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A systematic treatment is given of singular integrals and Marcinkiewicz integrals associated with surfaces generated by polynomial
compound mappings as well as related maximal functions with rough kernels in W ﬁ(S'H ), which relates to the Grafakos-Stefanov
function class. Certain boundedness and continuity for these operators on Triebel-Lizorkin spaces and Besov spaces are proved by

applying some criterions of bounds and continuity for several operators on the above function spaces.

1. Introduction

Let R"” (n > 2) be the n-dimensional Euclidean space and
§"! denote the unit sphere in R” equipped with the induced
Lebesgue measure do. Assume that O € LYS™™ is a
homogeneous function of degree zero and satisfies

J Q) do () = 0. o)
Snfl

For a suitable function / defined on R, = (0, 00), a complex
number p = ¢+ it (¢,7 € R with ¢ > 0), and a suitable
mapping I' : R" — R", we consider the singular integral
operators T, (,  and parametric Marcinkiewicz integral oper-
ators M, o1, in R" by

h Q
Tuaef )= 7 te=r () M0y
M5, () = <j -

(3)
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Define the related maximal operators 8, r and A 1, by

‘gQ,Ff (x) = sup |Th,Q,Ff (x)l > (4)
heX,
Moy, f(x) = hsu;{) |'/”h,(z,r,pf (X)|> (5)

where %, is the set of all measurable functions b : R, — R
with ||h||L2(R+,r’1dr) <1

The primary purpose of this paper is to study the
bounds and continuity of the singular integral operators and
Marcinkiewicz integral operators associated with surfaces
generated by polynomial compound mappings as well as
related maximal functions with rough kernels in W& ﬁ(S"_l)
on the Triebel-Lizorkin spaces and Besov spaces. Before stat-
ing our main results, let us recall some pertinent definitions,
notations, and backgrounds.

Definition 1 (function class W?/Tﬁ(snfl)). For f > 0, the

function class W& ﬁ(S”_l) is the set of all L'(S"!) functions
Q which satisfy

sup ”SS @0 ()

Eesn—l

Jogh 26 , (6)
log 6 ) ﬂda 6)do (u)

< Q.


http://orcid.org/0000-0002-4177-9845
https://doi.org/10.1155/2018/6937510

The function class W% 4(S"") was originally introduced
by Fan and Sato [1]. It is closely related to the Grafakos-
Stefanov function class F ﬁ(S’H), which was first introduced
in [2] and is given by

7(s) = {o

<2 (s): s [ oo o () )

fes!

<oo}, B>0.

It was shown in [1, 3] that
Fp(S") cwF,(sh),
W (S7)\ 7 (57) #0,

B> 0;

Fa () < 74 (57), o

U (s™) <

r>1

0< B < B, <00

U (s7) e worg (57) e werg (7).

r>1
0< B <p,< o0

To introduce some known results, we need to recall one
more function space AY(IR +)-

Definition 2 (function class AY(IR+)). For1 < y < o0, the
function class AV(IR ,) is the set of all measurable functions
h:R, — R satisfying

R 1/y
1l e ==sup(R‘1j |h(t>|ydt) <oo. (9
4 R>0 0

Itis clear that A, (R,) ¢ A, (R,) for1 <y, <y, < coand
A (R,) =L7(R,).

WhenI(y) = y, the operators defined in (2) reduce to the
classical Calder6n-Zygmund operator

Thaf (9 =pe |1 (e-y) H0DE0) ') MbDEDY 4y, o)

which was originally studied by Calderén and Zygmund [4]
and later investigated by many authors (see [1, 2, 5, 6], etc.).
In 2009, Fan and Sato [1] first studied the L? bounds for
T}, o with Q which belongs to W ﬁ(S”_l). More precisely,
the above authors established the L? bounds for Ty, ; with
11/p - 1/2] < 1/max{2,y'} - 1/Bifh € A (R,) fory > 1
and Q € WF4(S"") for some f > max{y’,2}. Recently,
Liu and Wu [7] extended the result of [1] to the singular
integrals along polynomial compound curves in the mixed
homogeneity setting.
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Let us recall the definitions of Triebel-Lizorkin spaces and
Besov spaces.

Definition 3 (Triebel-Lizorkin spaces and Besov spaces). Let
§'(R") be the tempered distribution class on R”. For a € R
and 0 < p, g < oo (p # 00), the homogeneous Triebel-
Lizorkin spaces FPI(R") and Besov spaces BP(R") are
defined by

FPI(R") = {f €S (R"): ||f||ﬁ£’q(R")

(11)
1/q
Y=o
icz LE(R™)
b2 () = {f SICONT]
(12)

A 1/q
= (Zz—uxﬂ ”\Ifl * f"?}(um) < 00} ,

i€Z

where fI’\,-(E) = ¢(2if) fori € Zand ¢ € €L (R") satis-
fies the conditions 0 < ¢(x) < 1; supp(p) € {x : 1/2 <
[x] < 2} ¢(x) > ¢ > 0if 3/5 < |x| < 5/3. The inhomo-
geneous versions of Triebel-Lizorkin spaces and Besov
spaces, which are denoted by F21(R") and B2(R"), respec-
tively, are obtained by adding the term [|® * f/|»@ to the
right hand side of (11) or (12) with )., replaced by .,
where ® € S(R") (the Schwartz class), supp(@) c{&: ¢ <
2}, ©(x) > ¢ > 0if |x| < 5/3.

The following properties are well-known (see [8, 9] for
more details):

Ey*(R") = IP (R"),

EPP (R") = B (R"),

1< p<oos (13)
a€R, 1<p<oo; (14)

FP9(RY) ~ EPT(R) N 1P (R"),

"f“F,f‘q(R”) ~ “f”F,f’q(R”) + [l gy » (15)
a > 0;
BY(R") ~ By (R") n LF (R"),
)~ “f”Bﬁ’q(R") + “f"LP(R") > (16)
a > 0.

Recently, the investigation of the bounds for singular
integrals with rough kernels in W% ﬁ(S”_l) on Triebel-
Lizorkin spaces and Besov spaces has received some attention
of many authors (see [3, 10, 11]). Particularly, Liu et al. [10]
obtained the following result.

Theorem A (see [10]). Let I'(y) = PN(|y|)y', where Py is a
real-valued polynomial with Py(0) = 0 and deg(Py) =
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Suppose thath € A (R,) for somey > 1 and Q) € W,‘?ﬁ(S”’l)
for some B > max{2,y'} satisfying (1). Then

(i) Ty, is bounded on FE4(R") for « € R and max{|1/p—
1/2,11/q - 1/2[} < 1/ max{2,y'} - 1/p;

(ii) Ty, 1 is bounded on BEI(R") for a € R, g € (1,00),
and [1/p - 1/2| < 1/ max{2,y'} - 1/B.

It should be pointed out that there is a gap in the proof
of part (i) in Theorem A. To the best of my knowledge, it
is unknown whether Theorem A(i) holds. However, we can
obtain the following result.

Theorem 4. Let I'(y) = (Pl(lyl)y{,...,Pn(lyl)y;) with each
P; being a real-valued polynomial on R satisfying P;(0) = 0.
Suppose thath € A (R,) for somey > 1 and Q) € Wffvﬁ(snfl)
for some B > max{2,y'} satisfying (1).

(i) Then, for « € R and (1/p,1/q) € ‘%y,ﬁ’ there exists a
constant C > 0 such that

|lTh,Q,Ffl|F£’q(R“) <C "f

for all f € FPAR"), where C = Cria,paqy,p 1S independent of
the coefficients of {Pj}7:1- Here R, s is the set of all interiors
of the convex hull of three squares (1/2,1/2 + 1/ max{2,y'} -
1/B)% (1/2 -1/ max{2,y'} + 1/B,1/2)* and (max{2,y'}/23 +
(1/2y)(1 - max{2,y'}/B), max{2,y'}/2B + (1 - 1/2y)(1 -
max{2,y'}/B))’.

