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We prove a uniform boundedness principle for the Lipschitz seminorm of continuous, monotone, positively homogeneous, and
subadditive mappings on suitable cones of functions. The result is applicable to several classes of classically nonlinear operators.

1. Introduction and Preliminaries

Uniformboundedness principle for bounded linear operators
(Banach-Steinhaus theorem) is one of the cornerstones of
classical functional analysis (see, e.g., [1–3] and the references
cited therein). In this article we prove a new uniform bound-
edness principle for monotone, positively homogeneous,
subadditive, and Lipschitz mappings defined on a suitable
cone of functions (Theorem 2). This result is applicable to
several classes of classically nonlinear operators (Examples 4
and 5 and Remarks 7 and 8).

Let Ω be a nonempty set. Throughout the article let 𝑋
denote a vector space of all functions 𝜑 : Ω → R or a vector
space of all equivalence classes of (almost equal everywhere)
real measurable functions on Ω, if (Ω,M, 𝜇) is a measure
space. As usual, |𝜑| denotes the absolute value of 𝜑 ∈ 𝑋.

Let𝑌 ⊂ 𝑋 be a vector space and let𝑌+ denote the positive
cone of 𝑌, that is, the set of all 𝜑 ∈ 𝑌 such that 𝜑(𝜔) ≥ 0 for
all (almost all) 𝜔 ∈ Ω. The space 𝑌 is called an ordered vector
space with the partial ordering induced by the cone 𝑌+. If, in
addition, 𝑌 is a normed space it is called an ordered normed
space. The vector space 𝑌 ⊂ 𝑋 is called a vector lattice (or a
Riesz space) if for every 𝜑, 𝜓 ∈ 𝑌 we have a supremum and
infimum (greatest lower bound) in 𝑌. If, in addition, 𝑌 is a
normed space and if |𝜑| ≤ |𝜓| implies ‖𝜑‖ ≤ ‖𝜓‖, then 𝑌 is a
called normed vector lattice (or a normed Riesz space). Note
that in a normed vector lattice 𝑌 we have ‖|𝜑|‖ = ‖𝜑‖ for all

𝜑 ∈ 𝑌. A complete normed vector lattice is called a Banach
lattice. Observe that𝑋 itself is a vector lattice.

Let 𝑌 ⊂ 𝑋 be a normed space. The cone 𝑌+ is called
normal if and only if there exists a constant 𝐶 > 0 such that
‖𝜑‖ ≤ 𝐶‖𝜓‖ whenever 𝜑 ≤ 𝜓, 𝜑, 𝜓 ∈ 𝑌+. A cone 𝑌+ is normal
if and only if there exists an equivalent monotone norm ||| ⋅ |||
on 𝑌; that is, |||𝜑||| ≤ |||𝜓||| whenever 0 ≤ 𝜑 ≤ 𝜓 (see, e.g., [4,
Theorem 2.38]). A positive cone of a normed vector lattice is
closed and normal. Every closed cone in a finite dimensional
Banach space is necessarily normal.

Let 𝑍 ⊂ 𝑌 be a cone (not necessarily equal to 𝑌+). A cone
𝑍 is said to be complete if it is a complete metric space in the
topology induced by 𝑌. In the case when 𝑌 is a Banach space
this is equivalent to 𝑍 being closed in 𝑌.

A mapping 𝐴 : 𝑍 → 𝑍 is called positively homogeneous
(of degree 1) if 𝐴(𝑡𝜑) = 𝑡𝐴(𝜑) for all 𝑡 ≥ 0 and 𝜑 ∈ 𝑍. A
mapping 𝐴 : 𝑍 → 𝑍 is called Lipschitz if there exists 𝐿 > 0
such that ‖𝐴𝜑 − 𝐴𝜓‖ ≤ 𝐿‖𝜑 − 𝜓‖ for all 𝜑, 𝜓 ∈ 𝑍 and we
denote

‖𝐴‖LIP = sup
𝜑,𝜓∈𝑍,𝜑 ̸=𝜓

󵄩󵄩󵄩󵄩𝐴𝜑 − 𝐴𝜓󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩

. (1)

