜎𝑒(𝑀𝜑) ̸= 0.
Proposition 8. Let 𝜑 be a nonconstant function in 𝐻∞(Ω)
and 𝑘𝑧/‖𝑘𝑧‖ → 0 weakly as 𝑑𝑖𝑠𝑡(𝑧, 𝜕Ω) → 0. Then

𝜎𝑒 (𝑀𝜑) = ∩𝑛𝜑({𝑧 ∈ Ω : 𝑑𝑖𝑠𝑡 (𝑧, 𝜕Ω) < 1𝑛}) . (18)
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Proof. Let 𝜆 ∉ 𝜎𝑒(𝑀𝜑); then 𝑀𝜑 − 𝜆 is Fredholm. Now we
show that 𝜑 − 𝜆 is bounded away from zero near 𝜕Ω. By
way of contradiction, let {𝑧𝑛}𝑛 ⊂ Ω be a sequence such that𝜑(𝑧𝑛) → 𝜆 and {𝑧𝑛}𝑛 converges to a point in 𝜕Ω. Note that by
our assumptions 𝑘𝑧𝑛/‖𝑘𝑧𝑛‖ → 0 weakly and

(𝑀𝜑 − 𝜆)∗( 𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩) = (𝜑 (𝑧𝑛) − 𝜆) 𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩
(19)

for all 𝑛 ∈ N. So we get
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(𝑀𝜑 − 𝜆)∗( 𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩𝑘𝑧𝑛󵄩󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 󳨀→ 0. (20)

This is a contradiction because (𝑀𝜑−𝜆)∗ is Fredholm.Hence,𝜑 − 𝜆 is bounded away from zero near 𝜕Ω and so there exists𝑚 ∈ N large enough such that

inf {󵄨󵄨󵄨󵄨𝜑 (𝑧) − 𝜆󵄨󵄨󵄨󵄨 : dist (𝑧, 𝜕Ω) < 1𝑚} > 0. (21)

This implies that

𝜆 ∉ ∩𝑛𝜑({𝑧 ∈ Ω : dist (𝑧, 𝜕Ω) < 1𝑛}) . (22)

Conversely, if

𝜆 ∉ ∩𝑛𝜑({𝑧 ∈ Ω : dist (𝑧, 𝜕Ω) < 1𝑛}) , (23)

then𝜑−𝜆 is bounded away from zero near 𝜕Ω. Since the zeros
of an analytic function are isolated, thus the zeros of 𝜑−𝜆 are
finite. Let 𝜆1, 𝜆2, . . . , 𝜆𝑗 be all zeros (counting multiplicity) of𝜑 − 𝜆 in Ω such that

𝜑 (𝑧) − 𝜆 = 𝜓 (𝑧) (𝑧 − 𝜆1) (𝑧 − 𝜆2) ⋅ ⋅ ⋅ (𝑧 − 𝜆𝑗) . (24)

Clearly the function 𝜓 is invertible on Ω and so 𝑀𝜓 is
bounded below. Also, by Axiom 3 onH,𝑀𝑧−𝜆𝑗 is Fredholm
for all 𝑖 = 1, . . . , 𝑗. This implies that 𝑀𝜑 − 𝜆 is Fredholm and
so 𝜆 ∉ 𝜎𝑒(𝑀𝜑). So the proof is complete.

3. Intertwining Multiplication Operators

The following characterization of the commutant {𝑇}󸀠 of𝑇 is given in Theorem 3.7 of [2], which is stated for the
convenience of the reader. Note that 𝐾 is the reproducing
kernel for a coanalytic functional Hilbert spaceK defined in
[2].

Theorem9. If 𝑆 is in𝐵𝑛(Ω) and the operator𝑋 commutes with𝑆, then there exists an analytic function Φ : Ω → 𝐵𝑛(C𝑛) such
that 𝑋𝐾(𝜆, ⋅) = 𝐾(𝜆, ⋅)Φ(𝜆) (all 𝜆 ∈ Ω) and for every 𝑓 ∈ K,𝑋∗𝑓(⋅) = (Φ(⋅))∗𝑓(⋅).

In the following let Ω be such that if 𝜆 ∈ Ω then −𝜆 ∈ Ω.
Alsowe assume that the composition operator𝐶−𝑧 : H → H
defined by 𝐶−𝑧𝑓 = 𝑓(−𝑧) is bounded.