(ii) Then, for « € R, g € (1,00), and |1/p — 1/2| <
1/ max{2,y'} — 1/, there exists a constant C > 0 such that

ELIRM) 17)

I o flspagry < ClFllspan (18)

for all f € BPUR"), where C = C
the coefficients of {P;}'_,.

nap.qyp 1S independent of

Applying a switched method following from [12], Theo-
rem 4 yields the following more general result.

Theorem 5. Let I'(y) = (Pl((p(lyl))yi, ... ,Pn((p(lyl))y,') with
each P; being a real-valued polynomial on R with P;(0) = 0
and ¢ € &. Here @ is the set of all nonnegative (or non-
positive) and monotonic &' (R.,) functions ¢ satisfying Y (t) =
(p(t)/t(p’(t) with |Y(t)| < C, where C > 0 depends only on ¢.
Suppose that h € AY(R+)for somey > land Q) € WS‘TIB(S"_I)
for some B > max{2,y'} satisfying (). Let R, p be given as in
Theorem 4.

(i) Then, for « € R and (1/p,1/q) € 9?”;, there exists a
constant C > 0 such that

”Th,Q,Ffl|F£‘q(R”) <C "f"F;’*q(R") (19)

forall f € FPA(R™), where C = Cocpapfop
the coefficients of {P;}'_,.

(ii) Then, for « € R, g € (1,00), and |1/p — 1/2] <
1/ max{2, y'} — 1/3, there exists a constant C > 0 such that

| Thorfllgpagn <CIf

is independent of

B£>Q(Rn) (20)

forall f € BPU(R™), where C = Crapaype 1S independent of
the coefficients of {P;}_,.

Remark 6. (i) It is not difficult to see that Ry p s Ry B when
1<y <y, <coand

111 1
Ryp G ‘[(p,q), max{lE_EHE_EH
(21

< 1 1
max(zy] BJ

(ii) If ¢ € &, then lim, ,yo(t) = 0 and lim,_,|p(t)| =
oo if ¢ is nonnegative and increasing, or nonpositive and
decreasing; lim, ,o|¢(t)| = oo and lim, ,_¢(t) = 0if ¢ is
nonnegative and decreasing or nonpositive and increasing
(see [12]).

(iii) It follows from Theorem 5 that T}, , - is bounded on
LP(R") for B > max{z,y'} and [1/p - 1/2] < l/max{z,y'} -
1//3 under the same conditions of Theorem 5.

It is well known that the operators defined in (3) have
their roots in the classical Marcinkiewicz integral operators
M ,, corresponding to p = 1, h(t) = 1, and I'(y) = y. The
L? bounds for parametric Marcinkiewicz integrals have been
extensively studied by many authors (see [13-15], etc.). In
recent years, the investigation of boundedness for parametric
Marcinkiewicz integral operators on the Triebel-Lizorkin
spaces has also attracted the attention of many authors (see
[16-19] for examples). Particularly, Yabuta [18] proved the
following result.

Theorem B (see [18]). Let p > 0 and I'(y) = (p(IyI)y' with
@ € &, where ¥ is the set of all functions ¢ which satisfy the
following conditions:

(a) ¢ is a positive increasing function on R, such that
129/ (t) is monotonic on R, for some & € R;

(b) there exist positive constants Cy and c, such that
t(/)'(t) > C¢</>(t) and ¢(2t) < c¢¢>(t)for allt > 0.

Suppose that h € A (R,) for somey > 1and Q €
WZﬁ(S”_l).for some 3 > max{2,y'} satisfying (I). Let R,p
be given as in Theorem 4. Then

(i) M), qr,, is bounded on FPAR") for a € (0,1) and
(1/p.1/q) € R 5

(ii) M} 01, is bounded on BPAR") fora € (0,1), q €
(1,00), and |1/p — 1/2] < 1/max{2,y'} -1/B.

Remark 7. We notice that § ¢ €. There are some examples
for the class §, such as t* (¢« > 0), #1n(1 + t) B =1,
tInIn(e+t), and real-valued polynomials P on R with positive
coeflicients and P(0) = 0. It should be pointed out that there
ﬁ(gi';s B, > 1 such that (2t) > B,¢(t) for any ¢ € & (see

The second one of main results is listed as follows.

Theorem 8. Let I(y) = (Pi(@(Iy)) 1. P.(9(IyD)y,) with
each P; being a real-valued polynomial on R satisfying P;(0) =
0 and ¢ € §. Suppose that h € A (R,) for somey > 1 and



Qe W?ﬁ(snfl).for some 3 > max{2,y'} satisfying (I). Let
R, p be given as in Theorem 4.

(i) Then for o € (0,1) and (1/p,1/q) € R, p, there exists
a constant C > 0 such that

”‘/’lh’Q’F’Pf”Fg’q(R") <C|f

FO}Z:Q(Rn) (22)

forall f € FPAR™), where C = C
the coefficients of {P;}_;.

(il) My, is continuous from FPUR™) to FPA(R") for
a € (0,1)and (1/p,1/q) € ‘%%ﬁ'

(iii) Then, for « € (0,1), g € (1,00), and |1/p — 1/2| <
1/ max{2, y'} — 1/3, there exists a constant C > 0 such that

neapqyBg IS independent of

'l‘%h,ﬂ,r,pf"Bqu(Rn) <C "f"Bg’q(IR") (23)

forall f € BP(R"), where C = C
the coefficients of {P;}_,.

(iv) M0, is continuous from BR(R") to BPA(R") for
a€(0,1), g€ (l,00), and |1/p - 1/2| < l/max{z,y'} -1/B.

neapaypp IS independent of

Remark 9. Parts (i) and (iii) in Theorem 8 extend Theorem
B, which corresponds to the case P,(t) = P,(t) = - =
P (t) = t. Comparing with the singular integral operators,
the continuity of the singular integral operators on the
Triebel-Lizorkin spaces and Besov spaces can be obtained
automatically by the corresponding boundedness since the
singular integral operators are linear. However, the continuity
of the Marcinkiewicz integral operators on the above function
spaces is nontrivial. The reason for this is twofold. First, the
Marcinkiewicz integral operators are not linear. Second, f <
g can not imply IIfIIFg,q(Rn) < IIgIng-q(Rn) and ||f||Bg,q(Rn) <
IIgIIng(Rn)~

Remark 10. By employing the method in the proof of [20,
Theorem 1.4] and applying some estimates about Fourier
transforms of measures appearing in the proof of Theorem 8,
one can obtain that ), qr, is bounded on LF(R") for
[1/p - 1/2] < 1/max{2,y'} - 1/B it h,Q, T, B are given as
in Theorem 8.

The study of integral operators in form (4) is motivated
by the early work of Fefferman on singular integral operators
with rough kernels multiplied by bounded radials functions
[6] and was introduced by Chen and Lin [21]. Recently, the
Triebel-Lizorkin space and Besov space bounds for maximal
operators have also been investigated by many authors. For
example, see [22, 23] for the Hardy-Littlewood maximal
operator and [24, 25] for the maximal functions related
to rough singular integrals and Marcinkiewicz integrals.
Motivated by the above works, we shall establish the following
theorem.