If 𝐴 is Lipschitz and positively homogeneous, then

‖𝐴‖LIP = sup
𝜑,𝜓,∈𝑍,‖𝜑−𝜓‖=1

󵄩󵄩󵄩󵄩𝐴𝜑 − 𝐴𝜓󵄩󵄩󵄩󵄩 . (2)
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Note also that a Lipschitz and positively homogeneous
mapping 𝐴 on 𝑍 is always bounded on 𝑍; that is,

‖𝐴‖ = sup
𝜑∈𝑍,𝜑 ̸=0

󵄩󵄩󵄩󵄩𝐴𝜑󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩
= sup
𝜑∈𝑍,‖𝜑‖=1

󵄩󵄩󵄩󵄩𝐴𝜑󵄩󵄩󵄩󵄩 (3)

is finite and it holds that ‖𝐴‖ ≤ ‖𝐴‖LIP. Moreover, a positively
homogeneous mapping 𝐴 : 𝑍 → 𝑍, which is continuous at
0, is bounded on 𝑍.

A set𝐾 ⊂ 𝑌 is called a wedge if𝐾+𝐾 ⊂ 𝐾 and if 𝑡𝐾 ⊂ 𝐾
for all 𝑡 ≥ 0. A wedge 𝐾 induces on 𝑌 a vector preordering
≤𝐾 (𝜑≤𝐾 𝜓 if and only if 𝜓 − 𝜑 ∈ 𝐾), which is reflexive and
transitive, but not necessarily antisymmetric.

If 𝐾 ⊂ 𝑌 is a wedge, then 𝐴 : 𝐾 → 𝑌 is called
subadditive if 𝐴(𝜑 + 𝜓) ≤ 𝐴𝜑 + 𝐴𝜓 for 𝜑, 𝜓 ∈ 𝐾 and is
called monotone (order preserving) if 𝐴𝜑 ≤ 𝐴𝜓 whenever
𝜑 ≤ 𝜓, 𝜑, 𝜓 ∈ 𝐾. Note that in this definition of subadditivity
and monotonicity we consider on 𝑌 (and on 𝐾) a partial
ordering ≤𝑌+ induced by 𝑌+ (not a preordering ≤𝐾 ). One of
the reasons for this choice is that, for example, it may happen
that a nonlinearmap ismonotonewith respect to the ordering
≤𝑌+ , but it is not monotone with respect to the preordering
≤𝐾 (see, e.g., [5, Section 5] andmax-type operators, or [6] and
the “renormalization operators” which occur in discussing
diffusion on fractals). Moreover, for similar reasons wherever
in our article we consider a subcone 𝑍 ⊂ 𝑌+ we consider on
𝑍 a partial ordering ≤𝑌+ induced by𝑌+ (not a partial ordering
≤𝑍). Observe that in this setting the set 𝑍 − 𝑍 is a vector
subspace in 𝑌 and thus a wedge.

In ourmain result (Theorem 2)wewill consider a normed
space 𝑌 ⊂ 𝑋 with a normal cone 𝑌+ and a complete subcone
𝑍 ⊂ 𝑌+ that satisfies |𝜑 − 𝜓| ∈ 𝑍 for all 𝜑, 𝜓 ∈ 𝑍 and such
that ‖𝜑‖ = ‖|𝜑|‖ for all 𝜑 = 𝜑1 − 𝜑2, where 𝜑1, 𝜑2 ∈ 𝑍.
Since 𝑋 itself is a vector lattice the above assumptions make
sense. Note also that a positive cone 𝑍 = 𝑌+ of each Banach
lattice 𝑌 or, in particular, of each Banach function space
(see, e.g., [2, 7–11] and the references cited therein) satisfies
these properties. For the theory of cones, wedges, linear and
nonlinear operators on cones and wedges, Banach ordered
spaces, Banach function spaces, vector and Banach lattices,
and applications, for example, in financial mathematics, we
refer the reader to [2, 4, 5, 7, 8, 12–19] and the references cited
therein.

