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A systematic treatment is given of singular integrals andMarcinkiewicz integrals associated with surfaces generated by polynomial
compoundmappings as well as relatedmaximal functions with rough kernels in𝑊F𝛽(S𝑛−1), which relates to theGrafakos-Stefanov
function class. Certain boundedness and continuity for these operators on Triebel-Lizorkin spaces and Besov spaces are proved by
applying some criterions of bounds and continuity for several operators on the above function spaces.

1. Introduction

Let R𝑛 (𝑛 ≥ 2) be the 𝑛-dimensional Euclidean space and
S𝑛−1 denote the unit sphere inR𝑛 equipped with the induced
Lebesgue measure 𝑑𝜎. Assume that Ω ∈ 𝐿1(S𝑛−1) is a
homogeneous function of degree zero and satisfies

∫
S𝑛−1

Ω (𝑢) 𝑑𝜎 (𝑢) = 0. (1)

For a suitable function ℎ defined on R+ fl (0,∞), a complex
number 𝜌 = 𝜍 + 𝑖𝜏 (𝜍, 𝜏 ∈ R with 𝜍 > 0), and a suitable
mapping Γ : R𝑛 → R𝑛, we consider the singular integral
operators𝑇ℎ,Ω,Γ and parametricMarcinkiewicz integral oper-
atorsMℎ,Ω,Γ,𝜌 in R𝑛 by

𝑇ℎ,Ω,Γ𝑓 (𝑥) = p.v.∫
R𝑛

𝑓 (𝑥 − Γ (𝑦)) ℎ (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) Ω (𝑦)󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦; (2)

Mℎ,Ω,Γ,𝜌𝑓 (𝑥) = (∫∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝑡𝜌
⋅ ∫

|𝑦|≤𝑡
𝑓 (𝑥 − Γ (𝑦)) ℎ (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) Ω (𝑦)󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨𝑛−𝜌 𝑑𝑦󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 𝑑𝑡𝑡 )1/2 .
(3)

Define the related maximal operators SΩ,Γ andMΩ,Γ,𝜌 by

SΩ,Γ𝑓 (𝑥) = sup
ℎ∈K2

󵄨󵄨󵄨󵄨𝑇ℎ,Ω,Γ𝑓 (𝑥)󵄨󵄨󵄨󵄨 , (4)

MΩ,Γ,𝜌𝑓 (𝑥) = sup
ℎ∈K2

󵄨󵄨󵄨󵄨󵄨Mℎ,Ω,Γ,𝜌𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨 , (5)

whereK2 is the set of all measurable functions ℎ : R+ → R

with ‖ℎ‖𝐿2(R+ ,𝑟−1𝑑𝑟) ≤ 1.
The primary purpose of this paper is to study the

bounds and continuity of the singular integral operators and
Marcinkiewicz integral operators associated with surfaces
generated by polynomial compound mappings as well as
related maximal functions with rough kernels in𝑊F𝛽(S𝑛−1)
on the Triebel-Lizorkin spaces and Besov spaces. Before stat-
ing our main results, let us recall some pertinent definitions,
notations, and backgrounds.

Definition 1 (function class 𝑊F𝛽(S𝑛−1)). For 𝛽 > 0, the
function class 𝑊F𝛽(S𝑛−1) is the set of all 𝐿1(S𝑛−1) functionsΩ which satisfy

sup
𝜉∈S𝑛−1

∬
S𝑛−1×S𝑛−1

󵄨󵄨󵄨󵄨󵄨Ω (𝜃)Ω (𝑢󸀠)󵄨󵄨󵄨󵄨󵄨
⋅ log𝛽 2𝑒󵄨󵄨󵄨󵄨(𝜃 − 𝑢󸀠) ⋅ 𝜉󵄨󵄨󵄨󵄨𝑑𝜎 (𝜃) 𝑑𝜎 (𝑢󸀠)
< ∞.

(6)
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The function class 𝑊F𝛽(S𝑛−1) was originally introduced
by Fan and Sato [1]. It is closely related to the Grafakos-
Stefanov function classF𝛽(S𝑛−1), which was first introduced
in [2] and is given by

F𝛽 (S𝑛−1) fl {Ω
∈ 𝐿1 (S𝑛−1) : sup

𝜉∈S𝑛−1
∫
S𝑛−1

󵄨󵄨󵄨󵄨󵄨Ω (𝑦󸀠)󵄨󵄨󵄨󵄨󵄨 log𝛽 2󵄨󵄨󵄨󵄨𝜉 ⋅ 𝑦󸀠󵄨󵄨󵄨󵄨𝑑𝜎 (𝑦󸀠)
< ∞} , 𝛽 > 0.

(7)

It was shown in [1, 3] that

F𝛽 (S1) ⊂ 𝑊F𝛽 (S1) ,
𝑊F2𝛽 (S𝑛−1) \F𝛽 (S𝑛−1) ̸= 0,

𝛽 > 0;
⋃
𝑟>1

𝐿𝑟 (S𝑛−1) ⊂ F𝛽2
(S𝑛−1) ⊂ F𝛽1

(S𝑛−1) ,
0 < 𝛽1 < 𝛽2 < ∞;

⋃
𝑟>1

𝐿𝑟 (S𝑛−1) ⊂ 𝑊F𝛽2
(S𝑛−1) ⊂ 𝑊F𝛽1

(S𝑛−1) ,
0 < 𝛽1 < 𝛽2 < ∞.

(8)

To introduce some known results, we need to recall one
more function space Δ 𝛾(R+).
Definition 2 (function class Δ 𝛾(R+)). For 1 ≤ 𝛾 ≤ ∞, the
function class Δ 𝛾(R+) is the set of all measurable functionsℎ : R+ → R satisfying

‖ℎ‖Δ 𝛾(R+) fl sup
𝑅>0

(𝑅−1 ∫𝑅

0
|ℎ (𝑡)|𝛾 𝑑𝑡)1/𝛾 < ∞. (9)

It is clear that Δ 𝛾2
(R+) ⊊ Δ 𝛾1

(R+) for 1 ≤ 𝛾1 < 𝛾2 ≤ ∞ andΔ∞(R+) = 𝐿∞(R+).
When Γ(𝑦) = 𝑦, the operators defined in (2) reduce to the

classical Calderón-Zygmund operator

𝑇ℎ,Ω𝑓 (𝑥) = p.v.∫
R𝑛

𝑓 (𝑥 − 𝑦) ℎ (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) Ω (𝑦)󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦, (10)

which was originally studied by Calderón and Zygmund [4]
and later investigated by many authors (see [1, 2, 5, 6], etc.).
In 2009, Fan and Sato [1] first studied the 𝐿𝑝 bounds for𝑇ℎ,Ω with Ω which belongs to 𝑊F𝛽(S𝑛−1). More precisely,
the above authors established the 𝐿𝑝 bounds for 𝑇ℎ,Ω with|1/𝑝 − 1/2| < 1/max{2, 𝛾󸀠} − 1/𝛽 if ℎ ∈ Δ 𝛾(R+) for 𝛾 > 1
and Ω ∈ 𝑊F𝛽(S𝑛−1) for some 𝛽 > max{𝛾󸀠, 2}. Recently,
Liu and Wu [7] extended the result of [1] to the singular
integrals along polynomial compound curves in the mixed
homogeneity setting.

Let us recall the definitions of Triebel-Lizorkin spaces and
Besov spaces.

Definition 3 (Triebel-Lizorkin spaces and Besov spaces). Let
S󸀠(R𝑛) be the tempered distribution class on R𝑛. For 𝛼 ∈ R

and 0 < 𝑝, 𝑞 ≤ ∞ (𝑝 ̸= ∞), the homogeneous Triebel-
Lizorkin spaces 𝐹̇𝑝,𝑞𝛼 (R𝑛) and Besov spaces 𝐵̇𝑝,𝑞𝛼 (R𝑛) are
defined by

𝐹̇𝑝,𝑞𝛼 (R𝑛) fl {{{𝑓 ∈ S
󸀠 (R𝑛) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑖∈Z

2−𝑖𝛼𝑞 󵄨󵄨󵄨󵄨Ψ𝑖 ∗ 𝑓󵄨󵄨󵄨󵄨𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) < ∞}}} ;
(11)

𝐵̇𝑝,𝑞𝛼 (R𝑛) fl {{{𝑓 ∈ S
󸀠 (R𝑛) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛)

= (∑
𝑖∈Z

2−𝑖𝛼𝑞 󵄩󵄩󵄩󵄩Ψ𝑖 ∗ 𝑓󵄩󵄩󵄩󵄩𝑞𝐿𝑝(R𝑛))1/𝑞 < ∞}}} ,
(12)

where Ψ̂𝑖(𝜉) = 𝜙(2𝑖𝜉) for 𝑖 ∈ Z and 𝜙 ∈ C∞
𝑐 (R𝑛) satis-

fies the conditions 0 ≤ 𝜙(𝑥) ≤ 1; supp(𝜙) ⊂ {𝑥 : 1/2 ≤|𝑥| ≤ 2}; 𝜙(𝑥) > 𝑐 > 0 if 3/5 ≤ |𝑥| ≤ 5/3. The inhomo-
geneous versions of Triebel-Lizorkin spaces and Besov
spaces, which are denoted by 𝐹𝑝,𝑞𝛼 (R𝑛) and 𝐵𝑝,𝑞𝛼 (R𝑛), respec-
tively, are obtained by adding the term ‖Θ ∗ 𝑓‖𝐿𝑝(R𝑛) to the
right hand side of (11) or (12) with ∑𝑖∈Z replaced by ∑𝑖≥1,
where Θ ∈ S(R𝑛) (the Schwartz class), supp(Θ̂) ⊂ {𝜉 : |𝜉| ≤2}, Θ̂(𝑥) > 𝑐 > 0 if |𝑥| ≤ 5/3.

The following properties are well-known (see [8, 9] for
more details):𝐹̇𝑝,20 (R𝑛) = 𝐿𝑝 (R𝑛) , 1 < 𝑝 < ∞; (13)

𝐹̇𝑝,𝑝𝛼 (R𝑛) = 𝐵̇𝑝,𝑝𝛼 (R𝑛) , 𝛼 ∈ R, 1 < 𝑝 < ∞; (14)

𝐹𝑝,𝑞𝛼 (R𝑛) ∼ 𝐹̇𝑝,𝑞𝛼 (R𝑛) ∩ 𝐿𝑝 (R𝑛) ,󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹𝑝,𝑞𝛼 (R𝑛) ∼ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛) + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) , 𝛼 > 0;
(15)

𝐵𝑝,𝑞𝛼 (R𝑛) ∼ 𝐵̇𝑝,𝑞𝛼 (R𝑛) ∩ 𝐿𝑝 (R𝑛) ,󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵𝑝,𝑞𝛼 (R𝑛) ∼ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛) + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) , 𝛼 > 0.
(16)

Recently, the investigation of the bounds for singular
integrals with rough kernels in 𝑊F𝛽(S𝑛−1) on Triebel-
Lizorkin spaces and Besov spaces has received some attention
of many authors (see [3, 10, 11]). Particularly, Liu et al. [10]
obtained the following result.