Theorem11. LetI'(y) = (P1(<p(|y|))y{,...,Pn((p(lyl))y:l) with
each P; being a real-valued polynomial on R satisfying P;(0) =
0 and ¢ € F. Suppose that Q) € WS‘T,,;(S"_I)for some f3 > 2
satisfying (1).
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(i) Then, for « € (0,1) and (1/p,1/q) € ?ﬁ, there exists a
constant C > 0 such that

”(Sﬂ’rf"Fi’"’(R") + “‘%Q)F)Pf"Fgf’q(R") <C “f”Fo‘f’q(R”) (24)

for all f € FPAR™), where C = Crapqpg 1S independent of
the coefficients of {Pj}?:r Here & is the set of all interiors of
the convex hull of two squares (1/3, 1/2)% and (1/2,1 - 1/[3)2.

(ii) Sqr and Moy, are continuous from FPAR") to
EPAR") for a € (0,1), p € [2,B), and 1/q € (1/B,1/p +
1/2-1/p).

(iii) Then, for e € (0,1), p € [2, B), and q € (1,00), there
exists a constant C > 0 such that

"SQ)rf"Bﬁ’q(R") + "‘%QI,PJC“B&‘?(R") <C "fHBg’q(R") (25)
for all f € BPUR"), where C = C
the coefficients of {P;}_,.

(iv) Sqr and My, are continuous from BEAUR") to
BPA(R™) for o € (0,1), p € [2,B), and q € (1, 00).

nap.app 1S independent of

Remark 12. Note that ¥ = R, ;. By using the estimates
of measures appearing in the proof of Theorem 11 and the
arguments similar to those used in deriving [7, Theorem 1.9],
we can obtain that S, | is bounded on L? for p € [2, ) under
the conditions of Theorem 11.

Applying (15)-(16), Theorems 4, 5, 8, and 11, and Remarks
6, 9, 10, and 12, we can obtain the following result immedi-
ately.

Theorem 13. Under the same conditions of Theorems 4, 5,
8, and 11 and Remarks 6, 9, 10, and 12 with « > 0,
these operators are bounded and continuous on FP1(R") and
BPA(R™), respectively.

Due to the fact that %ﬁ(sl) C Wgﬁ(Sl), Theorem 13 may
yield directly the following conclusion.

Theorem 14. Let n = 2 and I'(y) = (Pl(go(lyl))y{,...,
Py(o(ly1))y.) with each P; being a real-valued polynomial on
R satisfying P;(0) = 0 and ¢ € .

(i) Ifh e AY(R+)forsomey >landQ € Pﬁﬁ(Sl)forsome
B > max{2,y'} satisfying (1), let R, p be given as in Theorem 4.
Then

(a) Ty, is bounded and continuous on FPI(R?) for a €
(0,00) and (1/p,1/q) € Ryp- Thar is also bounded and
continuous on fo”q(Rz)for a € R, ge (l,00),and |1/p -
1/2] < 1/ max{2,y'} - 1/;

(b) M), 01, is bounded and continuous on FPU(R?) for
a € (0,1)and (1/p,1/q) € Ry B Bnar,p i also bounded and
continuous on Bg’q(le)for a€(0,1),q € (1,00), and |1/p -
1/2] < 1/ max{2,y'} - 1/.

(i) IfQ € ?ﬁ(sl)for some 3 > 2 satisfying (1), then S ¢
and Mg, are bounded and continuous on FPA(R?) for o €
0,1), p € [2,B), and 1/q € (1/B,1/p +1/2 = 1/B). Sqr
and My, are also bounded and continuous on Bg’q(Rz)for
a€(0,1), p e[2,f),andq € (1,00).
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The paper is organized as follows. Section 2 contains
some known results, which play key roles in the proofs of
main results. In Section 3, we will present some criterions
on the boundedness and continuity of several operators on
Triebel-Lizorkin spaces and Besov spaces, which are the main
ingredients of our proofs. The proofs of main results will be
given in Section 4. We remark that the methods employed in
this paper follow from a combination of ideas and arguments
in [10, 12, 17, 18, 23, 24, 26, 27], among others. It should be
also point out that our methods can be used to deal with other
integral operators, such as singular integrals, Marcinkiewicz
integrals, and related maximal functions associated with
other surfaces with other rough kernels.

Throughout the paper, we denote p' by the conjugate
index of p, which satisfies 1/p + 1/p" = 1. The letter C or
¢, sometimes with certain parameters, will stand for positive
constants not necessarily the same one at each occurrence but
are independent of the essential variables. In what follows,
we set R, = {§ € R": 1/2 < [§] < 1}. We denote by A,
the difference of f for an arbitrary function f defined on R"
and { € R"; that is, Do f(x) = fx +) = f(x). We also set
Yieod; =0and [[;ea; = 1.

2. Preliminary Lemmas

This section is devoted to recalling some known lemmas,
which plays key roles in the proofs of main theorems. Let us
begin with the following lemma of van der Corput type.

Lemma 15 (see [28]). Let O(t) = ™ + puyt™ + -+ + p,t™
and ¥ € C'([0,1]), where w,,...,u, are real parameters,

t

r (r/2

r o(r)
|| ev@o@on=["" epiron
/2 o(r/2)

and «,,...,«, are distinct positive (not necessarily integer)
exponents. Then, for A # 0, the following holds:

b
J exp (IAD (1)) ¥ (£) dt

a

, (26)
<C|AIC { sup |¥ (1) +J |’ (t)|dt]»,

as<t<b a

where e = min{l/w,, 1/n} and C does not depend on ,, . .., u,
aslongas0<a<b< 1

Applying Lemma 15 and the arguments similar to those
used in the proof of [16, Lemma 2.2], we can obtain the
following result.

Lemmal6. Let D(t) = t™ +p,t™+- - -+, t™, where py, ..., by,
are real parameters, and w,,...,w, are distinct positive (not
necessarily integer) exponents. Suppose that ¢ € § satisfying
t2¢’ (t) is monotonic on R, for some § € R. Then, for anyr > 0
and A # 0, the following holds:

|| @0 T <chow . @

with e = min{l/«,, 1/n}, where C is independent of u,, . . ., h,,
but may depend on g, ¢, and 8.

Proof. By the change of variables, we have

dt
@' (971 (1) 971 (1)
dt

- JW) exp (A0 (1) (7 (1)
@(r/2)

. J exp (A0 (9 (N 1) (97 (9 (0 1)

o(r/2)/p(r)

@ ) ¢ (971 (1)

=¢(r)

(28)
dt

@ (1) ¢ (97 (9()1))

1
- <p(r)j exp (IA® (9 (1)) gy, () y (1) i,

where ¢ = o(r/2)]o(r), g, () = 1/
@ (@N)°9 (97 (@(Nt)), and w(t) = (7 (p(r)e)° .

We can also write

r . dt !
J exp (IA® (¢ () — = ¢ (r) J v () d](t), (29)
/2 t <

7

where

t
J(t) = J exp (iIA® (¢ (1) 5)) g, ()ds, c<t<1. (30)
c

Since g,., € C'([0,1]) is monotonic, applying Lemma 15, we
obtain

@) <Clp ™™

-1 (31
Ao o+ (2 (£)>
(oo +((5)'¥ (5
for ¢ < t < 1, where € = min{l/«a,,1/n}. By (29) and the
integration by parts, we have

<¢(r)

|| ewopun
r/2 t




6
(ool [ vy o) <con
oot (o) ()¢ (5))
(s (g)‘“) <C(p0) P (™|
(32)
This proves Lemma 16. &

Lemmas 17-19 are known and will play key roles in the
proofs of Theorems 4, 8, and 11, respectively.