2. Results

We will need the following lemma.

Lemma 1. Let 𝑌 ⊂ 𝑋 be a vector space and let 𝑍 ⊂ 𝑌+ be a
subcone such that |𝜑−𝜓| ∈ 𝑍 for all𝜑, 𝜓 ∈ 𝑍. If𝐴 : 𝑍−𝑍 → 𝑌
is a subadditive and monotone mapping, then

󵄨󵄨󵄨󵄨𝐴𝜑 − 𝐴𝜓󵄨󵄨󵄨󵄨 ≤ 𝐴 󵄨󵄨󵄨󵄨𝜑 − 𝜓󵄨󵄨󵄨󵄨 , (4)

for all 𝜑, 𝜓 ∈ 𝑍.
If, in addition, 𝑌 is a normed space such that 𝑌+ is normal

and 𝑍 ⊂ 𝑌+ is a subcone such that ‖𝜑‖ = ‖|𝜑|‖ for all 𝜑 =
𝜑1 − 𝜑2, where 𝜑1, 𝜑2 ∈ 𝑍, and if 𝐴𝑍 ⊂ 𝑍 and 𝐴 is bounded
on 𝑍, then 𝐴 is Lipschitz on 𝑍.

Proof. Let 𝜑, 𝜓 ∈ 𝑍. Since𝐴 : 𝑍−𝑍 → 𝑌 is a subadditive, we
have

𝐴𝜑 = 𝐴 (𝜑 − 𝜓 + 𝜓) ≤ 𝐴 (𝜑 − 𝜓) + 𝐴𝜓. (5)

It follows that 𝐴𝜑 − 𝐴𝜓 ≤ 𝐴(𝜑 − 𝜓) ≤ 𝐴|𝜑 − 𝜓|, since 𝐴 is
monotone and 𝜑 − 𝜓 ≤ |𝜑 − 𝜓|. Similarly one obtains that
𝐴𝜓 − 𝐴𝜑 ≤ 𝐴|𝜑 − 𝜓|, which proves (4).

Assume that, in addition, 𝑌 is a normed space such that
𝑌+ is normal (with a normality constant 𝐶) and 𝑍 ⊂ 𝑌+ a
subcone such that ‖𝜑1 − 𝜑2‖ = ‖|𝜑1 − 𝜑2|‖ for all 𝜑1, 𝜑2 ∈ 𝑍
and that 𝐴𝑍 ⊂ 𝑍 and 𝐴 is bounded on 𝑍. It follows from (4)
that

󵄩󵄩󵄩󵄩𝐴𝜑 − 𝐴𝜓󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐴𝜑 − 𝐴𝜓󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 ≤ 𝐶 󵄩󵄩󵄩󵄩𝐴
󵄨󵄨󵄨󵄨𝜑 − 𝜓󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

≤ 𝐶 ‖𝐴‖ 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩 ,
(6)

and thus 𝐴 is Lipschitz on 𝑍 (and ‖𝐴‖LIP ≤ 𝐶‖𝐴‖), which
completes the proof.

The following uniform boundedness principle is the
central result of this article.

Theorem 2. Let 𝑌 ⊂ 𝑋 be a normed space such that 𝑌+ is
normal and let 𝑍 ⊂ 𝑌+ be a complete subcone, such that |𝜑 −
𝜓| ∈ 𝑍 for all 𝜑, 𝜓 ∈ 𝑍 and such that ‖𝜑‖ = ‖|𝜑|‖ for all
𝜑 ∈ 𝑍−𝑍. Assume thatA is a set of subadditive andmonotone
mappings 𝐴 : 𝑍 − 𝑍 → 𝑌 such that 𝐴𝑍 ⊂ 𝑍 and that each
𝐴 ∈ A is positively homogeneous and continuous on 𝑍.