Theorem A (see [10]). Let Γ(𝑦) = 𝑃𝑁(|𝑦|)𝑦󸀠, where 𝑃𝑁 is a
real-valued polynomial with 𝑃𝑁(0) = 0 and deg(𝑃𝑁) = 𝑁.
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Suppose that ℎ ∈ Δ 𝛾(R+) for some 𝛾 > 1 andΩ ∈ 𝑊F𝛽(S𝑛−1)
for some 𝛽 > max{2, 𝛾󸀠} satisfying (1). Then(i) 𝑇ℎ,Ω,Γ is bounded on 𝐹̇𝑝,𝑞𝛼 (R𝑛) for𝛼 ∈ R andmax{|1/𝑝−1/2|, |1/𝑞 − 1/2|} < 1/max{2, 𝛾󸀠} − 1/𝛽;(ii) 𝑇ℎ,Ω,Γ is bounded on 𝐵̇𝑝,𝑞𝛼 (R𝑛) for 𝛼 ∈ R, 𝑞 ∈ (1,∞),
and |1/𝑝 − 1/2| < 1/max{2, 𝛾󸀠} − 1/𝛽.

It should be pointed out that there is a gap in the proof
of part (i) in Theorem A. To the best of my knowledge, it
is unknown whether Theorem A(i) holds. However, we can
obtain the following result.

Theorem 4. Let Γ(𝑦) = (𝑃1(|𝑦|)𝑦󸀠1, . . . , 𝑃𝑛(|𝑦|)𝑦󸀠𝑛) with each𝑃𝑗 being a real-valued polynomial on R satisfying 𝑃𝑗(0) = 0.
Suppose that ℎ ∈ Δ 𝛾(R+) for some 𝛾 > 1 andΩ ∈ 𝑊F𝛽(S𝑛−1)
for some 𝛽 > max{2, 𝛾󸀠} satisfying (1).(i) Then, for 𝛼 ∈ R and (1/𝑝, 1/𝑞) ∈ R𝛾,𝛽, there exists a
constant 𝐶 > 0 such that󵄩󵄩󵄩󵄩𝑇ℎ,Ω,Γ𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛) (17)

for all 𝑓 ∈ 𝐹̇𝑝,𝑞𝛼 (R𝑛), where 𝐶 = 𝐶𝑛,𝛼,𝑝,𝑞,𝛾,𝛽 is independent of
the coefficients of {𝑃𝑗}𝑛𝑗=1. Here R𝛾,𝛽 is the set of all interiors
of the convex hull of three squares (1/2, 1/2 + 1/max{2, 𝛾󸀠} −1/𝛽)2, (1/2 − 1/max{2, 𝛾󸀠} + 1/𝛽, 1/2)2 and (max{2, 𝛾󸀠}/2𝛽 +(1/2𝛾)(1 − max{2, 𝛾󸀠}/𝛽), max{2, 𝛾󸀠}/2𝛽 + (1 − 1/2𝛾)(1 −
max{2, 𝛾󸀠}/𝛽))2.(ii) Then, for 𝛼 ∈ R, 𝑞 ∈ (1,∞), and |1/𝑝 − 1/2| <1/max{2, 𝛾󸀠} − 1/𝛽, there exists a constant 𝐶 > 0 such that󵄩󵄩󵄩󵄩𝑇ℎ,Ω,Γ𝑓󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛) (18)

for all 𝑓 ∈ 𝐵̇𝑝,𝑞𝛼 (R𝑛), where 𝐶 = 𝐶𝑛,𝛼,𝑝,𝑞,𝛾,𝛽 is independent of
the coefficients of {𝑃𝑗}𝑛𝑗=1.

Applying a switched method following from [12], Theo-
rem 4 yields the following more general result.

Theorem 5. Let Γ(𝑦) = (𝑃1(𝜑(|𝑦|))𝑦󸀠1, . . . , 𝑃𝑛(𝜑(|𝑦|))𝑦󸀠𝑛) with
each 𝑃𝑗 being a real-valued polynomial on R with 𝑃𝑗(0) = 0
and 𝜑 ∈ G. Here G is the set of all nonnegative (or non-
positive) and monotonicC1(R+) functions 𝜑 satisfying Υ(𝑡) fl𝜑(𝑡)/𝑡𝜑󸀠(𝑡) with |Υ(𝑡)| ≤ 𝐶, where 𝐶 > 0 depends only on 𝜑.
Suppose that ℎ ∈ Δ 𝛾(R+) for some 𝛾 > 1 andΩ ∈ 𝑊F𝛽(S𝑛−1)
for some 𝛽 > max{2, 𝛾󸀠} satisfying (1). LetR𝛾,𝛽 be given as in
Theorem 4.(i) Then, for 𝛼 ∈ R and (1/𝑝, 1/𝑞) ∈ R𝛾,𝛽, there exists a
constant 𝐶 > 0 such that󵄩󵄩󵄩󵄩𝑇ℎ,Ω,Γ𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛) (19)

for all 𝑓 ∈ 𝐹̇𝑝,𝑞𝛼 (R𝑛), where 𝐶 = 𝐶𝑛,𝛼,𝑝,𝑞,𝛾,𝛽,𝜑 is independent of
the coefficients of {𝑃𝑗}𝑛𝑗=1.(ii) Then, for 𝛼 ∈ R, 𝑞 ∈ (1,∞), and |1/𝑝 − 1/2| <1/max{2, 𝛾󸀠} − 1/𝛽, there exists a constant 𝐶 > 0 such that󵄩󵄩󵄩󵄩𝑇ℎ,Ω,Γ𝑓󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛) (20)

for all 𝑓 ∈ 𝐵̇𝑝,𝑞𝛼 (R𝑛), where 𝐶 = 𝐶𝑛,𝛼,𝑝,𝑞,𝛾,𝛽,𝜑 is independent of
the coefficients of {𝑃𝑗}𝑛𝑗=1.
Remark 6. (i) It is not difficult to see thatR𝛾1,𝛽

⊊ R𝛾2,𝛽
when1 < 𝛾1 < 𝛾2 ≤ ∞ and

R𝛾,𝛽 ⊊ {(𝑝, 𝑞) ; max{󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝑝 − 12 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝑞 − 12 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨}
< 1
max {2, 𝛾󸀠} − 1𝛽} . (21)

(ii) If 𝜑 ∈ G, then lim𝑡→0𝜑(𝑡) = 0 and lim𝑡→∞|𝜑(𝑡)| =∞ if 𝜑 is nonnegative and increasing, or nonpositive and
decreasing; lim𝑡→0|𝜑(𝑡)| = ∞ and lim𝑡→∞𝜑(𝑡) = 0 if 𝜑 is
nonnegative and decreasing or nonpositive and increasing
(see [12]).

(iii) It follows from Theorem 5 that 𝑇ℎ,Ω,Γ is bounded on𝐿𝑝(R𝑛) for 𝛽 > max{2, 𝛾󸀠} and |1/𝑝 − 1/2| < 1/max{2, 𝛾󸀠} −1/𝛽 under the same conditions of Theorem 5.

It is well known that the operators defined in (3) have
their roots in the classical Marcinkiewicz integral operators
MΩ, corresponding to 𝜌 = 1, ℎ(𝑡) ≡ 1, and Γ(𝑦) = 𝑦. The𝐿𝑝 bounds for parametric Marcinkiewicz integrals have been
extensively studied by many authors (see [13–15], etc.). In
recent years, the investigation of boundedness for parametric
Marcinkiewicz integral operators on the Triebel-Lizorkin
spaces has also attracted the attention of many authors (see
[16–19] for examples). Particularly, Yabuta [18] proved the
following result.

Theorem B (see [18]). Let 𝜌 > 0 and Γ(𝑦) = 𝜑(|𝑦|)𝑦󸀠 with𝜑 ∈ F, where F is the set of all functions 𝜙 which satisfy the
following conditions:(a) 𝜙 is a positive increasing function on R+ such that𝑡𝛿𝜙󸀠(𝑡) is monotonic on R+ for some 𝛿 ∈ R;(b) there exist positive constants 𝐶𝜙 and 𝑐𝜙 such that𝑡𝜙󸀠(𝑡) ≥ 𝐶𝜙𝜙(𝑡) and 𝜙(2𝑡) ≤ 𝑐𝜙𝜙(𝑡) for all 𝑡 > 0.

Suppose that ℎ ∈ Δ 𝛾(R+) for some 𝛾 > 1 and Ω ∈𝑊F𝛽(S𝑛−1) for some 𝛽 > max{2, 𝛾󸀠} satisfying (1). Let R𝛾,𝛽

be given as in Theorem 4. Then(i) Mℎ,Ω,Γ,𝜌 is bounded on 𝐹̇𝑝,𝑞𝛼 (R𝑛) for 𝛼 ∈ (0, 1) and(1/𝑝, 1/𝑞) ∈ R𝛾,𝛽;(ii) Mℎ,Ω,Γ,𝜌 is bounded on 𝐵̇𝑝,𝑞𝛼 (R𝑛) for 𝛼 ∈ (0, 1), 𝑞 ∈(1,∞), and |1/𝑝 − 1/2| < 1/max{2, 𝛾󸀠} − 1/𝛽.
Remark 7. We notice that F ⊊ G. There are some examples
for the class F, such as 𝑡𝛼 (𝛼 > 0), 𝑡𝛽 ln(1 + 𝑡) (𝛽 ≥ 1),𝑡 ln ln(𝑒+𝑡), and real-valued polynomials𝑃 onRwith positive
coefficients and 𝑃(0) = 0. It should be pointed out that there
exists 𝐵𝜑 > 1 such that 𝜑(2𝑡) ≥ 𝐵𝜑𝜑(𝑡) for any 𝜑 ∈ F (see
[16]).

The second one of main results is listed as follows.