Lemma 17 (see [26]). Let I'(y) = (P(IlyDa,(y/IyD,...,
P.(lyDa,(y/|yl)), where P,,..., P, are real-valued polynomi-
als defined on R and a,, . . ., a, are arbitrary functions defined
on S"1. Suppose that Q € L'(S*™") is a homogeneous function
of degree zero and h € A, (R,) for some y > 1. Define the
measures {0y.r o} rez by

J f(x)doyrq (%)
R

(33)
RO

|x|"

J F I x)
2k<|x| <2kt

If (1/p, 1/q) belongs to the interior of the convex hull of three
squares (1/2,1/2+1/ max{2,y'})? (1/2-1/ max{2,y'}, 1/2)?,
and (1/2y,1-1/2y)?, then, for arbitrary functions {9k kjez €
LP(£9(6%), R™), there exists C > 0 independent of y such that

2 11/2
<Z (Z |0k,r,Q * 9k,j| ) >
Jj€Z \keZ

1/q9

LP(R")
< ClQlp sy I1lla @, (34)
a/2\ 1/
2
Wz(zhr))
j€Z \kez LP(R™)

The constant C is independent of Q and the coefficients of
P,
j=1

Lemma 18 (see [17]). Let I'(y) = (P (e(y))a,(»),...,
P.(p(ly))a,(y)), where ¢ € &, Py,...,P, are real-valued
polynomials on R and a,(y), ..., a,(y) are arbitrary functions
independent of | y|. Define the family of measures {|0, r|}er, 0n
R" by

j Fd|og] @)
N

. (35)

- t_P Jt/2<|x|st f (r (x))

Supposethath € A (R,) forsomey > 1and Q) € L™ ™).
If (1/p,1/q,1/r) belongs to the interior of the convex hull

A (Ix]) © ()]

|x"*

dx.
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of three cubes (1/2,1/2 + 1/ max{2, y'})3, (1/2 = 1/ max{2,
y'}, 1/2)%, and (1/2y,1 - 1/2y)3, then, for arbitrary functions
{9j0xtjok € LP(PA(LT(£%)), R™), there exists C > 0 such that

k1 ) dt 1/2 q\ 14
Jé Jy“(keZZLk o121 * 93¢ t) d¢

) 1/2)4
(Z <Z 1924 )
jez kezZ

LP(R")

< ClQp e

1/q
U(mn)>

The constant C > 0 is independent of Q) and the coefficients of
P},
j=1

LP(R™)

Lemma 19 (see [24]). Let T(y) = (P, (¢(IyD)a,(y/1¥D), ...,
P.(o(ly)a,(y/1yl)), where ¢ € & and P, P,,...,P, are
real-valued polynomials on R, and a,, a,, . . ., a, are arbitrary

functions defined on S"'. Suppose that Q € L'(S""). Define
the measures {|o rl}ieg, by

@ (x) = j e—ZmT(t)’l)-x'Q (y')|dcr (y'). (37)

gn-1

If (1/p,1/q, 1/r) belongs to the interior of the convex hull of
two cubes (0,1/2)* and (1/2,1)°, then, for arbitrary functions
9icxticn € LP(£9(L7(€%)), R™), there exists C > 0 independ-
ent of Q and the coefficients of{Pj};’:1 such that

K+l 12 q
g 2 dt
(3 (L (5L woteser ) "))

2\ q
<Z <Z 19524 )
Jj€Z || \kez

1/q

LP(R™)

(38)

< ClQp e

1/q
U(mn)>

Below is the vector-valued inequality of the Hardy-Little-
wood maximal functions, which is one of the main ingredi-
ents of our proofs.

LP(R™)

Lemma 20 (see [16]). Let M, be the Hardy-Littlewood maxi-
mal operator on R". Then

q 1/q

(R )) LP®")

1/2
( > ( > |M<n>f/f,c,k|2>
jez kez N

1/24 1/q
2
(Z '9j,c,k| ) >
L'(R,) LA (R™)

kez

(39)

<C <Z

j€Z

forany 1l < p,q,r < co.

In order to deal with Marcinkiewicz integrals and maxi-
mal functions, we need a useful characterization of Triebel-
Lizorkin spaces and Besov spaces.

Lemma 21 (see [18]). Let0 < o < 1.
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(D Ifl<p<oo,1<g<o00,andl <r < min{p,q}, then

"f"F,f’q(R”)

(22 ([ Jowes

kez

(40)

r d{)tﬂr)”’f

(ii)Ifl<p<oco,1<g<oo,andl <r < p,then

. 1/r||9 l/q (41)
(J Ay f] d:) > .
R, LP(RY)

To prove Theorem 5, we need the following results.

LP(R")

If

BA(R™)

~ < zzkﬂza

keZ

Lemma 22 (see [12]). Let Y, ¢ be given as in Theorem 5.
Suppose that h € A (R,) for somey > 1, then h(eo )Y (p™") €
AL R,).

The following lemma is a key switched result about
singular integrals associated with compound surfaces.

Lemma 23 (see [29]). Let ¢ € & and Y be given as in
Theorem 5. Let Ty, , - be defined as in (2) and ﬁ(y) = Q(-y).
Define the operator Ty, o 1, by

Th,Q,F,(pf (x)

h(ly)Q(y) o (42)

pn | S(x-T(o00D) o7

(i) If ¢ is nonnegative and increasing, then Ty, f
Tugyxigarf-

(ii) If ¢ is nonnegative and decreasing, then T o, f =
_Th((p’l)Y((p’l),Q,Ff :

(iii) If ¢ is nonpositive and decreasing, then Ty, o1, f

Twgyvgnarf- o
(iv) If ¢ is nonpositive and increasing, then Ty qr,f =

Ty .arS

3. Some Criterions

To prove Theorem 4, we need the following criterion on
the boundedness of the convolution operators on Triebel-
Lizorkin spaces, which is a variant of [15, Theorem 1.10]. This
can be proved by making some minor modifications in the
proof of [15, Theorem 1.10]. We omit the details.

Proposition 24. Letl € N\ {0} and {0, : 0 <s<land k €
Z} be a family of measures on R". For 1 < s < I, let {ay }rez
be some sequences of positive real numbers with satisfying

. A1, s
inf = >
it > (43)

forsomen > 1. For1 < s <1l letl, e N\{0}and L, : R" — R"
be linear transformations. Suppose that there exists constants
C > 0and f3 > 1 such that

(i) ogx = 0 forevery k € Z;

(i) llogll < C foreveryk € Zand1 <s <1;

(iii) |5 (&) < clogllay LN if lag L (&) > 1 for
EeRYkeZ andl <s<;

(v) 10:x(8) — 01k (O < clag L ()| for & € R, k € Z,
and1 <s<1;

(v) for any 1 < s < I and arbitrary functions {g; ;}i; €
LP(£9(6%),R"), there exists a positive constant C which is
independent of {L S}IS:1 such that

a/2\ V4
2
(5(Shueant) )
j€z \kez
a/2\ V1
2
ce|(5(ghel))
j€Z \keZ

for some p,, q, € (1,00) with py # 2 and q, # 2.

Let PP, be the line segment from P, to P, with P, =
(1/2,1/2) and P, = (1/2B+(1/po)(1~1/B), 1/2B+(1/q,)(1 -
1/). Then there exists a positive constant C such that

LPRY)
(44)

LP(R?)

fol,k * f

kez

<C "f"Ff;"f(R") (45)
EPA(R™)

holds for any o € R and (1/p, 1/q) € P,P, \ {P,}.

To establish the Triebel-Lizorkin space boundedness
parts in Theorems 8 and 11, we will give the following lemma,
which is the heart of the proofs of Theorems 8 and 11.