If the set {𝐴𝜑: 𝐴 ∈ A} is bounded for each 𝜑 ∈ 𝑍 (i.e., for
each 𝜑 ∈ 𝑍 there exists 𝑀𝜑 > 0 such that ‖𝐴𝜑‖ ≤ 𝑀𝜑 for all
𝐴 ∈ A), then there exists 𝑀 > 0 such that ‖𝐴‖𝐿𝐼𝑃 ≤ 𝑀 for all
𝐴 ∈ A.

Proof. Since 𝑍 is closed and each 𝐴 ∈ A is continuous on 𝑍
the set

𝐴𝑛 = {𝜑 ∈ 𝑍: 󵄩󵄩󵄩󵄩𝐴𝜑󵄩󵄩󵄩󵄩 ≤ 𝑛 ∀𝐴 ∈ A} (7)

is closed in𝑌 for each 𝑛 ∈ N.Moreover,𝑍 is a completemetric
space and𝑍 = ⋃∞𝑛=1 𝐴𝑛. By Baire’s theorem there exist 𝑛0 ∈ N,
𝜑0 ∈ 𝑍, and 𝜀 > 0 such that an open ball O(𝜑0, 3𝜀𝐶) = {𝜑 ∈
𝑍: ‖𝜑 − 𝜑0‖ < 3𝜀𝐶} ⊂ 𝐴𝑛0 , where 𝐶 is the normality constant
of 𝑌+.

Let 𝜑, 𝜓 ∈ 𝑍 such that ‖𝜑 − 𝜓‖ = 1 and 𝐴 ∈ A. Since 𝑍
is a normal cone and 𝐴 is positively homogeneous on 𝑍, we
have by (4)

󵄩󵄩󵄩󵄩𝐴𝜑 − 𝐴𝜓󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐴𝜑 − 𝐴𝜓󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 ≤ 𝐶 󵄩󵄩󵄩󵄩𝐴
󵄨󵄨󵄨󵄨𝜑 − 𝜓󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

=
𝐶

𝜀
󵄩󵄩󵄩󵄩𝐴 (𝜀 󵄨󵄨󵄨󵄨𝜑 − 𝜓󵄨󵄨󵄨󵄨)

󵄩󵄩󵄩󵄩 .
(8)

Since 𝐴 is subadditive and monotone on 𝑍 − 𝑍 we have

𝐴 (𝜀 󵄨󵄨󵄨󵄨𝜑 − 𝜓󵄨󵄨󵄨󵄨) = 𝐴 (𝜑0 + 𝜀 󵄨󵄨󵄨󵄨𝜑 − 𝜓󵄨󵄨󵄨󵄨 − 𝜑0)

≤ 𝐴𝜑0 + 𝐴 (𝜀 󵄨󵄨󵄨󵄨𝜑 − 𝜓󵄨󵄨󵄨󵄨 − 𝜑0)

≤ 𝐴𝜑0 + 𝐴 (|𝜀| 𝜑 − 𝜓 󵄨󵄨󵄨󵄨−𝜑0
󵄨󵄨󵄨󵄨) ,

(9)
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which together with (8) implies

󵄩󵄩󵄩󵄩𝐴𝜑 − 𝐴𝜓󵄩󵄩󵄩󵄩 ≤
𝐶2

𝜀
(󵄩󵄩󵄩󵄩𝐴𝜑0

󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐴 |𝜀| 𝜑 − 𝜓 󵄨󵄨󵄨󵄨−𝜑0
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩)

≤
𝐶2

𝜀
(𝑛0 +

󵄩󵄩󵄩󵄩𝐴 |𝜀| 𝜑 − 𝜓 󵄨󵄨󵄨󵄨−𝜑0
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩) .

(10)

We also have
󵄨󵄨󵄨󵄨|𝜀| 𝜑 − 𝜓󵄨󵄨󵄨󵄨 − 𝜑0

󵄨󵄨󵄨󵄨−𝜑0
󵄨󵄨󵄨󵄨 < 3𝜀 󵄨󵄨󵄨󵄨𝜑 − 𝜓󵄨󵄨󵄨󵄨 . (11)

Indeed, if 𝜀|𝜑(𝜔) − 𝜓(𝜔)| − 𝜑0(𝜔) ≤ 0, then
󵄨󵄨󵄨󵄨|𝜀| 𝜑 (𝜔) − 𝜓 (𝜔)󵄨󵄨󵄨󵄨 − 𝜑0 (𝜔) 󵄨󵄨󵄨󵄨−𝜑0 (𝜔)󵄨󵄨󵄨󵄨

= 𝜀 󵄨󵄨󵄨󵄨𝜑 (𝜔) − 𝜓 (𝜔)󵄨󵄨󵄨󵄨 ,
(12)

and if 𝜀|𝜑(𝜔) − 𝜓(𝜔)| − 𝜑0(𝜔) > 0, then
󵄨󵄨󵄨󵄨|𝜀| 𝜑 (𝜔) − 𝜓 (𝜔)󵄨󵄨󵄨󵄨 − 𝜑0 (𝜔) 󵄨󵄨󵄨󵄨−𝜑0 (𝜔)󵄨󵄨󵄨󵄨

= |𝜀| 𝜑 (𝜔) − 𝜓 (𝜔) 󵄨󵄨󵄨󵄨−2𝜑0 (𝜔)󵄨󵄨󵄨󵄨

≤ 𝜀 󵄨󵄨󵄨󵄨𝜑 (𝜔) − 𝜓 (𝜔)󵄨󵄨󵄨󵄨 + 2𝜑0 (𝜔) < 3𝜀 󵄨󵄨󵄨󵄨𝜑 (𝜔) − 𝜓 (𝜔)󵄨󵄨󵄨󵄨 ,

(13)

which proves (11).
It follows from (11) that ‖|𝜀|𝜑−𝜓|−𝜑0|−𝜑0‖ ≤ 3𝐶𝜀‖𝜑−𝜓‖ =

3𝐶𝜀 and thus |𝜀|𝜑−𝜓|−𝜑0| ∈ 𝐴𝑛0 and so ‖𝐴|𝜀|𝜑−𝜓|−𝜑0|‖ ≤ 𝑛0.
Therefore

󵄩󵄩󵄩󵄩𝐴𝜑 − 𝐴𝜓󵄩󵄩󵄩󵄩 ≤
2𝐶2𝑛0

𝜀
, (14)

and so ‖𝐴‖LIP ≤ 2𝐶2𝑛0/𝜀.

Remark 3. (i) Each𝐴 ∈ A satisfies ‖𝐴‖ ≤ ‖𝐴‖LIP ≤ 𝐶‖𝐴‖ (see
the proof of Lemma 1). Therefore we could alternatively set
𝜓 = 0 in the proof above and prove a uniform upper bound
‖𝐴‖ ≤ 2𝐶𝑛0/𝜀 for all𝐴 ∈ A, which gives the same conclusion.

(ii) In the proofs of Lemma 1 and Theorem 2 we did not
need the assumption 𝑍 ∩ (−𝑍) = {0}, so it suffices to assume
that𝑍 is a wedge in these two results (not necessarily a cone).

(iii) Also the assumption on normality of 𝑌+ can be
slightly weakened in Lemma 1 and Theorem 2. Instead of
normality of 𝑌+ it suffices to assume that there exists a
constant 𝐶 > 0 such that ‖𝜑‖ ≤ 𝐶‖𝜓‖ whenever 𝜑 ≤ 𝜓,
𝜑, 𝜓 ∈ 𝑍 (where again 𝜑 ≤ 𝜓means 𝜑≤𝑌+𝜓).

Our results can be applied to various classes of nonlinear
operators. In particular, they apply to various max-kernel
operators (and their isomorphic versions) appearing in the
literature (see, e.g., [5, 19–21] and the references cited therein).
We point out the following two related examples from [5, 17–
19].