Theorem 8. Let Γ(𝑦) = (𝑃1(𝜑(|𝑦|))𝑦󸀠1, . . . , 𝑃𝑛(𝜑(|𝑦|))𝑦󸀠𝑛) with
each 𝑃𝑗 being a real-valued polynomial onR satisfying 𝑃𝑗(0) =0 and 𝜑 ∈ F. Suppose that ℎ ∈ Δ 𝛾(R+) for some 𝛾 > 1 and
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Ω ∈ 𝑊F𝛽(S𝑛−1) for some 𝛽 > max{2, 𝛾󸀠} satisfying (1). Let
R𝛾,𝛽 be given as in Theorem 4.(i) Then for 𝛼 ∈ (0, 1) and (1/𝑝, 1/𝑞) ∈ R𝛾,𝛽, there exists
a constant 𝐶 > 0 such that󵄩󵄩󵄩󵄩󵄩Mℎ,Ω,Γ,𝜌𝑓󵄩󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛) (22)

for all 𝑓 ∈ 𝐹̇𝑝,𝑞𝛼 (R𝑛), where 𝐶 = 𝐶𝑛,𝜍,𝛼,𝑝,𝑞,𝛾,𝛽,𝜑 is independent of
the coefficients of {𝑃𝑗}𝑛𝑗=1.(ii) Mℎ,Ω,Γ,𝜌 is continuous from 𝐹𝑝,𝑞𝛼 (R𝑛) to 𝐹̇𝑝,𝑞𝛼 (R𝑛) for𝛼 ∈ (0, 1) and (1/𝑝, 1/𝑞) ∈ R𝛾,𝛽.(iii) Then, for 𝛼 ∈ (0, 1), 𝑞 ∈ (1,∞), and |1/𝑝 − 1/2| <1/max{2, 𝛾󸀠} − 1/𝛽, there exists a constant 𝐶 > 0 such that󵄩󵄩󵄩󵄩󵄩Mℎ,Ω,Γ,𝜌𝑓󵄩󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛) (23)

for all 𝑓 ∈ 𝐵̇𝑝,𝑞𝛼 (R𝑛), where 𝐶 = 𝐶𝑛,𝜍,𝛼,𝑝,𝑞,𝛾,𝛽,𝜑 is independent of
the coefficients of {𝑃𝑗}𝑛𝑗=1.(iv) Mℎ,Ω,Γ,𝜌 is continuous from 𝐵𝑝,𝑞𝛼 (R𝑛) to 𝐵̇𝑝,𝑞𝛼 (R𝑛) for𝛼 ∈ (0, 1), 𝑞 ∈ (1,∞), and |1/𝑝 − 1/2| < 1/max{2, 𝛾󸀠} − 1/𝛽.
Remark 9. Parts (i) and (iii) in Theorem 8 extend Theorem
B, which corresponds to the case 𝑃1(𝑡) = 𝑃2(𝑡) = ⋅ ⋅ ⋅ =𝑃𝑛(𝑡) = 𝑡. Comparing with the singular integral operators,
the continuity of the singular integral operators on the
Triebel-Lizorkin spaces and Besov spaces can be obtained
automatically by the corresponding boundedness since the
singular integral operators are linear. However, the continuity
of theMarcinkiewicz integral operators on the above function
spaces is nontrivial. The reason for this is twofold. First, the
Marcinkiewicz integral operators are not linear. Second, 𝑓 ≤𝑔 can not imply ‖𝑓‖𝐹̇𝑝,𝑞𝛼 (R𝑛) ≤ ‖𝑔‖𝐹̇𝑝,𝑞𝛼 (R𝑛) and ‖𝑓‖𝐵̇𝑝,𝑞𝛼 (R𝑛) ≤‖𝑔‖𝐵̇𝑝,𝑞𝛼 (R𝑛).

Remark 10. By employing the method in the proof of [20,
Theorem 1.4] and applying some estimates about Fourier
transforms of measures appearing in the proof ofTheorem 8,
one can obtain that Mℎ,Ω,Γ,𝜌 is bounded on 𝐿𝑝(R𝑛) for|1/𝑝 − 1/2| < 1/max{2, 𝛾󸀠} − 1/𝛽 if ℎ,Ω, Γ, 𝛽 are given as
inTheorem 8.

The study of integral operators in form (4) is motivated
by the early work of Fefferman on singular integral operators
with rough kernels multiplied by bounded radials functions
[6] and was introduced by Chen and Lin [21]. Recently, the
Triebel-Lizorkin space and Besov space bounds for maximal
operators have also been investigated by many authors. For
example, see [22, 23] for the Hardy-Littlewood maximal
operator and [24, 25] for the maximal functions related
to rough singular integrals and Marcinkiewicz integrals.
Motivated by the aboveworks, we shall establish the following
theorem.

Theorem 11. Let Γ(𝑦) = (𝑃1(𝜑(|𝑦|))𝑦󸀠1, . . . , 𝑃𝑛(𝜑(|𝑦|))𝑦󸀠𝑛)with
each 𝑃𝑗 being a real-valued polynomial onR satisfying 𝑃𝑗(0) =0 and 𝜑 ∈ F. Suppose that Ω ∈ 𝑊F𝛽(𝑆𝑛−1) for some 𝛽 > 2
satisfying (1).

(i) Then, for 𝛼 ∈ (0, 1) and (1/𝑝, 1/𝑞) ∈ G𝛽, there exists a
constant 𝐶 > 0 such that󵄩󵄩󵄩󵄩SΩ,Γ𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

+ 󵄩󵄩󵄩󵄩󵄩MΩ,Γ,𝜌𝑓󵄩󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛) (24)

for all 𝑓 ∈ 𝐹̇𝑝,𝑞𝛼 (R𝑛), where 𝐶 = 𝐶𝑛,𝛼,𝑝,𝑞,𝛽,𝜑 is independent of
the coefficients of {𝑃𝑗}𝑛𝑗=1. Here G𝛽 is the set of all interiors of
the convex hull of two squares (1/𝛽, 1/2)2 and (1/2, 1 − 1/𝛽)2.(ii) SΩ,Γ and MΩ,Γ,𝜌 are continuous from 𝐹𝑝,𝑞𝛼 (R𝑛) to𝐹̇𝑝,𝑞𝛼 (R𝑛) for 𝛼 ∈ (0, 1), 𝑝 ∈ [2, 𝛽), and 1/𝑞 ∈ (1/𝛽, 1/𝑝 +1/2 − 1/𝛽).(iii) Then, for 𝛼 ∈ (0, 1), 𝑝 ∈ [2, 𝛽), and 𝑞 ∈ (1,∞), there
exists a constant 𝐶 > 0 such that󵄩󵄩󵄩󵄩SΩ,Γ𝑓󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛)

+ 󵄩󵄩󵄩󵄩󵄩MΩ,Γ,𝜌𝑓󵄩󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛) (25)

for all 𝑓 ∈ 𝐵̇𝑝,𝑞𝛼 (R𝑛), where 𝐶 = 𝐶𝑛,𝛼,𝑝,𝑞,𝛽,𝜑 is independent of
the coefficients of {𝑃𝑗}𝑛𝑗=1.(iv) SΩ,Γ and MΩ,Γ,𝜌 are continuous from 𝐵𝑝,𝑞𝛼 (R𝑛) to𝐵̇𝑝,𝑞𝛼 (R𝑛) for 𝛼 ∈ (0, 1), 𝑝 ∈ [2, 𝛽), and 𝑞 ∈ (1,∞).
Remark 12. Note that G𝛽 = R2,𝛽. By using the estimates
of measures appearing in the proof of Theorem 11 and the
arguments similar to those used in deriving [7,Theorem 1.9],
we can obtain that 𝑆Ω,Γ is bounded on 𝐿𝑝 for 𝑝 ∈ [2, 𝛽) under
the conditions of Theorem 11.

Applying (15)-(16),Theorems 4, 5, 8, and 11, and Remarks
6, 9, 10, and 12, we can obtain the following result immedi-
ately.

Theorem 13. Under the same conditions of Theorems 4, 5,
8, and 11 and Remarks 6, 9, 10, and 12 with 𝛼 > 0,
these operators are bounded and continuous on 𝐹𝑝,𝑞𝛼 (R𝑛) and𝐵𝑝,𝑞𝛼 (R𝑛), respectively.

Due to the fact thatF𝛽(S1) ⊂ 𝑊F𝛽(S1),Theorem 13may
yield directly the following conclusion.

Theorem 14. Let 𝑛 = 2 and Γ(𝑦) = (𝑃1(𝜑(|𝑦|))𝑦󸀠1, . . . ,𝑃2(𝜑(|𝑦|))𝑦󸀠𝑛) with each 𝑃𝑗 being a real-valued polynomial on
R satisfying 𝑃𝑗(0) = 0 and 𝜑 ∈ F.(i) If ℎ ∈ Δ 𝛾(R+) for some 𝛾 > 1 andΩ ∈ F𝛽(S1) for some𝛽 > max{2, 𝛾󸀠} satisfying (1), letR𝛾,𝛽 be given as inTheorem 4.
Then(a) 𝑇ℎ,Ω,Γ is bounded and continuous on 𝐹𝑝,𝑞𝛼 (R2) for 𝛼 ∈(0,∞) and (1/𝑝, 1/𝑞) ∈ R𝛾,𝛽. 𝑇ℎ,Ω,Γ is also bounded and
continuous on 𝐵𝑝,𝑞𝛼 (R2) for 𝛼 ∈ R, 𝑞 ∈ (1,∞), and |1/𝑝 −1/2| < 1/max{2, 𝛾󸀠} − 1/𝛽;(b) Mℎ,Ω,Γ,𝜌 is bounded and continuous on 𝐹𝑝,𝑞𝛼 (R2) for𝛼 ∈ (0, 1) and (1/𝑝, 1/𝑞) ∈ R𝛾,𝛽. 𝜇ℎ,Ω,Γ,𝜌 is also bounded and
continuous on 𝐵𝑝,𝑞𝛼 (R2) for 𝛼 ∈ (0, 1), 𝑞 ∈ (1,∞), and |1/𝑝 −1/2| < 1/max{2, 𝛾󸀠} − 1/𝛽.(ii) If Ω ∈ F𝛽(S1) for some 𝛽 > 2 satisfying (1), then SΩ,Γ

and MΩ,Γ,𝜌 are bounded and continuous on 𝐹𝑝,𝑞𝛼 (R2) for 𝛼 ∈(0, 1), 𝑝 ∈ [2, 𝛽), and 1/𝑞 ∈ (1/𝛽, 1/𝑝 + 1/2 − 1/𝛽). SΩ,Γ

and MΩ,Γ,𝜌 are also bounded and continuous on 𝐵𝑝,𝑞𝛼 (R2) for𝛼 ∈ (0, 1), 𝑝 ∈ [2, 𝛽), and 𝑞 ∈ (1,∞).
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The paper is organized as follows. Section 2 contains
some known results, which play key roles in the proofs of
main results. In Section 3, we will present some criterions
on the boundedness and continuity of several operators on
Triebel-Lizorkin spaces and Besov spaces, which are themain
ingredients of our proofs. The proofs of main results will be
given in Section 4. We remark that the methods employed in
this paper follow from a combination of ideas and arguments
in [10, 12, 17, 18, 23, 24, 26, 27], among others. It should be
also point out that ourmethods can be used to deal with other
integral operators, such as singular integrals, Marcinkiewicz
integrals, and related maximal functions associated with
other surfaces with other rough kernels.