Proposition 25. Let A € N\ {0} and {0, : t >0, 1 <5 <
A} be a family of Borel measures on R". Let |o,,| be the total
variation of o ;. For 1 < s < A, let {ay ;};c7 be some sequences
of positive real numbers with satisfying

8]
8, > inf L
kez ak s

21> 1 (46)

for some n,8, > 1. For1 < s < A, let &, € N\ {0} and
L, : R" — R™: be linear transformations. Suppose that there
exist py,qo > 1, 1 < ry < min{py, gy}, B> 1, and C > 0 such
that the following conditions hold for1 <s < A, t > 0,& € R,
and {gy;} € L (€0 (L (€%, R,)), R"):

(i) o9, = 0;

) (2 5@ - s @PEy)”? <
L (1)

k+1

(i) ([ [o5 @@t/ <
A L (O > 15

C min{1,

Cloglay L, (NP if
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(iv)

Skl Lar\ 2 \" Yao
<Z(J (ZJ ol = 9] ) d¢>>
lez Ry \kez

Let P, P, be the line segment from P, to P, with P, = (1/2,1/2)

and P, = (1/2 + (1/po)(1 = 1/B), 1/23 + (1/go)(1 = 1/P)).

Then there exists a positive constant C such that

<zezz:21q“<J (J |0At*A2 t¢f|2 dt)l/Zd(>q>1/q

< C| fllepagan

ey (48)

holds for any o € (0,1) and (1/p,1/q) € P,P, \ {P,}.

Proof. Forany1 < s < A,letl; = rank(L,) < min{n, £}. By [5,
Lemma 6.1], there are two nonsingular linear transformations
#,: R - R and €, : R" — R" such that

|7 m' 8| < |L )| < M, |Z 7k, EcR".  (49)

lez

Therefore, to prove (48), it suffices to show that there exists

C > 0 such that
1/q
dt i
st * A lcflz ) dc) >

(z2 (1, ([

< C||fllzzan

@y (53)

forany 1 <s<A,a €(0,1),and (1/p,1/q) € PP, \ {P,}.
We now prove (53). By our assumptions (ii)- (iii), we have

2k+l 1/2
(J |T t(E)l _) Scmin{l’lakﬂ,sl’s (E)|}>

2k+l 1/2
(j = <z>|—) < C (loglag, L, ) *

if |a L (©€)| > M,.

(54)

LP0(R")

<ZZZ%<J <J |0At * A, lcf|2 dt)l/ld(:)q)l/q
Ty * A\ I(flz dt> dc)‘i)Uq

Journal of Function Spaces

1/29 1/go
2
lez kezZ Lro(mn) LPO(R")
Fort > 0and 1 < s < A, we define the family of measures

{ t}t>0 by

T ©) =0, 8 1‘[ v (|aw, 7 77 %))

j=s+1
(50)
A
-5 O] Ty (|a, 7 9 ¢])
j=s
where y € €;°(R) such that y(t) = 1 for [t| < 1/2 and y(t) =

0 for [¢t| > 1. Then (50) together with assumption (i) implies
that

A
Opp = er,t. (51)
s=1

It follows that

LP(R™)
(52)

LP(R™)

Let {v} Jxcz be a collection of € functions on (0, co) with
the following properties:

-1 -1
supp (Uk,s) C [ak+1,s’ak71,s] ;

0Ly (<L Yo, () =1
kez

(55)
Define the multiplier operator S, ; on R" by

Seof & = v (|7 ad)) F & (56)
> ap, /a2 1, > 1. By [16, Lemma 2.5] we

1/2)4 1/q
< Z |Sk,sf(,l|2> )
L"(R,) LP(R)

keZ
1/q
q
L'(R,)

Note that &,

obtain

<[zt

(57)

LP(R™)
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By Minkowski’s inequality we have

<lezzzlq“ (J (J It Ay f[ dt> d()q)l/q

LP(R™)
P 1/2 q 1/q
oa 2k+1 dt
qu J Z Jk Tst ZS] ks 2"(f T dag
lez Ry \ kez jeZ
LP(R")
12 \9\ 1
SZ <Zzlq“<J < J | t*S z(f|2dt> > >
jez leZ kez
LP(R")
Define the mixed norm | - || EP for measurable functions on
R"xR,xZxZxR, by
q\ /9
dt
lole - (zzw (j (5[ oot ) d<:> )
lezZ R \kez LP(R™)

Forany j € Z, let Then we have
Vis (f) (x.¢ Lk t)

=Ty ¥ ijk,sAZ’l(f (X) X[zk’zlﬁl] (t) .

(60)

lez j€Z

LP(R")

By (54), Holder’s inequality, Minkowski’s inequality, Fubini’s
theorem, Plancherel’s theorem, and Lemma 21(ii), we have
2 2
2 dt
Tst * S] PRVAN 27l¢ f ' ) ) >
2

) 2k+1
2l
B2~ 22 (J ( Lk
lez Ry \kez
ar)"”
2
Toe * Sj Dot f (x)| ?> dC) dx

1722

|vis (F)

L*(R™)

Il
el
=
[N}
)

)
 ~
>

=2
/N
~
m
N
S—
8]
T

lez
2l 2+ 2 dt
< c122 LR Y Lk t # Sy f O xSt
ez n keZ
2la 2 —pdt —— 2 2 2
<C)?2 J Ik Tl |25 f ()| dxd < CBY | £l
lez R kez Y Eiks 72

k+1 1 l/q
3 2 2d
(e (g oo 2) ) )| gtk

(58)

(59)

(61)

(62)
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where B;. = My yijon () + 117 xjens () with Kk, =
max{k € Z : k <-1-log, M} and

Ejp={xeR":ajl, <|L ®|<Maj , }. (63)

jtk.s jtk+ls =

It follows from (62) and (14) that

“Vj,s (f)"Ey < CBj, "f"F;J(R") . (64)

We now prove

Vi (9

g < C |l £l oo gy - (65)

Forl <s <A, let @ be a radial function in §(R") defined
by @*(x) = y(|x|), where x € R" and y is given as in (50).

Define J, and X by
1/2
2
(Z ( Z ngz,c,k| )
lez kezZ

sC(Z

lez

JR"”‘ JR’S (kzz: kez

) 1/2
<Z |9z,c,k| )
kez

foranyl < s < Aand1 < p,q,r < oo. Define X°f =
X0 X o0 X, fforl <s< A Wegetfrom (68) that, for
anyl <s<Aandl< p,g,r < oo,

17214 1/q 4
(z|(zpast) | )
leZ L'(R,) LP(R™)

q

n

keZ

sC(Z

lezZ

>

kez
(69)
1/2 q l/q P
2
=C <Z <Z 9124 ) ) :
lez kez '(R,) LP(R")
On the other hand, by the definition of X; ;. we have
T * =0 % (Xepors © Xiggsr2 00 Xpern f)

(70)

Oyt * (Xk,t;s o Xppse1 07 © Xk,t;Af) .