Example 4. Given 𝑎 > 0, let 𝑌 = 𝐶[0, 𝑎] be Banach
lattice of continuous functions on [0, 𝑎] equipped with ‖ ⋅ ‖∞
norm. Consider the following max-type kernel operators 𝐴 :
𝐶[0, 𝑎] → 𝐶[0, 𝑎] of the form

(𝐴 (𝜑)) (𝑠) = max
𝑡∈[𝛼(𝑠),𝛽(𝑠)]

𝑘 (𝑠, 𝑡) 𝜑 (𝑡) , (15)

where 𝜑 ∈ 𝐶[0, 𝑎] and 𝛼, 𝛽 : [0, 𝑎] → [0, 𝑎] are given
continuous functions satisfying 𝛼 ≤ 𝛽. The kernel 𝑘 : 𝑆 →
[0,∞) is a given nonnegative continuous function, where 𝑆
denotes the compact set

𝑆 = {(𝑠, 𝑡) ∈ [0, 𝑎] × [0, 𝑎] : 𝑡 ∈ [𝛼 (𝑠) , 𝛽 (𝑠)]} . (16)

It is clear that for 𝑍 = 𝐶+[0, 𝑎] it holds that 𝐴𝑍 ⊂ 𝑍.
The eigenproblem of these operators arises in the study of
periodic solutions of a class of differential-delay equations

𝜀𝑦󸀠 (𝑡) = 𝑔 (𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) , 𝜏 = 𝜏 (𝑦 (𝑡)) , (17)

with state-dependent delay (see, e.g., [19]).
The mapping 𝐴 : 𝑌 → 𝑌 is subadditive and monotone

and is positively homogeneous and Lipschitz on𝑍. Moreover,
‖𝐴‖LIP = ‖𝐴‖ = max(𝑠0 ,𝑠1)∈S1

𝑘(𝑠0, 𝑠1), where S1 =
{(𝑠0, 𝑠1): 𝑠0 ∈ [0, 𝑎], 𝑠1 ∈ [𝛼(𝑠0), 𝛽(𝑠0)]}. Clearly, Theorem 2
applies to sets of such mappings.

Consequently, Theorem 2 applies also to isomorphic
max-plus mappings (see, e.g., [19] and the references cited
therein) and a Lipschitz seminorm with respect to a suit-
ably induced metric. Note that a related result for uniform
boundedness (in fact contractivity) result for a Lipschitz
seminorm of semigroups of max-plusmappings was stated in
[22, 23]. However, observe that the Lipschitz seminorm there
is defined with respect to a different metric than that in our
case.

We also point out the following related example from [17,
18].

Example 5. Let 𝑀 be a nonempty set and let 𝑌 be the set of
all bounded real functions on 𝑀. With the norm ‖𝑓‖∞ =
sup{|𝑓(𝑡)|: 𝑡 ∈ 𝑀} and natural operations, 𝑌 is a Banach
lattice. Let 𝑍 = 𝑌+ and let 𝑘 : 𝑀 × 𝑀 → [0,∞) satisfy
sup{𝑘(𝑡, 𝑠): 𝑡, 𝑠 ∈ 𝑀} < ∞. Let 𝐴 : 𝑌 → 𝑌 be defined by
(𝐴𝑓)(𝑠) = sup{𝑘(𝑠, 𝑡)𝑓(𝑡): 𝑡 ∈ 𝑀}. Then 𝐴 : 𝑌 → 𝑌 is
subadditive and monotone mapping that satisfies 𝐴𝑍 ⊂ 𝑍
and is positively homogeneous and Lipschitz on 𝑍; therefore
Theorem 2 applies to sets of such mappings. It also holds that
‖𝐴‖LIP = ‖𝐴‖ = sup{𝑘(𝑡, 𝑠): 𝑡, 𝑠 ∈ 𝑀}. In particular, if 𝑀 is
the set of all natural numbers N, our results apply to infinite
bounded nonnegative matrices 𝑘 = [𝑘(𝑖, 𝑗)] (i.e., 𝑘(𝑖, 𝑗) ≥ 0
for all 𝑖, 𝑗 ∈ N and ‖𝑘‖∞ = sup𝑖,𝑗∈ N𝑘(𝑖, 𝑗) < ∞). In this case,
𝑌 = 𝑙∞ and 𝑍 = 𝑙∞+ and ‖𝐴‖LIP = ‖𝐴‖ = ‖𝑘‖∞.