Throughout the paper, we denote 𝑝󸀠 by the conjugate
index of 𝑝, which satisfies 1/𝑝 + 1/𝑝󸀠 = 1. The letter 𝐶 or𝑐, sometimes with certain parameters, will stand for positive
constants not necessarily the same one at each occurrence but
are independent of the essential variables. In what follows,
we set R𝑛 = {𝜉 ∈ R𝑛: 1/2 < |𝜉| ≤ 1}. We denote by △𝜁

the difference of 𝑓 for an arbitrary function 𝑓 defined on R𝑛

and 𝜁 ∈ R𝑛; that is, △𝜁𝑓(𝑥) = 𝑓(𝑥 + 𝜁) − 𝑓(𝑥). We also set∑𝑗∈0 𝑎𝑗 = 0 and∏𝑗∈0𝑎𝑗 = 1.
2. Preliminary Lemmas

This section is devoted to recalling some known lemmas,
which plays key roles in the proofs of main theorems. Let us
begin with the following lemma of van der Corput type.

Lemma 15 (see [28]). Let Φ(𝑡) = 𝑡𝛼1 + 𝜇2𝑡𝛼2 + ⋅ ⋅ ⋅ + 𝜇𝑛𝑡𝛼𝑛
and Ψ ∈ 𝐶1([0, 1]), where 𝜇2, . . . , 𝜇𝑛 are real parameters,

and 𝛼1, . . . , 𝛼𝑛 are distinct positive (not necessarily integer)
exponents. Then, for 𝜆 ̸= 0, the following holds:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑏

𝑎
exp (𝑖𝜆Φ (𝑡)) Ψ (𝑡) 𝑑𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 |𝜆|−𝜖 { sup

𝑎≤𝑡≤𝑏

|Ψ (𝑡)| + ∫𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨Ψ󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡} , (26)

where 𝜖 = min{1/𝛼1, 1/𝑛} and𝐶 does not depend on 𝜇2, . . . , 𝜇𝑛
as long as 0 ≤ 𝑎 < 𝑏 ≤ 1.

Applying Lemma 15 and the arguments similar to those
used in the proof of [16, Lemma 2.2], we can obtain the
following result.

Lemma 16. LetΦ(𝑡) = 𝑡𝛼1+𝜇2𝑡𝛼2+⋅ ⋅ ⋅+𝜇𝑛𝑡𝛼𝑛 , where𝜇2, . . . , 𝜇𝑛
are real parameters, and 𝛼1, . . . , 𝛼𝑛 are distinct positive (not
necessarily integer) exponents. Suppose that 𝜑 ∈ F satisfying𝑡𝛿𝜑󸀠(𝑡) is monotonic onR+ for some 𝛿 ∈ R.Then, for any 𝑟 > 0
and 𝜆 ̸= 0, the following holds:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑟

𝑟/2
exp (𝑖𝜆Φ (𝜑 (𝑡))) 𝑑𝑡𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶 󵄨󵄨󵄨󵄨𝜆𝜑 (𝑟)𝛼1 󵄨󵄨󵄨󵄨−𝜖 , (27)

with 𝜖 = min{1/𝛼1, 1/𝑛}, where𝐶 is independent of 𝜇2, . . . , 𝜇𝑛,
but may depend on 󰜚, 𝜑, and 𝛿.
Proof. By the change of variables, we have

∫𝑟

𝑟/2
exp (𝑖𝜆Φ (𝜑 (𝑡))) 𝑑𝑡𝑡 = ∫𝜑(𝑟)

𝜑(𝑟/2)
exp (𝑖𝜆Φ (𝑡)) 𝑑𝑡𝜑󸀠 (𝜑−1 (𝑡)) 𝜑−1 (𝑡)

= ∫𝜑(𝑟)

𝜑(𝑟/2)
exp (𝑖𝜆Φ (𝑡)) (𝜑−1 (𝑡))𝛿−1 𝑑𝑡(𝜑−1 (𝑡))𝛿 𝜑󸀠 (𝜑−1 (𝑡)) = 𝜑 (𝑟)

⋅ ∫1

𝜑(𝑟/2)/𝜑(𝑟)
exp (𝑖𝜆Φ (𝜑 (𝑟) 𝑡)) (𝜑−1 (𝜑 (𝑟) 𝑡))𝛿−1 𝑑𝑡(𝜑−1 (𝜑 (𝑟) 𝑡))𝛿 𝜑󸀠 (𝜑−1 (𝜑 (𝑟) 𝑡))

= 𝜑 (𝑟) ∫1

𝜍
exp (𝑖𝜆Φ (𝜑 (𝑟) 𝑡)) 𝑔𝑟,𝜑 (𝑡) 𝜓 (𝑡) 𝑑𝑡,

(28)

where 𝜍 = 𝜑(𝑟/2)/𝜑(𝑟), 𝑔𝑟,𝜑(𝑡) = 1/(𝜑−1(𝜑(𝑟)𝑡))𝛿𝜑󸀠(𝜑−1(𝜑(𝑟)𝑡)), and 𝜓(𝑡) = (𝜑−1(𝜑(𝑟)𝑡))𝛿−1.
We can also write

∫𝑟

𝑟/2
exp (𝑖𝜆Φ (𝜑 (𝑡))) 𝑑𝑡𝑡 = 𝜑 (𝑟) ∫1

𝜍
𝜓 (𝑡) 𝑑𝐽 (𝑡) , (29)

where

𝐽 (𝑡) = ∫𝑡

𝜍
exp (𝑖𝜆Φ (𝜑 (𝑟) 𝑠)) 𝑔𝑟,𝜑 (𝑠) 𝑑𝑠, 𝜍 ≤ 𝑡 ≤ 1. (30)

Since 𝑔𝑟,𝜑 ∈ 𝐶1([0, 1]) is monotonic, applying Lemma 15, we
obtain |𝐽 (𝑡)| ≤ 𝐶 󵄨󵄨󵄨󵄨𝜆𝜑 (𝑟)𝛼1 󵄨󵄨󵄨󵄨−𝜖

⋅ ((𝑟𝛿𝜑󸀠 (𝑟))−1 + ((𝑟2)𝛿 𝜑󸀠 ( 𝑟2))−1) (31)

for 𝜍 ≤ 𝑡 ≤ 1, where 𝜖 = min{1/𝛼1, 1/𝑛}. By (29) and the
integration by parts, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑟

𝑟/2
exp (𝑖𝜆Φ (𝜑 (𝑡))) 𝑑𝑡𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜑 (𝑟)
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⋅ (󵄨󵄨󵄨󵄨𝐽 (1) 𝜓 (1)󵄨󵄨󵄨󵄨 + ∫1

𝜍
|𝐽 (𝑡)| 󵄨󵄨󵄨󵄨󵄨𝜓󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡) ≤ 𝐶𝜑 (𝑟)

⋅ 󵄨󵄨󵄨󵄨𝜆𝜑 (𝑟)𝛼1 󵄨󵄨󵄨󵄨−𝜖 ((𝑟𝛿𝜑󸀠 (𝑟))−1 + ((𝑟2)𝛿 𝜑󸀠 ( 𝑟2))−1)
⋅ (𝑟𝛿−1 + ( 𝑟2)𝛿−1) ≤ 𝐶 (𝜑, 𝛿) 󵄨󵄨󵄨󵄨𝜆𝜑 (𝑟)𝛼1 󵄨󵄨󵄨󵄨−𝜖 .

(32)

This proves Lemma 16.

Lemmas 17–19 are known and will play key roles in the
proofs of Theorems 4, 8, and 11, respectively.

Lemma 17 (see [26]). Let Γ(𝑦) = (𝑃1(|𝑦|)𝑎1(𝑦/|𝑦|), . . . ,𝑃𝑛(|𝑦|)𝑎𝑛(𝑦/|𝑦|)), where 𝑃1, . . . , 𝑃𝑛 are real-valued polynomi-
als defined on R and 𝑎1, . . . , 𝑎𝑛 are arbitrary functions defined
on S𝑛−1. Suppose thatΩ ∈ 𝐿1(S𝑛−1) is a homogeneous function
of degree zero and ℎ ∈ Δ 𝛾(R+) for some 𝛾 > 1. Define the
measures {𝜎𝑘,Γ,Ω}𝑘∈Z by

∫
R𝑛

𝑓 (𝑥) 𝑑𝜎𝑘,Γ,Ω (𝑥)
= ∫

2𝑘≤|𝑥|<2𝑘+1
𝑓 (Γ (𝑥)) ℎ (|𝑥|) Ω (𝑥)|𝑥|𝑛 𝑑𝑥. (33)

If (1/𝑝, 1/𝑞) belongs to the interior of the convex hull of three
squares (1/2, 1/2+1/max{2, 𝛾󸀠})2, (1/2−1/max{2, 𝛾󸀠}, 1/2)2,
and (1/2𝛾, 1−1/2𝛾)2, then, for arbitrary functions {𝑔𝑘,𝑗}𝑘,𝑗∈Z ∈𝐿𝑝(ℓ𝑞(ℓ2),R𝑛), there exists 𝐶 > 0 independent of 𝛾 such that󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑗∈Z

(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝜎𝑘,Γ,Ω ∗ 𝑔𝑘,𝑗󵄨󵄨󵄨󵄨󵄨2)𝑞/2)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)≤ 𝐶 ‖Ω‖𝐿1(S𝑛−1) ‖ℎ‖Δ 𝛾(R+)
⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑗∈Z

(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑘,𝑗󵄨󵄨󵄨󵄨󵄨2)𝑞/2)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) .
(34)

The constant 𝐶 is independent of Ω and the coefficients of{𝑃𝑗}𝑛𝑗=1.
Lemma 18 (see [17]). Let Γ(𝑦) = (𝑃1(𝜑(|𝑦|))𝑎1(𝑦), . . . ,𝑃𝑛(𝜑(|𝑦|))𝑎𝑛(𝑦)), where 𝜑 ∈ F, 𝑃1, . . . , 𝑃𝑛 are real-valued
polynomials onR and 𝑎1(𝑦), . . . , 𝑎𝑛(𝑦) are arbitrary functions
independent of |𝑦|. Define the family of measures {|𝜎𝑡,Γ|}𝑡∈R+ on
R𝑛 by