Proposition 10. Suppose that 𝜑 ∈ 𝐻∞(Ω) and there exists a
domain𝑉 ⊂ 𝜑(Ω) such thatΩ∩𝜑−1(𝜔) is a singleton for every𝜔 ∈ 𝑉. If 𝜑 is odd, 𝑆𝑀𝜑2 = 𝑀𝜑2𝑆 and 𝑆𝑀𝜑2𝑛−1 − 𝑀𝜑2𝑛−1𝑆 is
compact for some natural number 𝑛; then 𝑆 = 𝑀ℎ for someℎ ∈ 𝐻∞(Ω).
Proof. Note that, by Proposition 3, the adjoint of the operator𝑀𝜑 : H → H belongs to the Cowen-Douglas class 𝐵1(𝑈),
where 𝑈 = {𝑧 : 𝑧 ∈ 𝑉}. If 𝑛 = 1, all conditions of Theorem 4
in [5] hold and so there exists ℎ ∈ 𝐻∞(Ω) such that 𝑆 = 𝑀ℎ.
For 𝑛 > 1, put

𝑇1 = 𝑆𝑀𝜑2𝑛−1 − 𝑀𝜑2𝑛−1𝑆. (25)

Clearly 𝑇1𝑀𝜑 = −𝑀𝜑𝑇1 and so by Proposition 3 in [5], there
exists ℎ ∈ 𝐻∞(Ω) such that 𝑇1 = 𝑀ℎ𝐶−𝑧. But 𝑀ℎ = 𝑀ℎ𝐶−𝑧 ∘𝐶−𝑧 is compact; thus by the Fredholm Alternative Theorem,ℎ = 0 and so 𝑇1 = 0. Hence 𝑆𝑀𝜑2𝑛−1 = 𝑀𝜑2𝑛−1𝑆. Now we show
that 𝑆𝑀𝜑2𝑛−3 = 𝑀𝜑2𝑛−3𝑆. Put

𝑇2 = 𝑆𝑀𝜑2𝑛−3 − 𝑀𝜑2𝑛−3𝑆. (26)

And note that 𝑀𝜑2𝑇2 = 0. This implies that 𝑇2 = 0, since 𝜑 is
analytic and the zeros of 𝜑 are at most countable. Therefore𝑆𝑀𝜑2𝑛−3 = 𝑀𝜑2𝑛−3𝑆. Now if 𝑛 = 2, then 𝑆𝑀𝜑 = 𝑀𝜑𝑆 and
so by Proposition 4.1 in [7] the proof is complete. Else, by
continuing this manner, we can conclude that 𝑆𝑀𝜑 = 𝑀𝜑𝑆
which implies that 𝑆 = 𝑀𝜑 for some ℎ ∈ 𝐻∞(Ω).
Proposition 11. Suppose that 𝜑 ∈ 𝐻∞(Ω) and there exists a
domain𝑉 ⊂ 𝜑(Ω) such thatΩ∩𝜑−1(𝜔) is a singleton for every𝜔 ∈ 𝑉. If 𝜑 is odd, 𝑆𝑀𝜑2 = 𝑀𝜑2𝑆, and 𝑆𝑀𝜑2𝑛−1 + 𝑀𝜑2𝑛−1𝑆
is compact for some natural number 𝑛, then 𝑆 = 𝑀ℎ𝐶−𝑧 for
some ℎ ∈ 𝐻∞(Ω).
Proof. If 𝑛 = 1, put

𝑇1 = 𝑆𝑀𝜑 + 𝑀𝜑𝑆. (27)

Then 𝑇1𝑀𝜑 = 𝑀𝜑𝑇1. Thus 𝑇1 = 𝑀ℎ1 for some ℎ1 ∈ 𝐻∞(Ω).
But𝑀ℎ1 is compact, hence ℎ1 = 0 and so 𝑇1 = 0. This implies
that 𝑆𝑀𝜑 = −𝑀𝜑𝑆. Now by Proposition 3 in [5], 𝑆 = 𝑀ℎ𝐶−𝑧
for some ℎ ∈ 𝐻∞(Ω). If 𝑛 > 1, put 𝑇2 = 𝑆𝑀𝜑2𝑛−1 + 𝑀𝜑2𝑛−1𝑆.
Then, clearly 𝑀𝜑𝑇2 = 𝑇2𝑀𝜑 from which we can conclude
that 𝑇2 = 𝑀ℎ1 for some ℎ1 ∈ 𝐻∞(Ω). The compactness of𝑀ℎ1 implies that ℎ1 = 0 and so 𝑇2 = 0.