Remark 6. Thespecial case of Example 5when𝑀 = {1, . . . , 𝑛}
for some 𝑛 ∈ N is well known and studied under the
name max-algebra (an analogue of linear algebra). Together
with its isomorphic versions (max-plus algebra and min-
plus algebra also known as tropical algebra) it provides an
attractive way of describing a class of nonlinear problems
appearing, for instance, in manufacturing and transportation
scheduling, information technology, discrete event-dynamic
systems, combinatorial optimization, mathematical physics,
and DNA analysis (see, e.g., [24–29] and the references cited
therein).

Remark 7. Our results apply also to more general max-type
operators studied in [5, Section 5]. The authors considered
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there finite sums ofmore general operators than in Example 4
defined on a Banach space of continuous functions and their
restrictions to suitable closed cones. The assumptions of our
results are satisfied also for these mappings and therefore also
for a special case of cone-linear Perron-Frobenius operators
studied there.

Remark 8. Theorem 2 applies to several classes of nonlinear
integral operators (under suitable assumptions on the kernels
and on the defining nonlinearities) including Hammerstein
type operators (see, e.g., [12, Chapter 12, p. 338] and [30, 31]),
Uryson type operators (see, e.g., [12, Chapter 12, p. 339] and
[32]), and Hardy-Littlewood type operators (see, e.g., [33–
36]).
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[10] R. Drnovšek and A. Peperko, “Inequalities on the spectral
radius and the operator norm of hadamard products of positive
operators on sequence spaces,” Banach Journal of Mathematical
Analysis, vol. 10, no. 4, pp. 800–814, 2016.

[11] A. Peperko, “Inequalities on the spectral radius, operator norm
and numerical radius of the Hadamard weighted geometric
mean of positive kernel operators, 2016,” https://arxiv.org/abs/
1612.01767.

[12] J. Appell, E. De Pascale, and A. Vignoli, Nonlinear Spectral
Theory,Walter deGruyterGmbHandCo.KG, Berlin, Germany,
2004.

[13] W.Wnuk, Banach Lattices with Order Continuous Norms, Polish
Scientific Publishers PWN, Warszawa, Poland, 1999.

[14] C. D. Aliprantis, D. J. Brown, and O. Burkinshaw, Existence and
Optimality of Competitive Equilibria, Springer-Verlag, Berlin,
Germany, 1990.

[15] J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces I and II,
Springer, 1996, A reprint of the 1977 and 1979 editions.

[16] M. de Jeu and M. Messerschmidt, “A strong open mapping
theorem for surjections from cones onto Banach spaces,”
Advances in Mathematics, vol. 259, pp. 43–66, 2014.

[17] V. Müller and A. Peperko, “On the bonsall cone spectral radius
and the approximate point spectrum,” Discrete and Continuous
Dynamical Systems- Series A, vol. 37, no. 10, pp. 5337–5354, 2017.

[18] V. Müller and A. Peperko, “Lower spectral radius and spectral
mapping theorem for suprema preserving mappings,” https://
arxiv.org/abs/1712.00340.

[19] J. Mallet-Paret and R. D. Nussbaum, “Eigenvalues for a class
of homogeneous cone maps arising from max-plus operators,”
Discrete and Continuous Dynamical Systems - Series A, vol. 8,
no. 3, pp. 519–562, 2002.

[20] V. N. Kolokoltsov and V. P. Maslov, Idempotent analysis and
Its applications, vol. 401 of Mathematics and Its Applications,
Kluwer Academic Publishers Group, Dordrecht, The Nether-
lands, 1997.

[21] M. Akian, S. Gaubert, and R. D. Nussbaum, A Collatz-Wielandt
characterization of the spectral radius of order-preserving homo-
geneous maps on cones, 2011, https://arxiv.org/abs/1112.5968.
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