∫
R𝑛

𝑓 (𝑥) 𝑑 󵄨󵄨󵄨󵄨𝜎𝑡,Γ󵄨󵄨󵄨󵄨 (𝑥)
= 1𝑡𝜌 ∫

𝑡/2<|𝑥|≤𝑡
𝑓 (Γ (𝑥)) |ℎ (|𝑥|) Ω (𝑥)||𝑥|𝑛−𝜌 𝑑𝑥. (35)

Suppose that ℎ ∈ Δ 𝛾(R+) for some 𝛾 > 1 andΩ ∈ 𝐿1(S𝑛−1).
If (1/𝑝, 1/𝑞, 1/𝑟) belongs to the interior of the convex hull

of three cubes (1/2, 1/2 + 1/max{2, 𝛾󸀠})3, (1/2 − 1/max{2,𝛾󸀠}, 1/2)3, and (1/2𝛾, 1 − 1/2𝛾)3, then, for arbitrary functions{𝑔𝑗,𝜁,𝑘}𝑗,𝜁,𝑘 ∈ 𝐿𝑝(ℓ𝑞(𝐿𝑟(ℓ2)),R𝑛), there exists 𝐶 > 0 such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑗∈Z

(∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜎𝑡,Γ󵄨󵄨󵄨󵄨 ∗ 𝑔𝑗,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶 ‖Ω‖𝐿1(S𝑛−1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑗∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑗,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) .
(36)

The constant 𝐶 > 0 is independent of Ω and the coefficients of{𝑃𝑗}𝑛𝑗=1.
Lemma 19 (see [24]). Let Γ(𝑦) = (𝑃1(𝜑(|𝑦|))𝑎1(𝑦/|𝑦|), . . . ,𝑃𝑛(𝜑(|𝑦|))𝑎𝑛(𝑦/|𝑦|)), where 𝜑 ∈ F and 𝑃1, 𝑃2, . . . , 𝑃𝑛 are
real-valued polynomials onR+, and 𝑎1, 𝑎2, . . . , 𝑎𝑛 are arbitrary
functions defined on S𝑛−1. Suppose that Ω ∈ 𝐿1(S𝑛−1). Define
the measures {|𝜎𝑡,Γ|}𝑡∈R+ by󵄨󵄨󵄨󵄨𝜎𝑡,Γ󵄨󵄨󵄨󵄨 (𝑥) = ∫

S𝑛−1
𝑒−2𝜋𝑖Γ(𝑡𝑦󸀠)⋅𝑥 󵄨󵄨󵄨󵄨󵄨Ω (𝑦󸀠)󵄨󵄨󵄨󵄨󵄨 𝑑𝜎 (𝑦󸀠) . (37)

If (1/𝑝, 1/𝑞, 1/𝑟) belongs to the interior of the convex hull of
two cubes (0, 1/2)3 and (1/2, 1)3, then, for arbitrary functions{𝑔𝑗,𝜁,𝑘}𝑗,𝜁,𝑘 ∈ 𝐿𝑝(ℓ𝑞(𝐿𝑟(ℓ2)),R𝑛), there exists 𝐶 > 0 independ-
ent of Ω and the coefficients of {𝑃𝑗}𝑛𝑗=1 such that󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑗∈Z

(∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜎𝑡,Γ󵄨󵄨󵄨󵄨 ∗ 𝑔𝑗,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶 ‖Ω‖𝐿1(S𝑛−1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑗∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑗,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) .
(38)

Below is the vector-valued inequality of the Hardy-Little-
wood maximal functions, which is one of the main ingredi-
ents of our proofs.

Lemma20 (see [16]). Let𝑀(𝑛) be theHardy-Littlewoodmaxi-
mal operator on R𝑛. Then󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑗∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑀(𝑛)𝑔𝑗,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑗∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑗,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
(39)

for any 1 < 𝑝, 𝑞, 𝑟 < ∞.

In order to deal with Marcinkiewicz integrals and maxi-
mal functions, we need a useful characterization of Triebel-
Lizorkin spaces and Besov spaces.

Lemma 21 (see [18]). Let 0 < 𝛼 < 1.
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(i) If 1 < 𝑝 < ∞, 1 < 𝑞 ≤ ∞, and 1 ≤ 𝑟 < min{𝑝, 𝑞}, then
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

∼ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

2𝑘𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨△2−𝑘𝜁𝑓󵄨󵄨󵄨󵄨󵄨𝑟 𝑑𝜁)𝑞/𝑟)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) .
(40)

(ii) If 1 ≤ 𝑝 < ∞, 1 ≤ 𝑞 ≤ ∞, and 1 ≤ 𝑟 ≤ 𝑝, then
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵̇𝑝,𝑞𝛼 (R𝑛)

∼ (∑
𝑘∈Z

2𝑘𝑞𝛼 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∫
R𝑛

󵄨󵄨󵄨󵄨󵄨△2−𝑘𝜁𝑓󵄨󵄨󵄨󵄨󵄨𝑟 𝑑𝜁)1/𝑟󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑝(R𝑑)

)1/𝑞 . (41)

To proveTheorem 5, we need the following results.

Lemma 22 (see [12]). Let Υ, 𝜑 be given as in Theorem 5.
Suppose that ℎ ∈ Δ 𝛾(R+) for some 𝛾 > 1, then ℎ(𝜑−1)Υ(𝜑−1) ∈Δ 𝛾(R+).

The following lemma is a key switched result about
singular integrals associated with compound surfaces.

Lemma 23 (see [29]). Let 𝜑 ∈ G and Υ be given as in
Theorem 5. Let 𝑇ℎ,Ω,Γ be defined as in (2) and Ω̃(𝑦) = Ω(−𝑦).
Define the operator 𝑇ℎ,Ω,Γ,𝜑 by

𝑇ℎ,Ω,Γ,𝜑𝑓 (𝑥)
= p.v.∫

R𝑛
𝑓 (𝑥 − Γ (𝜑 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) 𝑦󸀠)) ℎ (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) Ω (𝑦)󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦. (42)

(i) If 𝜑 is nonnegative and increasing, then 𝑇ℎ,Ω,Γ,𝜑𝑓 =𝑇ℎ(𝜑−1)Υ(𝜑−1),Ω,Γ𝑓.(ii) If 𝜑 is nonnegative and decreasing, then 𝑇ℎ,Ω,𝜑𝑓 =−𝑇ℎ(𝜑−1)Υ(𝜑−1),Ω,Γ𝑓.(iii) If 𝜑 is nonpositive and decreasing, then 𝑇ℎ,Ω,Γ,𝜑𝑓 =𝑇ℎ(𝜑−1)Υ(𝜑−1),Ω̃,Γ𝑓.(iv) If 𝜑 is nonpositive and increasing, then 𝑇ℎ,Ω,Γ,𝜑𝑓 =−𝑇ℎ(𝜑−1)Υ(𝜑−1),Ω̃,Γ𝑓.
3. Some Criterions

To prove Theorem 4, we need the following criterion on
the boundedness of the convolution operators on Triebel-
Lizorkin spaces, which is a variant of [15, Theorem 1.10]. This
can be proved by making some minor modifications in the
proof of [15, Theorem 1.10]. We omit the details.

Proposition 24. Let 𝑙 ∈ N \ {0} and {𝜎𝑠,𝑘 : 0 ≤ 𝑠 ≤ 𝑙 and 𝑘 ∈
Z} be a family of measures on R𝑛. For 1 ≤ 𝑠 ≤ 𝑙, let {𝑎𝑘,𝑠}𝑘∈Z
be some sequences of positive real numbers with satisfying

inf
𝑘∈Z

𝑎𝑘+1,𝑠𝑎𝑘,𝑠 ≥ 𝜂𝑠 (43)

for some 𝜂 > 1. For 1 ≤ 𝑠 ≤ 𝑙, let ℓ𝑠 ∈ N\{0} and𝐿 𝑠 : R𝑛 → Rℓ𝑠

be linear transformations. Suppose that there exists constants𝐶 > 0 and 𝛽 > 1 such that(i) 𝜎0,𝑘 = 0 for every 𝑘 ∈ Z;(ii) ‖𝜎𝑠,𝑘‖ ≤ 𝐶 for every 𝑘 ∈ Z and 1 ≤ 𝑠 ≤ 𝑙;(iii) |𝜎𝑠,𝑘(𝜉)| ≤ 𝑐 log(|𝑎𝑘,𝑠𝐿 𝑠(𝜉)|)−𝛽 if |𝑎𝑘,𝑠𝐿 𝑠(𝜉)| > 1 for𝜉 ∈ R𝑛, 𝑘 ∈ Z, and 1 ≤ 𝑠 ≤ 𝑙;(iv) |𝜎𝑠,𝑘(𝜉) − 𝜎𝑠−1,𝑘(𝜉)| ≤ 𝑐|𝑎𝑘,𝑠𝐿 𝑠(𝜉)| for 𝜉 ∈ R𝑛, 𝑘 ∈ Z,
and 1 ≤ 𝑠 ≤ 𝑙;(v) for any 1 ≤ 𝑠 ≤ 𝑙 and arbitrary functions {𝑔𝑘,𝑗}𝑘,𝑗 ∈𝐿𝑝(ℓ𝑞(ℓ2),R𝑛), there exists a positive constant 𝐶 which is
independent of {𝐿 𝑠}𝑙𝑠=1 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑗∈Z

(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝜎𝑠,𝑘 ∗ 𝑔𝑘,𝑗󵄨󵄨󵄨󵄨󵄨2)𝑞/2)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑗∈Z

(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑘,𝑗󵄨󵄨󵄨󵄨󵄨2)𝑞/2)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
(44)

for some 𝑝0, 𝑞0 ∈ (1,∞) with 𝑝0 ̸= 2 and 𝑞0 ̸= 2.
Let 𝑃1𝑃2 be the line segment from 𝑃1 to 𝑃2 with 𝑃1 =(1/2, 1/2) and 𝑃2 = (1/2𝛽+(1/𝑝0)(1−1/𝛽), 1/2𝛽+(1/𝑞0)(1−1/𝛽). Then there exists a positive constant 𝐶 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∑𝑘∈Z𝜎𝑙,𝑘 ∗ 𝑓󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛) (45)

holds for any 𝛼 ∈ R and (1/𝑝, 1/𝑞) ∈ 𝑃1𝑃2 \ {𝑃2}.
To establish the Triebel-Lizorkin space boundedness

parts inTheorems 8 and 11, we will give the following lemma,
which is the heart of the proofs of Theorems 8 and 11.