1/q P
L'(R, )> LP(R™)

1/2
< YU e (Mg @idges ) T ] (9”"")'2>

( > Moy [z (- x"))] (xo)z)l/z

q l/q P
U(mn)> LP(R")

Journal of Function Spaces

Jof (x) = f (G4 (H: @ idges ) x),

(66)

X f (x)=sup sup |Xp.of (%),

keZ te [zk’zkﬂ]

where X .o f(x) = J7 ((Qp s ®Sgnt) # J, £)(x) and @y . (x°)
= (go(t)VS)_l‘@S((p(t)_y‘xo) with x° € Rk, It is easy to check
that

|X.f ()] < C[J; e (Mg, @idgo) o I (f) (%), (67)

where x = (x°x!) € R* x R". (67) together with
Lemma 20 yields that

n

q 1/q
) <ClJ
L"(R,) LP(R")

(68)
q plq
> dx"dx’
L"(R,)
It follows that
2k+1 2k+l
2 dt +1 |2 dt
Lk |Ts’t * f| t : 2<«Lk ’las’t| * X0 f| t
(71)
2k+1
2 dt
[l oo 72
2 t
By (69), (71), and assumption (iv), we have
o\ /490
5(J, (2L a4 Y
lez R \kez 2 o 9l,<,k t
Lo (R
(72)

<C

90 1/qy
L0 (R, ))

n

(zl(ziner)”

for arbitrary functions {g;;} € L (€% (L (¢ 2 R,)), R") and
1 < s < A. Then (72) together with Lemma 21(i) and (57)
leads to

LPo(R™)
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- 1/2 9o\ 0
Igow 2 2 dt
"Vj,s (f)|E£MU = ZZ Z . Tst * S] ks l(f|
lez R, \kez 2
Lo (R™)
1/21190 1/qo 1/q,
Igoo 2 Igge 73
cof( 2 |(ghsenat) | ) se(zletta) |
lez kezZ L0 (R,) Lo (R") LPo(R")
B(SS n+2
<C < Bgs(p— . > 1112040 ey -
This proves (65). (iv) There exist o € (0,1) and q € (1, 00) such that
By the interpolation between (64) and (65), we obtain
that, for « € (0,1) and (1/p,1/q) € P,P, \ {P,}, there exists g\ /4
0 € (1/,1] such that t(Zzlq“ <J | (Azfz(f)'df> >
leZ LP(R™) (79)

"V]s (f )“Eﬁ’q = CB?,s If "F};’q(R") : (74)

Then, (74) together with (61) yields (48) and completes the
proof of Proposition 25. O

The following result is a criterion on the boundedness and
continuity of several operators on Besov spaces, which can be
used to prove the boundedness and continuity result on Besov
spaces in Theorems 8 and 11.

Proposition 26 (see [23]). Assume that T : LF(R") —
LP(R") for some p € (1,00). If
|2 (TF) o] < [T (2 () ()] (75)

for any x,{ € R". Then T is bounded on BP1(R") for any s €
(0,1) and q € (1, 00). Particularly, if T satisfies

|Tf = Tg| <|T(f - 9)|

for arbitrary functions f, g defined on R", then T is continuous
from BPI(R™) to BP(R") for any s € (0,1) and q € (1, 00).

(76)

To establish the Triebel-Lizorkin space continuity parts
in Theorems 8 and 11, we will give the following criterion of
continuity for several sublinear operators on Triebel-Lizorkin
spaces.

Proposition 27. Assume that T is a sublinear operator and the
following conditions hold.
(i) T : LP(RY) — LP(RY) for some p € (1,00).
(ii) For all x,{ € R", the following holds:
|2y (TF) )| < |T (2 (£)) ()] (77)
(iii) For arbitrary functions f, g defined on R", the follow-
ing holds:
(78)

|Tf - Tg| < |T(f - 9)|.

<C ||f||F§"i(R") .

Then T is continuous from FPI(R™) to EPI(R").

Proof. Let f; — f in FPU(R") as j — oo. By (15) we see
that f; — fin EFPA(R") and in LP(R") as j — oo0. Since
IIfj = fllp®ry — 0as j — oo, by assumptions (i) and (iii)
we obtain that Tf; — Tf in LP(R") as j — oo. Therefore, it
suffices to show that Tf; — Tf in F£I(R") as j — oo.

We shall prove this claim by contradiction. Without loss
of generality we may assume that there exists ¢ > 0 such that

"Tfj - Tf"Fg"(Rn) > ¢ (80)
for every j. Since Tf; — Tf in LP(R") as j — 0o, by extract-
ing a subsequence we may assume that |Tf i(x) - Tf(x)| =0
as j — oo for almost every x € R". It follows that A, (Tf;
-Tf)(x) — 0asj — oo forevery (,{) € Z xR, and
almost every x € R". We get from assumption (ii) and the
sublinearity of T that

|21 (Tf; = Tf ) ()

(81)
< 2T (Dgi f) () + T (2500 (f = f)) ()
for (x,1,{) € R" x Z x R,,. For convenience, we set
a\
lgll g = (Zzlq“ |lg (x, L] d¢ ) (82)
P> (LR” ) L@

fora € Rand (p,q) € (1, 00)2. It follows from Lemma 21(i)
that IIfIIF‘f,q(Rn) ~ ”AZ’l(f"P,q,q for « € (0,1) and (p,q) €
(1, 00)%. By assumption (iv) we obtain

"T (Azfl(f) "p,q,oc
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<c (Zzlqa (I, Ir2rer) d()q>l/q

lez

LP(R™)

<C "f“F;”q(R") .
(83)
It follows that |T(Ay1¢(f; = I pga < 1f; = fllgpagn —
0 as j — o©o. One can extract a subsequence such that
2?21 IT(Ay1e(fj = ) pga < ©0. Define a function G :
R"xZ xR, — Rby

GxLY) = YT (L (fi- f)) @
j=1 (84)
+2T (Bgi f) (%) .
One can easily check that [|G]| paga < 00 and
|25 (Tf; = T ) (%) < G (x,1,0)

for almost every (x,1,{) e R"xZ xR,,.

(85)

Since |Gl 5 < ©0, we have that Iﬁﬂd G(x,k,{)d{ < oo for

every k € Z and almost every x € R”". (85) together with the
dominated convergence theorem leads to

L{ |A2”( (Tfj - Tf) (x)| dl —0 asj— 00 (86)

foreveryl € Z and almostevery x € R”. By the fact |G|l
00 again, we have

(Zzlq“ (], swL0 d{)q>l/q <o (87)

leZ

paa <

for almost every x € R". Using (85) we obtain
Jm |A24( (Tfj - Tf) (x)|d<: < Jﬂ G(xL0dl  (88)

for almost every x € R and I € Z. 1t follows from (86)—(88)
and the dominated convergence theorem that

g\ 1/
(Zzlqa< I |A2,((Tf]-—Tf)(x)|dC>> =0

lez
as j — 00
for almost every x € R”. By (85) again, it holds that

<ZZZ% <L‘ |2 (Tf; = Tf) (0 d()q)l/q

leZz

< (zzlqa (Jm |G (x,1,0)| d(>q>1/q

leZz

(90)

Journal of Function Spaces

for almost every x € R". By (89)-(90), the fact IIGIIP"NX < 00,
and the dominated convergence theorem, we obtain

||A2—Ic (Tfj - Tf)"p)q’a — 0 asj—o00. (9]

This yields that [|Tf; = Tf || zpagn) — 0 as j — 0o and gives a
contradiction. O

4. Proofs of Theorems 4, 5, and 11

In this section we shall prove Theorems 4-11. In what follows,
let deg(P) = maxlSandeg(Pj). For1l < j < n,weset P(t) =
deg(P)

Dicy
deg(P) such that Pi(t) = ZIAZI al,_,jtl*' forany 1 < j < mand
(@10, ->a,,) #(0,0,...,0) € R" forall 1 < i < A. For
1 <j<mand0 < s < A, we set P}S)(t) =Y ali,jtl" for
1<s< AandP;O)(t) =(0,...,0). For 1 < s < A, we define
the linear transformation L; : R” — R" by

L; () = (@, &0 @065y ,8,) (92)

We now turn to prove Theorems 4, 5, and 11

ai,jti. Then there are integers 0 < [} <, <--- <[, <

Proof of Theorem 4. Define {®}* | by

@, (y) = (PP (¥ y15--- B2 (19]) 2)