Thus 𝑆𝑀𝜑2𝑛−1 = −𝑀𝜑2𝑛−1𝑆. Put
𝑇3 = 𝑆𝑀𝜑2𝑛−3 + 𝑀𝜑2𝑛−3𝑆. (28)

Hence 𝑀𝜑2𝑇3 = 0 which implies that 𝑇3 = 0. Therefore,𝑆𝑀𝜑2𝑛−3 = −𝑀𝜑2𝑛−3𝑆. If 𝑛 = 2, then 𝑆𝑀𝜑 = −𝑀𝜑𝑆 and
the proof is complete. If 𝑛 > 2, by continuing this manner,
finally we can see that 𝑆𝑀𝜑 = −𝑀𝜑𝑆 and this completes the
proof.

4. Reflexivity in Cowen-Douglas
Class of Operators

It is shown in [4] that, under sufficient conditions, an operator𝑇 in the Cowen-Douglas class 𝐵𝑛(Ω) can be reflexive, where
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Ω is a special bounded plane domain. In this section we give
some sufficient conditions so that the associated canonical
model is reflexive. This answers Question 5.6 in [9, p. 98].
Indeed, we investigate the reflexivity of 𝐵𝑛(Ω), when Ω is an
arbitrary bounded domain.

It is well known that every operator in the class 𝐵𝑛(Ω)
is unitarily equivalent to the adjoint of the canonical model
associated with a generalized Bergman kernel (g.B.k. for
brevity) 𝐾 (see [2, 6]). Actually 𝐾 is the reproducing kernel
for a coanalytic functional Hilbert spaceKK (brieflyK) on
which we can define the operator 𝑇𝑧 of multiplication by 𝑧.
The operator 𝑇 = 𝑇∗𝑧 acting on K is called the canonical
model associated with 𝐾. We know that, for every 𝜆 in Ω,𝑇 − 𝜆 is onto and

ker (𝑇 − 𝜆) = ran𝐾 (𝜆, ⋅) = {𝐾 (𝜆, ⋅) 𝜉 : 𝜉 ∈ C
𝑛} , (29)

and dim ker(𝑇 − 𝜆) = 𝑛.
Recall that a compact subset𝐹 of the plane is a spectral set

for a bounded operator 𝐴 if 𝐹 contains 𝜎(𝐴) and ‖𝑓(𝐴)‖ ≤
sup𝑧∈𝐹|𝑓(𝑧)| for all rational functions 𝑓 with poles off 𝐹.
Also, an open connected subset 𝐺 of the plane is called a
Carathéodory region if its boundary equals the boundary of
the unbounded component of C − 𝐺.

It is proved in [4] that if𝑇 is in𝐵1(Ω) and𝑇∗ is an injective
unilateral weighted shift, then 𝑇 is reflexive. Also, it has been
shown that if𝑇 is in 𝐵𝑛(Ω), whereΩ is a Carathéodory region
such that 𝜎(𝑇) = Ω is a spectral set for 𝑇, then 𝑇 is reflexive
(see [4, Theorem 2]). This implies that if 𝑇 is a contraction in𝐵𝑛(D) whereD is the open unit disk, then 𝑇 is reflexive. Here
we want to investigate the reflexivity of 𝑇 on 𝐵𝑛(Ω), where Ω
is an arbitrary domain in C.

Theorem 12. If 𝑇 is in 𝐵𝑛(Ω), where Ω ⊂ C is an arbitrary
domain, then there exists a total set 𝑌 such that the weak
closure of the set {𝑝(𝑇)𝑦: 𝑝 is a polynomial, 𝑦 ∈ 𝑌} contains𝐴𝑙𝑔𝐿𝑎𝑡(𝑇).
Proof. Let𝐾 be a g.B.k. onΩ and let𝑋 ∈ AlgLat(𝑇). Then by
Theorem 9 and [4, Lemma 1], there exists 𝜓 ∈ 𝐻∞(Ω) such
that𝑋𝐾(𝜆, ⋅) = 𝜓(𝜆)𝐾(𝜆, ⋅) for all 𝜆 inΩ. Now let𝐹 = {𝜆𝑛}∞𝑛=1
be dense in Ω and choose 𝜉𝑖 ∈ C𝑛 such that 𝐾(𝜆𝑖, ⋅)𝜉𝑖 ̸= 0 for𝑖 = 1, 2, . . . . PutK𝑖 = ∨{𝐾(𝜆𝑖, ⋅)𝜉𝑖} for 𝑖 = 1, 2, . . . . Define