Proposition 25. Let Λ ∈ N \ {0} and {𝜎𝑠,𝑡 : 𝑡 > 0, 1 ≤ 𝑠 ≤Λ} be a family of Borel measures on R𝑛. Let |𝜎𝑠,𝑡| be the total
variation of 𝜎𝑠,𝑡. For 1 ≤ s ≤ Λ, let {𝑎𝑘,𝑠}𝑘∈Z be some sequences
of positive real numbers with satisfying

𝛿𝑠 ≥ inf
𝑘∈Z

𝑎𝑘+1,𝑠𝑎𝑘,𝑠 ≥ 𝜂𝑠 > 1 (46)

for some 𝜂𝑠, 𝛿𝑠 > 1. For 1 ≤ 𝑠 ≤ Λ, let ℓ𝑠 ∈ N \ {0} and𝐿 𝑠 : R𝑛 → R𝑀𝑠 be linear transformations. Suppose that there
exist 𝑝0, 𝑞0 > 1, 1 < 𝑟0 < min{𝑝0, 𝑞0}, 𝛽 > 1, and 𝐶 > 0 such
that the following conditions hold for 1 ≤ 𝑠 ≤ Λ, 𝑡 > 0, 𝜉 ∈ R𝑛,
and {𝑔𝑙,𝜁,𝑘} ∈ 𝐿𝑝0(ℓ𝑞0(𝐿𝑟0(ℓ2,R𝑛)),R𝑛):(i) 𝜎0,𝑡 = 0;(ii) (∫2𝑘+1

2𝑘
|𝜎𝑠,𝑡(𝜉) − 𝜎𝑠−1,𝑡(𝜉)|2(𝑑𝑡/𝑡))1/2 ≤ 𝐶min{1,|𝑎𝑘+1,𝑠𝐿 𝑠(𝜉)|};(iii) (∫2𝑘+1

2𝑘
|𝜎𝑠,𝑡(𝜉)|(𝑑𝑡/𝑡))1/2 ≤ 𝐶(log |𝑎𝑘,𝑠𝐿 𝑠(𝜉)|)−𝛽 if|𝑎𝑘,𝑠𝐿 𝑠(𝜉)| > 1;
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(iv)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

(∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜎𝑠,𝑡󵄨󵄨󵄨󵄨 ∗ 𝑔𝑙,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞0)1/𝑞0󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝0 (R𝑛) ≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑙,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞0

𝐿𝑟0 (R𝑛)

)1/𝑞0󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝0 (R𝑛) . (47)

Let 𝑃1𝑃2 be the line segment from 𝑃1 to 𝑃2 with 𝑃1 = (1/2, 1/2)
and 𝑃2 = (1/2𝛽 + (1/𝑝0)(1 − 1/𝛽), 1/2𝛽 + (1/𝑞0)(1 − 1/𝛽)).
Then there exists a positive constant 𝐶 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∫∞

0

󵄨󵄨󵄨󵄨󵄨𝜎Λ,𝑡 ∗ △2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

(48)

holds for any 𝛼 ∈ (0, 1) and (1/𝑝, 1/𝑞) ∈ 𝑃1𝑃2 \ {𝑃2}.
Proof. For any 1 ≤ 𝑠 ≤ Λ, let 𝑙𝑠 = rank(𝐿 𝑠) ≤ min{𝑛, ℓ𝑠}. By [5,
Lemma 6.1], there are two nonsingular linear transformations
H𝑠 : R𝑙𝑠 → R𝑙𝑠 andG𝑠 : R𝑛 → R𝑛 such that

󵄨󵄨󵄨󵄨󵄨H𝑠𝜋𝑛𝑙𝑠G𝑠𝜉󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨 ≤ 𝑀𝑠

󵄨󵄨󵄨󵄨󵄨H𝑠𝜋𝑛𝑙𝑠G𝑠𝜉󵄨󵄨󵄨󵄨󵄨 , 𝜉 ∈ R
𝑛. (49)

For 𝑡 > 0 and 1 ≤ 𝑠 ≤ Λ, we define the family of measures{𝜏𝑠,𝑡}𝑡>0 by
𝜏𝑠,𝑡 (𝜉) = 𝜎𝑠,𝑡 (𝜉) Λ∏

𝑗=𝑠+1

𝜓(󵄨󵄨󵄨󵄨󵄨󵄨𝑎𝑘,𝑗H𝑗𝜋𝑛𝑙𝑗G𝑗𝜉󵄨󵄨󵄨󵄨󵄨󵄨)
− 𝜎𝑠−1,𝑡 (𝜉) Λ∏

𝑗=𝑠

𝜓(󵄨󵄨󵄨󵄨󵄨󵄨𝑎𝑘,𝑗H𝑗𝜋𝑛𝑙𝑗G𝑗𝜉󵄨󵄨󵄨󵄨󵄨󵄨) , (50)

where 𝜓 ∈ C∞
0 (R) such that 𝜓(𝑡) ≡ 1 for |𝑡| ≤ 1/2 and 𝜓(𝑡) ≡0 for |𝑡| > 1. Then (50) together with assumption (i) implies

that

𝜎Λ,𝑡 = Λ∑
𝑠=1

𝜏𝑠,𝑡. (51)

It follows that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∫∞

0

󵄨󵄨󵄨󵄨󵄨𝜎Λ,𝑡 ∗ △2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ Λ∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∫∞

0

󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ △2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) .
(52)

Therefore, to prove (48), it suffices to show that there exists𝐶 > 0 such that󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∫∞

0

󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ △2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

(53)

for any 1 ≤ 𝑠 ≤ Λ, 𝛼 ∈ (0, 1), and (1/𝑝, 1/𝑞) ∈ 𝑃1𝑃2 \ {𝑃2}.
We now prove (53). By our assumptions (ii)-(iii), we have

(∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 (𝜉)󵄨󵄨󵄨󵄨 𝑑𝑡𝑡 )1/2 ≤ 𝐶min {1, 󵄨󵄨󵄨󵄨𝑎𝑘+1,𝑠𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨} ;
(∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 (𝜉)󵄨󵄨󵄨󵄨 𝑑𝑡𝑡 )1/2 ≤ 𝐶 (log 󵄨󵄨󵄨󵄨𝑎𝑘,𝑠𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨)−𝛽
if 󵄨󵄨󵄨󵄨𝑎𝑘,𝑠𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨 > 𝑀𝑠.

(54)

Let {𝜐𝑘,𝑠}𝑘∈Z be a collection of C∞ functions on (0,∞) with
the following properties:

supp (𝜐𝑘,𝑠) ⊂ [𝑎−1𝑘+1,𝑠, 𝑎−1𝑘−1,𝑠] ;0 ≤ 𝜐𝑘,𝑠 (𝑡) ≤ 1; ∑
𝑘∈Z

𝜐𝑘,𝑠 (𝑡) = 1. (55)

Define the multiplier operator 𝑆𝑘,𝑠 on R𝑛 by𝑆𝑘,𝑠𝑓 (𝜉) = 𝜐𝑘,𝑠 (󵄨󵄨󵄨󵄨󵄨H𝑠𝜋𝑛𝑙𝑠Q𝑠𝜉󵄨󵄨󵄨󵄨󵄨) 𝑓 (𝜉) . (56)

Note that 𝛿𝑠 ≥ 𝑎𝑘+1,𝑠/𝑎𝑘,𝑠 ≥ 𝜂𝑠 > 1. By [16, Lemma 2.5] we
obtain 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑆𝑘,𝑠𝑓𝜁,𝑙󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

󵄩󵄩󵄩󵄩󵄩𝑓𝜁,𝑙󵄩󵄩󵄩󵄩󵄩𝑞𝐿𝑟(R𝑛))
1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) .

(57)
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By Minkowski’s inequality we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∫∞

0

󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ △2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ ∑
𝑗∈Z

𝑆𝑗−𝑘,𝑠△2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑡𝑡 )1/2 𝑑𝜁)

𝑞

)
1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)

≤ ∑
𝑗∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ 𝑆𝑗−𝑘,𝑠△2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) .
(58)

Define the mixed norm ‖ ⋅ ‖𝐸𝑝,𝑞𝛼 for measurable functions on
R𝑛 ×R𝑛 × Z × Z ×R+ by

󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝐸𝑝,𝑞𝛼 fl

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∑
𝑘∈Z

∫∞

0

󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝜁, 𝑙, 𝑘, 𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) . (59)

For any 𝑗 ∈ Z, let

𝑉𝑗,𝑠 (𝑓) (𝑥, 𝜁, 𝑙, 𝑘, 𝑡)
fl 𝜏𝑠,𝑡 ∗ 𝑆𝑗−𝑘,s△2−𝑙𝜁𝑓 (𝑥) 𝜒[2𝑘 ,2𝑘+1] (𝑡) . (60)

Then we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ △2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) ≤ ∑
𝑗∈Z

󵄩󵄩󵄩󵄩󵄩𝑉𝑗,𝑠 (𝑓)󵄩󵄩󵄩󵄩󵄩𝐸𝑝,𝑞𝛼 . (61)

By (54), Hölder’s inequality, Minkowski’s inequality, Fubini’s
theorem, Plancherel’s theorem, and Lemma 21(ii), we have

󵄩󵄩󵄩󵄩󵄩𝑉𝑗,𝑠 (𝑓)󵄩󵄩󵄩󵄩󵄩2𝐸2,2𝛼 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

22𝑙𝛼 (∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ 𝑆𝑗−𝑘,𝑠△2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐿2(R𝑛)

= ∫
R𝑛

∑
𝑙∈Z

22𝑙𝛼 (∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ 𝑆𝑗−𝑘,𝑠△2−𝑙𝜁𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)2 𝑑𝑥
≤ 𝐶∑

𝑙∈Z

22𝑙𝛼 ∫
R𝑛

∑
𝑘∈Z

∫2𝑘+1

2𝑘
∫
R𝑛

󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ 𝑆𝑗−𝑘,𝑠△2−𝑙𝜁𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥𝑑𝑡𝑡 𝑑𝜁
≤ 𝐶∑

𝑙∈Z

22𝑙𝛼 ∫
R𝑛

∑
𝑘∈Z

∫
𝐸𝑗−𝑘,𝑠

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 󵄨󵄨󵄨󵄨󵄨△̂2−𝑙𝜁𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 𝑑𝜁 ≤ 𝐶𝐵2𝑗,𝑠 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐵̇2,2𝛼 (R𝑛) ,

(62)
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where 𝐵𝑗,𝑠 = 𝑀𝑠𝜂−𝑗+1𝑠 𝜒{𝑗≥𝑘𝑠}(𝑗) + |𝑗|−𝛽𝜒{𝑗<𝑘𝑠}(𝑗) with 𝑘𝑠 =
max{𝑘 ∈ Z : 𝑘 < −1 − log𝜂𝑠𝑀𝑠} and