It is clear to see that
D (x)-E= Y P () x’ - & =Y |xl' (L) - ) (94)
j=1 i=1

forany x,& e R"and1 < s < A.ForO0<s< Aand{ € R",
we define the measures {0} (};.» by

, OV R
GHY| e DL S
> 2k<|}’|52k+1 |y|
It is clear that
Tyorf = ZUk,A * f. (96)
kezZ
By the change of the variables, we have
2k+1 .
o @-am @l =[] a0
) (e—ZniCDS(t)y'f _ e—znicbs,l(t)yhg) o (y')
(97)

dt
h (1) rl < ClQl sy "h||Ay(R+)

) |2(k+1)sLS (5)' .
On the other hand, it is easy to check that

lowsll < ClIQULs e Mhlls g, 5
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(Tk,o = ().
(98)
— 2 1N\ —2mid (t)y'E ' dt
@ =\, [ a0 o (v )no T

2k+1
<Lk

i —27'ri<I>s(t)y/‘E !
[ 00)e do (')

l/max{2,y'}

Q@0 (') do ©) :

where

k+1

2RO -0 % _ (100)

He(5..0) = |

2k

By the Van der Corput lemma, there exists a constant C > 0,
such that

|Hi (8.5'.6)|

(101)
< Cmin {1, |2(k+1)5LS (&) - (yl _ 9)'*1/5} ‘

When |2(k+1)$Ls£| > 1, since t/(log t)ﬁ is increasing in (eﬁ,
00), we have

(logZeﬁ’\ |;7 . (y’ - 0)|_1)ﬁ

(log [26+0s1_ (§)|)

(102)

|H, (& 5',0)|<C

where 17 = L (§)/|L,(&)|. Combining (99), (102) with the fact
that Q e WF /;(S”_l) yields that

~p/ max{2,y'}

s (6)] < C (log [2%7 5L (§) )
G ®)] < C( g| |) (103)
if 24L )] > 1.
On the other hand, Lemma 17 yields that
q/2\ 1/
2
(5(Zhmeat) )
JjE€Z \keZ LP(R™)
(104)

q/2 1/q
2
co|(2(ghul))
j€Z \keZ

LP(R™)

2k+1

' l/y’
Yodt
— <C

Sl ' , gt 1/max{2,y'}
<C (J . ” Q (y’) me_zmcpf(t)(y 0% 45 (y') do (0) ?) <C (”
2 §rlxgr1

13

By the change of the variables and Hélder’s inequality, we
have

< Clhlla w,)

l/max{Z,y’}
2 dt)

J a (yr) o 2O E g (y/)
S (99)

H,(&y,0)Q(y)

§r-lygn-1

for (1/p,1/q) belonging to the interior of the convex hull
of three squares (1/2,1/2 + 1/ max{2, y'})z, (1/2 — 1/ max{2,
y'}, 1/2)%, and (1/2y,1 - 1/2)/)2. Here C > 0 is independent
of the coefficients of {P]-};'zl.

Take @, = 2. By (96)-(98), (103)-(104) and Proposi-
tion 24, we obtain

ITnorfllzpagn < CIf

for > max{2, y'}, a € R,andall (1/p,1/q) € Ry p where
R, p is given as in Theorem 4. This proves Theorem 4(i).

On the other hand, it follows from Theorem 4(i) and (13)
that Tj, o is bounded on LP(R") for f > max{2, y'} and
[1/p - 1/2| < 1/max{2, y'} — 1/B. This together with the
arguments similar to those used in deriving [30, Theorem 1.2]

F(f’q(R") (105)

yields Theorem 4(ii). O
Proof of Theorem 5. Theorem 5 follows from Theorem 4 and
Lemmas 22 and 23. O
Proof of Theorem 8. Define @, ®,,..., D, by
,(y) = (P (0 (WD) 7bo-- - B (0 (13 7).
(106)
0<s<A
Clearly,
D, (x)- &= Y PP (p(xD)x" - &
=1
! (107)

= Yo (x))" (L; ©)-x"),
i=1

forany x,£ € R"and 1 < s < A. For 0 < s < A, define the
family of measures {0} ;};cr, by

J f(x)do, (x)
R

(108)
1

1 h(lx) Q (%)
e Jt/2<|x|Stf(®s (x))

P
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where |0, (| is defined in the same way as o ;, but with hand Q
replaced by h and |Q)|, respectively. By the change of variables
and Minkowski’s inequality, we have
1/2
dt
t )

‘ﬂh,ﬂ,r,pf (X)

(I3

2
Y 2%y, 5 % f (%)
(oe)

<J; <L* (,CEZZ rkﬂ llows] * gica| dt)”2 d(>q>l/q
(Z |gj,c,k|2>1/2

kezZ

< ClQlp g

(2

for (1/p,1/q,1/r) belonging to the interior of the con-
vex hull of three cubes (1/2,1/2 + 1/max{2,y'})3, (1/2 -

1/max{2,y'},1/2)3, and (1/2y,1 - 1/2)/)3. Here C > 0 is
independent of the coefficients of {Pj};‘:1
One can easily check that
00 =05 (111)

60 ©) -G O] < Cmin{L|p )" L, ®)[}.  (12)

|62 ©] =

t
<
t/2

{0.1-2/7'}
< Clihlls @, 1907 gy

Ll N 1)
t
“\J
t/2

Since

t
Jt/z

j=1

/2

1 t . s . lj , ’

Lo (3 00000 Ja )

Jo e (-WZ (L;® )¢ (r)”) (y)do (')
1

Jo e (—%iZ (L;®-»)e W) Q(y)do(y)
j=1

L exp< zi(Lj<s>.y')so<r>lf>Q(y’)do(y’)

Journal of Function Spaces

0 d 1/2
< Zz’“(J loen * f (0 t)

e e ([l ror®)”

(109)
By Lemma 18, we obtain
P(RN
we (110)
q 1/q
L'(fnn)> LP(R™)
It follows from (112) that
pLaz! 1/2
— dt
(Lk |os (§) - Ot,s- 1(E)|2 >
(13)
!
< Cmin {1, ‘(p (Zk“) "L, (E)H .
By a change of variable, we have
dr
lh ()] —
’
(114)

2 1/max{2,y'}
dr
p .

2
dr

< J: JLHJXSH exp (—27‘[1"25: (Lj (&)- (yf B u')) (P(”)lj> o (y’)mda (y/) do (u’) %
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Snfl XS"71

a(y)aw)

by Lemma 16, we have
! N ’ ’ 1\ dr
J exp(—ZmZ(Lj(E)'(y —u))(p(r)1>—t
t/2 = r
o}

For |(p(t)ZSLS(f)| > 1, since r/(log r)ﬂ is increasing in (eﬁ, 00),
we have

J .o <‘2m’2 (1@ (" =) ﬂv“)l") B ‘
t =1

/
n-( -0 ")
(loglo ) L, ®|)"

where 1 = L (&)/|L,(§)|. Combining (114), (115), and (117)
with the fact that Q € WF ﬁ(S”_l) yields that

(116)
< Cmin {1, |<p ()" Ly (&) - (y' -

(117)

e (log 2eP

|O'ts(f)| <C log'q)(t) L (f)' B/max{2,y'} (18)

when |p(t)“L (&) > 1. It follows from (118) that

2k+1 1/2
([ mors)

"1,

(119)

B/ max{2,'}
<C (log |(p )

when |p(2X)“L(8)] > 1.
Take g, = @(2). By Remark 7 we have that c;; >

sr,o/ O = By > 1. Tt follows from (110)-(111), (113), (119),
and Proposition 25 that

(37 (et )"

<C ”f"F,f’q(R")

1/q

L@y (120)

holds for 8 > max{2, y’}, any o € (0,1),and all (1/p,1/q) €
9?],4;. Thus (120) together with (109) yields that

‘ <221qa <J;1n |ﬂh’Q’F>P (Azfl(f)| d()q>l/q

lez

pany  (121)

<C ”f”ﬁ;"q(R")

t s
J exp <—27‘tiz (Lj &) - (y' - u')) 0] (r)lf> dr do
t/2 = r

15

(') do ().