K
󸀠
∞ = K1 ⊕ K2 ⊕ K3 ⊕ ⋅ ⋅ ⋅ = ∞⨁

𝑖=1

K𝑖,

𝑇∞ = 𝑇|K1 ⊕ 𝑇|K2 ⊕ 𝑇|K3 ⊕ ⋅ ⋅ ⋅ = ∞⨁
𝑖=1

𝑇𝑖,

𝑋∞ = 𝑋 ⊕ 𝑋 ⊕ 𝑋 ⊕ ⋅ ⋅ ⋅ = ∞⨁
𝑖=1

𝑋𝑖.

(30)

Fix 𝑓 = ⨁∞𝑖=1𝑐𝑖𝐾(𝜆𝑖, ⋅)𝜉𝑖 satisfying
∞∑
𝑖=1

󵄨󵄨󵄨󵄨𝑐𝑖󵄨󵄨󵄨󵄨2 󵄩󵄩󵄩󵄩𝐾 (𝜆𝑖, ⋅) 𝜉𝑖󵄩󵄩󵄩󵄩2 < ∞, (31)

where 𝑐𝑖 ̸= 0 for all 𝑖. Thus 𝑓 ∈ K󸀠∞. Define

M

= cl{ ∞⨁
𝑖=1

𝑝 (𝑇) 𝑐𝑖𝐾(𝜆𝑖, ⋅) 𝜉𝑖 : 𝑝 is a polynomial} . (32)

Since 𝑓 ∈ M, M ̸= 0. Now clearly M is closed subspace of
K󸀠∞ and we have

𝑇∞𝑓 = ∞⨁
𝑖=1

𝑐𝑖𝑇𝐾 (𝜆𝑖, ⋅) 𝜉𝑖 = ∞⨁
𝑖=1

𝑐𝑖𝜆𝑖𝐾(𝜆𝑖, ⋅) 𝜉𝑖. (33)

Thus 𝑇∞𝑓 ∈ M and so M ∈ Lat(𝑇∞). But Lat(𝑇) ⊆
Lat(𝑋),;thus Lat(𝑇∞) ⊆ Lat(𝑋∞) and we get M ∈ Lat(𝑋∞).
Therefore 𝑋∞𝑓 ∈ M and so there exists a sequence {𝑝𝑛}𝑛 of
polynomials such that

⊕𝑖𝑐𝑖𝑝𝑛 (𝑇) 𝑐𝑖𝐾(𝜆𝑖, ⋅) 𝜉𝑖 󳨀→
𝑋∞𝑓 = ⊕𝑖𝑐𝑖𝜓 (𝑇) 𝑐𝑖𝐾(𝜆𝑖, ⋅) 𝜉𝑖 (34)

inK󸀠∞. Thus ⊕𝑖𝑐𝑖(𝑝𝑛(𝜆𝑖) − 𝜓(𝜆𝑖))𝐾(𝜆𝑖, ⋅)𝜉𝑖 → 0 inK󸀠∞ and
since for all 𝑖󵄩󵄩󵄩󵄩⊕𝑖𝑐𝑖 (𝑝𝑛 (𝜆𝑖) − 𝜓 (𝜆𝑖))𝐾 (𝜆𝑖, ⋅) 𝜉𝑖󵄩󵄩󵄩󵄩

≥ 󵄩󵄩󵄩󵄩𝑐𝑖 (𝑝𝑛 (𝜆𝑖) − 𝜓 (𝜆𝑖))𝐾 (𝜆𝑖, ⋅) 𝜉𝑖󵄩󵄩󵄩󵄩 , (35)

we get sup𝑖‖𝑐𝑖(𝑝𝑛(𝜆𝑖) − 𝜓(𝜆𝑖))𝐾(𝜆𝑖, ⋅)𝜉𝑖‖ → 0 as 𝑛 → ∞. But

󵄩󵄩󵄩󵄩𝑐𝑖 (𝑝𝑛 (𝜆𝑖) − 𝜓 (𝜆𝑖))𝐾 (𝜆𝑖, ⋅) 𝜉𝑖󵄩󵄩󵄩󵄩2
= 󵄨󵄨󵄨󵄨𝑐𝑖 (𝑝𝑛 (𝜆𝑖) − 𝜓 (𝜆𝑖))󵄨󵄨󵄨󵄨2 ⟨𝐾 (𝜆𝑖, 𝜆𝑖) 𝜉𝑖, 𝜉𝑖⟩
= 󵄨󵄨󵄨󵄨𝑐𝑖󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝑝𝑛 (𝜆𝑖) − 𝜓 (𝜆𝑖)󵄨󵄨󵄨󵄨2 󵄩󵄩󵄩󵄩󵄩󵄩𝐾 (𝜆𝑖, 𝜆𝑖)1/2𝜉𝑖󵄩󵄩󵄩󵄩󵄩󵄩