𝐸𝑗+𝑘,𝑠 = {𝑥 ∈ R
𝑛 : 𝑎−1𝑗+𝑘+1,𝑠 ≤ 󵄨󵄨󵄨󵄨𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨 ≤ 𝑀𝑠𝑎−1𝑗+𝑘−1,𝑠} . (63)

It follows from (62) and (14) that󵄩󵄩󵄩󵄩󵄩𝑉𝑗,𝑠 (𝑓)󵄩󵄩󵄩󵄩󵄩𝐸2,2𝛼 ≤ 𝐶𝐵𝑗,𝑠 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇2,2𝛼 (R𝑛) . (64)

We now prove󵄩󵄩󵄩󵄩󵄩𝑉𝑗,𝑠 (𝑓)󵄩󵄩󵄩󵄩󵄩𝐸𝑝0,𝑞0𝛼 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝0,𝑞0𝛼 (R𝑛) . (65)

For 1 ≤ 𝑠 ≤ Λ, let Φ𝑠 be a radial function in S(R𝑙𝑠) defined
by Φ̂𝑠(𝑥) = 𝜓(|𝑥|), where 𝑥 ∈ R𝑙𝑠 and 𝜓 is given as in (50).
Define 𝐽𝑠 and𝑋𝑠 by

𝐽𝑠𝑓 (𝑥) fl 𝑓 (G𝑡
𝑠 (H𝑡

𝑠 ⊗ 𝑖𝑑R𝑛−𝑙𝑠 ) 𝑥) ,
𝑋𝑠𝑓 (𝑥) = sup

𝑘∈Z

sup
𝑡∈[2𝑘 ,2𝑘+1]

󵄨󵄨󵄨󵄨𝑋𝑘,𝑡;𝑠𝑓 (𝑥)󵄨󵄨󵄨󵄨 , (66)

where𝑋𝑘,𝑡;𝑠𝑓(𝑥) = 𝐽−1𝑠 ((Φ𝑘,𝑡;𝑠⊗𝛿R𝑛−𝑙𝑠 )∗𝐽𝑠𝑓)(𝑥) andΦ𝑘,𝑡;𝑠(𝑥0)= (𝜑(𝑡)𝛾𝑠)−𝑙𝑠Φ𝑠(𝜑(𝑡)−𝛾𝑠𝑥0) with 𝑥0 ∈ R𝑙𝑠 . It is easy to check
that

󵄨󵄨󵄨󵄨𝑋𝑠𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝐶𝑠 [𝐽−1𝑠 ∘ (𝑀(𝑙𝑠)
⊗ 𝑖𝑑R𝑛−𝑙𝑠 ) ∘ 𝐽𝑠] (𝑓) (𝑥) , (67)

where 𝑥 = (𝑥0, 𝑥1) ∈ R𝑙𝑠 × R𝑛−𝑙𝑠 . (67) together with
Lemma 20 yields that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑋𝑠𝑔𝑙,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑝

𝐿𝑝(R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨[𝐽−1𝑠 ∘ (𝑀(𝑙𝑠)
⊗ 𝑖𝑑R𝑛−𝑙𝑠 ) ∘ 𝐽𝑠] (𝑔𝑙,𝜁,𝑘)󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑝

𝐿𝑝(R𝑛)

≤ 𝐶 󵄨󵄨󵄨󵄨𝐽𝑠󵄨󵄨󵄨󵄨

⋅ ∫
R𝑛−𝑙𝑠

∫
R𝑙𝑠

(∑
𝑙∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

𝑀(𝑙𝑠)
[(𝐽𝑠𝑔𝑙,𝜁,𝑘 (⋅, 𝑥1))] (𝑥0)2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿𝑟(R𝑛)

)𝑝/𝑞 𝑑𝑥0𝑑𝑥1

≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑙,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑝

𝐿𝑝(R𝑛)

(68)

for any 1 ≤ 𝑠 ≤ Λ and 1 < 𝑝, 𝑞, 𝑟 < ∞. Define 𝑋𝑠𝑓 =𝑋𝑠 ∘ 𝑋𝑠+1 ∘ ⋅ ⋅ ⋅ ∘ 𝑋Λ𝑓 for 1 ≤ 𝑠 ≤ Λ. We get from (68) that, for
any 1 ≤ 𝑠 ≤ Λ and 1 < 𝑝, 𝑞, 𝑟 < ∞,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑋𝑠𝑔𝑙,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑝

𝐿𝑝(R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑙,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑝

𝐿𝑝(R𝑛)

.
(69)

On the other hand, by the definition of𝑋𝑘,𝑡;𝑠 we have

𝜏𝑠,𝑡 ∗ 𝑓 = 𝜎𝑠,𝑡 ∗ (𝑋𝑘,𝑡;𝑠+1 ∘ 𝑋𝑘,𝑡;𝑠+2 ∘ ⋅ ⋅ ⋅ ∘ 𝑋𝑘,𝑡;Λ𝑓)
− 𝜎𝑠−1,𝑡 ∗ (𝑋𝑘,𝑡;𝑠 ∘ 𝑋𝑘,𝑡;𝑠+1 ∘ ⋅ ⋅ ⋅ ∘ 𝑋𝑘,𝑡;Λ𝑓) . (70)

It follows that

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ 𝑓󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 ≤ 2(∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜎𝑠,𝑡󵄨󵄨󵄨󵄨 ∗ 𝑋𝑠+1𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡
+ ∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜎𝑠−1,𝑡󵄨󵄨󵄨󵄨 ∗ 𝑋𝑠𝑓󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 ) .
(71)

By (69), (71), and assumption (iv), we have󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

(∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ 𝑔𝑙,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞0)1/𝑞0󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝0 (R𝑛)
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑙,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞0

𝐿𝑟0 (R𝑛)

)1/𝑞0󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝0 (R𝑛)
(72)

for arbitrary functions {𝑔𝑙,𝜁,𝑘} ∈ 𝐿𝑝0(ℓ𝑞0(𝐿𝑟0(ℓ2,R𝑑)),R𝑛) and1 ≤ 𝑠 ≤ Λ. Then (72) together with Lemma 21(i) and (57)
leads to
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󵄩󵄩󵄩󵄩󵄩𝑉𝑗,𝑠 (𝑓)󵄩󵄩󵄩󵄩󵄩𝐸𝑝0,𝑞0𝛼 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞0𝛼 (∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨𝜏𝑠,𝑡 ∗ 𝑆𝑗−𝑘,𝑠△2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞0)1/𝑞0󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝0 (R𝑛)
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

2𝑙𝑞0𝛼 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑆𝑗−𝑘,𝑠△2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞0

𝐿𝑟0 (R𝑛)

)1/𝑞0󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝0 (R𝑛) ≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞0𝛼 󵄩󵄩󵄩󵄩󵄩△2−𝑙𝜁𝑓󵄩󵄩󵄩󵄩󵄩𝑞0𝐿𝑟0 (R𝑛))
1/𝑞0󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝0 (R𝑛)

≤ 𝐶( 𝐵𝛿𝑠𝜑𝐵𝛿𝑠𝜑 − 1)
𝑛+2 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝0,𝑞0𝛼 (R𝑛) .

(73)

This proves (65).
By the interpolation between (64) and (65), we obtain

that, for 𝛼 ∈ (0, 1) and (1/𝑝, 1/𝑞) ∈ 𝑃1𝑃2 \ {𝑃2}, there exists𝜃 ∈ (1/𝛽, 1] such that󵄩󵄩󵄩󵄩󵄩𝑉𝑗,𝑠 (𝑓)󵄩󵄩󵄩󵄩󵄩𝐸𝑝,𝑞𝛼 ≤ 𝐶𝐵𝜃𝑗,𝑠 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛) . (74)

Then, (74) together with (61) yields (48) and completes the
proof of Proposition 25.

The following result is a criterion on the boundedness and
continuity of several operators on Besov spaces, which can be
used to prove the boundedness and continuity result onBesov
spaces inTheorems 8 and 11.

Proposition 26 (see [23]). Assume that 𝑇 : 𝐿𝑝(R𝑛) →𝐿𝑝(R𝑛) for some 𝑝 ∈ (1,∞). If󵄨󵄨󵄨󵄨󵄨△𝜁 (𝑇𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑇 (△𝜁 (𝑓)) (𝑥)󵄨󵄨󵄨󵄨󵄨 (75)

for any 𝑥, 𝜁 ∈ R𝑛. Then 𝑇 is bounded on 𝐵̇𝑝,𝑞𝑠 (R𝑛) for any 𝑠 ∈(0, 1) and 𝑞 ∈ (1,∞). Particularly, if 𝑇 satisfies󵄨󵄨󵄨󵄨𝑇𝑓 − 𝑇𝑔󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑇 (𝑓 − 𝑔)󵄨󵄨󵄨󵄨 (76)

for arbitrary functions𝑓, 𝑔 defined onR𝑛, then 𝑇 is continuous
from 𝐵𝑝,𝑞𝑠 (R𝑛) to 𝐵̇𝑝,𝑞𝑠 (R𝑛) for any 𝑠 ∈ (0, 1) and 𝑞 ∈ (1,∞).

To establish the Triebel-Lizorkin space continuity parts
in Theorems 8 and 11, we will give the following criterion of
continuity for several sublinear operators on Triebel-Lizorkin
spaces.

Proposition 27. Assume that𝑇 is a sublinear operator and the
following conditions hold.(i) 𝑇 : 𝐿𝑝(R𝑑) → 𝐿𝑝(R𝑑) for some 𝑝 ∈ (1,∞).(ii) For all 𝑥, 𝜁 ∈ R𝑛, the following holds:󵄨󵄨󵄨󵄨󵄨△𝜁 (𝑇𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑇 (△𝜁 (𝑓)) (𝑥)󵄨󵄨󵄨󵄨󵄨 . (77)

(iii) For arbitrary functions 𝑓, 𝑔 defined on R𝑛, the follow-
ing holds: 󵄨󵄨󵄨󵄨𝑇𝑓 − 𝑇𝑔󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑇 (𝑓 − 𝑔)󵄨󵄨󵄨󵄨 . (78)

(iv) There exist 𝛼 ∈ (0, 1) and 𝑞 ∈ (1,∞) such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨𝑇 (△2−𝑙𝜁𝑓)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛) .
(79)

Then 𝑇 is continuous from 𝐹𝑝,𝑞𝑠 (R𝑛) to 𝐹̇𝑝,𝑞𝑠 (R𝑛).
Proof. Let 𝑓𝑗 → 𝑓 in 𝐹𝑝,𝑞𝛼 (R𝑛) as 𝑗 → ∞. By (15) we see
that 𝑓𝑗 → 𝑓 in 𝐹̇𝑝,𝑞𝛼 (R𝑛) and in 𝐿𝑝(R𝑛) as 𝑗 → ∞. Since‖𝑓𝑗 − 𝑓‖𝐿𝑝(R𝑛) → 0 as 𝑗 → ∞, by assumptions (i) and (iii)
we obtain that 𝑇𝑓𝑗 → 𝑇𝑓 in 𝐿𝑝(R𝑛) as 𝑗 → ∞. Therefore, it
suffices to show that 𝑇𝑓𝑗 → 𝑇𝑓 in 𝐹̇𝑝,𝑞𝛼 (R𝑛) as 𝑗 → ∞.