(115)

holds for f > max{2, y'}, any « € (0,1),and all (1/p,1/q) €
R, p-HereC=C isindependent of the coefficients
of {Pj}7:1

11,6506 P> 35 Y5359
. On the other hand, one can easily check that

[ (101, ) 0 < [ My (2 () ] 022
for any x,{ € R" and

|=/”h,Q,r,pf - -/”h,o,r,pg' < |'%h,Q,l",p (f - 9)| (123)

for arbitrary functions f and g defined on R". By Lemma
21(i), we have

"‘/”h)ﬂ,ﬂpf ||F£’q(R")

C (Zzlq“ < Lﬂ |8y (Mo, )| d()q>1/q

lez

(124)

LP(R™)

for all « € (0,1) and (p,q) € (1,00)%. Here C =
Chicapqypip 18 independent of the coefficients of {Pj};’:l. And
(122) and (124) yield Theorem 8(i). We get from Remark 10
that M, 1, is bounded on L(R") for f > max{2, y'} and
[1/p - 1/2] < 1/max{2,y'} - 1/B. Note that Myar, is a
sublinear operator. These facts together with (121)-(123) yield
Theorem 8(ii). Theorem 8(iii) and (iv) follow from the L?
bounds for y, o 1 , and (122)-(123). O

Proof of Theorem 11. We first consider the operator § o 1. One
can easily check that

A0 (Sarf) @) < |Sar (8¢ () %)

Vx, ¢ € R?.

(125)

By Lemma 21(i) and (125) we have

IS ar fllzoaggeny

<C (Zzlqa <LR” |2y (Sarf)] d(>q>l/q

lez

<C (Zzlqa <Lm |05>Q’r (Az,l(f)| d()q>w

leZ

e (126)

LP(R™)

for « € (0,1) and (p,q) € (1,00)%. Therefore, to prove
Theorem 11(i) for &, 1, it suffices to show that

1 (ZW ([ I50r (021c1) dz>q>l/q

leZ

LP(R") (127)

< C| fllgpaery
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for « € (0,1) and (1/p, 1/g) belonging to the set of all inter-
iors of the convex hull of two squares (1/3, 1/2)*and (1/2,1-
1/ ﬁ)z. Here C = C is independent of the coeflicients
of {Pj}?=1

Let @, L, and A be given as in the proof of Theorem 8.
Define the family of measures {0} ;};cr, and {lo; ;|};er, on R”
by

1,06 0,0, -

T = [ 0 (y)do ();

(128)
@ (x) = J ¢ Oy ) 'Q (y')| do (y')
Snfl
By duality we have
dt
Sarf(x) = (J loja * f (O = ) , (129)
One can easily check that
00 =0,
2k+l 2
dt
(J |O-ts(£) Oy s 1(E)|2 >
(130)

kel l > dt 1/2
S(Lk max {1, o (0)" L, ()|} 7)

< Cmin {1, l(p (2"“)l‘ L, (E)H .

On the other hand,

2

o (E)lz _ ILH R S XCOTIN (y') do (y')

Lﬂ_l exp <—2m'Z<p 0" (L; &) y'))
i=1

2

Q(y')do ()

< ClQlp g (

for (1/p,1/g,1/r) belonging to the interior of the convex
hull of two cubes (0,1/2)* and (1/2,1)>. Here C > 0 is

independent of the coefficients of {Pj};‘:1

<J;<L*n (kezz rkﬂ ll0ws] * 9504 dt>”2 d(>q>1/q
(Z 19504/ )1/2

kez

Journal of Function Spaces

- stn—lxsn—l exp (‘27712(/) (t)li (L1 (E) : (y, - 9)))

i=1
-Q(y')QO)do (y')do ().
(131)

It follows that

2k+l

[ lwmers

SJL.WJ

Je(y")a®)do(y'

2k+l

(132)

eXP< 2”’2‘/’ (Li(f)'(y’_6>)>dtt

d(r ©).

Invoking Lemma 16 we obtain
dt
exp < 271124) ®)" (L &) - (y 6))) p

1/5}

When |(p(2k+1)ZSLS(E)I > 1, since t/(log t)ﬁ is increasing in
(e/3 ,00), we have

2k+1

I

Smin{l,|(p( k“) L (¢)- ( )

(133)

2k+1 . s . ) (it
.Lk exp <—2mZ(p (1) (Li &) - (y - 9))) -
i=1
loe 268 - (v — o)™ B (134)
_ log2e™ - (' -0) )

(log|o (21" L, (f)l)ﬁ

where 7 = L (§)/|L (&)|. Combining (132), (134) with the fact
that Q e WF ﬁ(S“_l) yields that

2k+1 /2
(iJ.k ({)lZ (it:)
2 (135)
/

<c(iogle ) 1))

if |go(2k+1)15Ls(£)| > 1. By Lemma 19 we have

o (136)
136

q 1/q
L'(R, )>

n LP(R™)

= ¢(2%)". By Remark 7 we have that c* > a,/

Qs 2 Bf; > 1. By (130), (135)-(136), and Proposition 25 we
obtain that

Take gy
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(51, ([ ot #) "))

lez

e (137)
<C ”f”F,f’q(R")

for 5 > 2, € (0,1) and (1/p, 1/q) belonging to the interior
of the convex hull of two squares (1/f, 1/2)* and (1/2,1 —
1/B)*. Here C = Cra,p.q.p.¢ 18 independent of the coefficients
of {Pj};.’:l. Equation (137) together with (129) yields (127). By
arguments similar to those used in deriving (3.14) and (3.16)
in [31], one can obtain

Mor,pf (x)<CSarf(x) VxeR" (138)
Thus (138) together with (127) yields that
A\
(22 ([, Measa (e cr) )
lez R, ey (139)

< C| fllepan

for « € (0,1) and (1/p,1/q) belonging to the set of all
interiors of the convex hull of two squares (1/, 1/2)* and
(1/2,1 - 1/,8)2. Here C = C, ¢ 0 pqp¢ 1S independent of the
coefficients of {Pj};‘zl. One can easily check that

|A< (/”O,F,pf) (x)' S |/%Q,r,p (Aqf) (x)'

(140)
Vx,{ € R".
By Lemma 21(i) and (140) we have
H‘/%Q»F’Pf ”Ff’q(mﬂ)
a\4
<C zlq"‘q Ay (M d() )
(leZZ: ”‘nl ’ l{( Q,F,pf)' ey (14D
a\4
<C (Zzlqa (J | qr., (Aﬂf)'dé> )
lez R, LP(R™)

forae € (0,1)and (p,q) € (1, 00)?. Then Theorem 11(i) follows
from (126)-(127), (139), and (141).

It is known that both §qp and #q, are sublinear
operators. Moreover, one can easily check that

|Sarf —Sardl < |Sar (f-9)|,

|/%Q,r,pf - ‘%Q,F,pg' < |ﬂQ,F,p (f - 9)'

for arbitrary functions f, g defined on R”. It follows from
Remark 12 that

max {|Sor e - [ Lo fly g

<C "f"LP(IR")

for p € [2,). It follows from (142)-(143), (127), (139), and
Proposition 27 that Theorem 11(ii) holds. Theorem 11(iii)-(iv)
follows from (125), (140), (142)-(143), and Proposition 26. [
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