2

(36)

and𝐾(𝜆𝑖, 𝜆𝑖) is invertible; thus for all 𝑖, |(𝑝𝑛 −𝜓)(𝜆𝑖)| → 0 as𝑛 → ∞. This implies that (𝑝𝑛(𝑇) − 𝑋)𝑔 → 0 for all 𝑔 in the
finite linear combinations of

𝑌 = {𝐾 (𝜆𝑖, ⋅) 𝜉 : 𝑖 ∈ N, 𝜉 ∈ C
𝑛} (37)

that is a total subset ofK. At this time the proof is complete.

Let 𝜓, {𝑝𝑛}𝑛, and 𝐹 = {𝜆𝑖}𝑖 be defined as in the proof of
Theorem 12. At the end of the proof of Theorem 12, we saw
that, for all 𝑖, |(𝑝𝑛 − 𝜓)(𝜆𝑖)| → 0 as 𝑛 → ∞. Now we ask the
following question.

Question 13. In the proof of Theorem 12, is it true that
sup𝑖|(𝑝𝑛 − 𝜓)(𝜆𝑖)| → 0 as 𝑛 → ∞?

If the answer of Question 13 is positive, then ‖𝑝𝑛‖𝐹 ≤ 𝑀
for some 𝑀 > 0 and we may have the following corollary.
Note that the special case of this corollary has been proved as
Theorem 2 in [4], only wheneverΩ is a Carathéodory region.

Corollary 14. If 𝑇 is in 𝐵𝑛(Ω) where Ω ⊂ C is a domain such
that 𝜎(𝑇) = Ω is a spectral set for 𝑇, then 𝑇 is reflexive.
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Proof. Let 𝐾 be a g.B.k. on Ω and let 𝑋 ∈ AlgLat(𝑇). By
Theorem 12, there exists a sequence of polynomials {𝑝𝑛}𝑛 such
that 𝑝𝑛(𝑇) converges in the finite linear combinations of

{𝐾 (𝜆, ⋅) 𝜉 : 𝜆 ∈ 𝐹, 𝜉 ∈ C
𝑛} (38)

that is a total subset ofK, where 𝐹 = {𝜆𝑛}∞𝑛=1 was a dense set
inΩ. Also, sup𝑖|(𝑝𝑛−𝜓)(𝜆𝑖)| → 0 as 𝑛 → ∞.This implies that‖𝑝𝑛‖Ω = ‖𝑝𝑛‖𝐹 ≤ 𝑀 for some 𝑀 > 0. Now since 𝜎(𝑇) = Ω is
a spectral set for 𝑇, we conclude that ‖𝑝𝑛(𝑇)‖ ≤ 𝑀. Since the
unit ball of 𝐵(K) is compact in the weak operator topology,
by passing to a subsequence if necessary, we may assume
that 𝑝𝑛(𝑇) → 𝐴 in the weak operator topology. Therefore,𝑝𝑛(𝑇)𝐾(𝜆, ⋅)𝜉 → 𝐴𝐾(𝜆, ⋅)𝜉 weakly. But

𝑝𝑛 (𝑇)𝐾 (𝜆, ⋅) 𝜉 = 𝑝𝑛 (𝜆)𝐾 (𝜆, ⋅) 𝜉 󳨀→ 𝜓 (𝜆)𝐾 (𝜆, ⋅) 𝜉. (39)

Hence, 𝐴𝐾(𝜆, ⋅)𝜉 = 𝜓(𝜆)𝐾(𝜆, ⋅)𝜉, where, by the proof of
Theorem 12,𝜓 is a function in𝐻∞(Ω) and satisfies𝑋𝐾(𝜆, ⋅) =𝜓(𝜆)𝐾(𝜆, ⋅) for all 𝜆 in Ω. From this we conclude that 𝐴 =𝑋, so 𝑋 ∈ 𝑊(𝑇). Therefore, AlgLat(𝑇) ⊂ 𝑊(𝑇) and 𝑇 is
reflexive. This completes the proof.
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