We shall prove this claim by contradiction. Without loss
of generality we may assume that there exists 𝑐 > 0 such that󵄩󵄩󵄩󵄩󵄩𝑇𝑓𝑗 − 𝑇𝑓󵄩󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

> 𝑐 (80)

for every 𝑗. Since 𝑇𝑓𝑗 → 𝑇𝑓 in 𝐿𝑝(R𝑛) as 𝑗 → ∞, by extract-
ing a subsequence we may assume that |𝑇𝑓𝑗(𝑥) − 𝑇𝑓(𝑥)| → 0
as 𝑗 → ∞ for almost every 𝑥 ∈ R𝑛. It follows that △2−𝑙𝜁(𝑇𝑓𝑗−𝑇𝑓)(𝑥) → 0 as 𝑗 → ∞ for every (𝑙, 𝜁) ∈ Z × R𝑛 and
almost every 𝑥 ∈ R𝑛. We get from assumption (ii) and the
sublinearity of 𝑇 that󵄨󵄨󵄨󵄨󵄨△2−𝑙𝜁 (𝑇𝑓𝑗 − 𝑇𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨≤ 2𝑇 (△2−𝑙𝜁𝑓) (𝑥) + 𝑇 (△2−𝑙𝜁 (𝑓𝑗 − 𝑓)) (𝑥) (81)

for (𝑥, 𝑙, 𝜁) ∈ R𝑛 × Z ×R𝑛. For convenience, we set

󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑝,𝑞,𝛼 fl
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑙, 𝜁)󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) (82)

for 𝛼 ∈ R and (𝑝, 𝑞) ∈ (1,∞)2. It follows from Lemma 21(i)
that ‖𝑓‖𝐹̇𝑝,𝑞𝛼 (R𝑛) ∼ ‖△2−𝑙𝜁𝑓‖𝑝,𝑞,𝛼 for 𝛼 ∈ (0, 1) and (𝑝, 𝑞) ∈(1,∞)2. By assumption (iv) we obtain󵄩󵄩󵄩󵄩󵄩𝑇 (△2−𝑙𝜁𝑓)󵄩󵄩󵄩󵄩󵄩𝑝,𝑞,𝛼
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≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨𝑇 (△2−𝑙𝜁𝑓)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛) .
(83)

It follows that ‖𝑇(△2−𝑙𝜁(𝑓𝑗 − 𝑓))‖𝑝,𝑞,𝛼 ≲ ‖𝑓𝑗 − 𝑓‖𝐹̇𝑝,𝑞𝛼 (R𝑛) →0 as 𝑗 → ∞. One can extract a subsequence such that∑∞
𝑗=1 ‖𝑇(△2−𝑙𝜁(𝑓𝑗 − 𝑓))‖𝑝,𝑞,𝛼 < ∞. Define a function 𝐺 :

R𝑛 × Z ×R𝑛 → R by

𝐺 (𝑥, 𝑙, 𝜁) = ∞∑
𝑗=1

𝑇 (△2−𝑙𝜁 (𝑓𝑗 − 𝑓)) (𝑥)
+ 2𝑇 (△2−𝑙𝜁𝑓) (𝑥) . (84)

One can easily check that ‖𝐺‖𝑝,𝑞,𝛼 < ∞ and󵄨󵄨󵄨󵄨󵄨△2−𝑙𝜁 (𝑇𝑓𝑗 − 𝑇𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐺 (𝑥, 𝑙, 𝜁)
for almost every (𝑥, 𝑙, 𝜁) ∈ R

𝑛 × Z ×R𝑛. (85)

Since ‖𝐺‖𝑝,𝑞,𝛼 < ∞, we have that ∫
R𝑑

𝐺(𝑥, 𝑘, 𝜁)𝑑𝜁 < ∞ for
every 𝑘 ∈ Z and almost every 𝑥 ∈ R𝑛. (85) together with the
dominated convergence theorem leads to

∫
R𝑛

󵄨󵄨󵄨󵄨󵄨△2−𝑙𝜁 (𝑇𝑓𝑗 − 𝑇𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁 󳨀→ 0 as 𝑗 󳨀→ ∞ (86)

for every 𝑙 ∈ Z and almost every𝑥 ∈ R𝑛. By the fact ‖𝐺‖𝑝,𝑞,𝛼 <∞ again, we have

(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

𝐺 (𝑥, 𝑙, 𝜁) 𝑑𝜁)𝑞)1/𝑞 < ∞ (87)

for almost every 𝑥 ∈ R𝑛. Using (85) we obtain

∫
R𝑛

󵄨󵄨󵄨󵄨󵄨△2−𝑙𝜁 (𝑇𝑓𝑗 − 𝑇𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁 ≤ ∫
R𝑛

𝐺 (𝑥, 𝑙, 𝜁) 𝑑𝜁 (88)

for almost every 𝑥 ∈ R𝑑 and 𝑙 ∈ Z. It follows from (86)–(88)
and the dominated convergence theorem that

(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨△2−𝑙𝜁 (𝑇𝑓𝑗 − 𝑇𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞 󳨀→ 0
as 𝑗 󳨀→ ∞

(89)

for almost every 𝑥 ∈ R𝑛. By (85) again, it holds that

(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨△2−𝑙𝜁 (𝑇𝑓𝑗 − 𝑇𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞

≤ (∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑙, 𝜁)󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞
(90)

for almost every 𝑥 ∈ R𝑛. By (89)-(90), the fact ‖𝐺‖𝑝,𝑞,𝛼 < ∞,
and the dominated convergence theorem, we obtain󵄩󵄩󵄩󵄩󵄩△2−𝑙𝜁 (𝑇𝑓𝑗 − 𝑇𝑓)󵄩󵄩󵄩󵄩󵄩𝑝,𝑞,𝛼 󳨀→ 0 as 𝑗 󳨀→ ∞. (91)

This yields that ‖𝑇𝑓𝑗 − 𝑇𝑓‖𝐹̇𝑝,𝑞𝛼 (R𝑛) → 0 as 𝑗 → ∞ and gives a
contradiction.

4. Proofs of Theorems 4, 5, and 11

In this section we shall proveTheorems 4–11. In what follows,
let deg(𝑃) = max1≤𝑗≤𝑛deg(𝑃𝑗). For 1 ≤ 𝑗 ≤ 𝑛, we set 𝑃𝑙(𝑡) =∑deg(𝑃)
𝑖=1 𝑎𝑖,𝑗𝑡𝑖. Then there are integers 0 < 𝑙1 < 𝑙2 < ⋅ ⋅ ⋅ < 𝑙Λ ≤

deg(𝑃) such that 𝑃𝑗(𝑡) = ∑Λ
𝑖=1 𝑎𝑙𝑖 ,𝑗𝑡𝑙𝑖 for any 1 ≤ 𝑗 ≤ 𝑛 and(𝑎𝑙𝑖 ,1, 𝑎l𝑖 ,2, . . . , 𝑎𝑙𝑖 ,𝑛) ̸= (0, 0, . . . , 0) ∈ R𝑛 for all 1 ≤ 𝑖 ≤ Λ. For1 ≤ 𝑗 ≤ 𝑛 and 0 ≤ 𝑠 ≤ Λ, we set 𝑃(𝑠)𝑗 (𝑡) = ∑𝑠

𝑖=1 𝑎𝑙𝑖 ,𝑗𝑡𝑙𝑖 for1 ≤ 𝑠 ≤ Λ and 𝑃(0)𝑗 (𝑡) = (0, . . . , 0). For 1 ≤ 𝑠 ≤ Λ, we define
the linear transformation 𝐿 𝑖 : R𝑛 → R𝑛 by

𝐿 𝑖 (𝜉) = (𝑎𝑙𝑖 ,1𝜉1, 𝑎𝑙𝑖 ,2𝜉2, . . . , 𝑎𝑙𝑖 ,𝑛𝜉𝑛) . (92)

We now turn to proveTheorems 4, 5, and 11

Proof of Theorem 4. Define {Φ𝑠}Λ𝑠=0 byΦ𝑠 (𝑦) = (𝑃(𝑠)1 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) 𝑦󸀠1, . . . , 𝑃(𝑠)𝑛 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) 𝑦󸀠𝑛) , 0 ≤ 𝑠 ≤ Λ. (93)

It is clear to see that

Φ𝑠 (𝑥) ⋅ 𝜉 = 𝑛∑
𝑗=1

𝑃(𝑠)𝑗 (|𝑥|) 𝑥󸀠 ⋅ 𝜉𝑙 = 𝑠∑
𝑖=1

|𝑥|𝑙𝑖 (𝐿 𝑖 (𝜉) ⋅ 𝑥󸀠) (94)

for any 𝑥, 𝜉 ∈ R𝑛 and 1 ≤ 𝑠 ≤ Λ. For 0 ≤ 𝑠 ≤ Λ and 𝜉 ∈ R𝑛,
we define the measures {𝜎𝑘,𝑠}𝑘∈Z by

𝜎𝑘,𝑠 (𝜉) = ∫
2𝑘<|𝑦|≤2𝑘+1

𝑒−2𝜋𝑖Φ𝑠(|𝑦|)𝑦󸀠 ⋅𝜉Ω(𝑦) ℎ (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨𝑛 𝑑𝑦. (95)

It is clear that 𝑇ℎ,Ω,Γ𝑓 = ∑
𝑘∈Z

𝜎𝑘,Λ ∗ 𝑓. (96)

By the change of the variables, we have

󵄨󵄨󵄨󵄨𝜎𝑘,𝑠 (𝜉) − 𝜎𝑘,𝑠−1 (𝜉)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
2𝑘+1

2𝑘
∫
S𝑛−1

Ω(𝑦󸀠)
⋅ (𝑒−2𝜋𝑖Φ𝑠(𝑡)𝑦󸀠 ⋅𝜉 − 𝑒−2𝜋𝑖Φ𝑠−1(𝑡)𝑦󸀠 ⋅𝜉) 𝑑𝜎 (𝑦󸀠)
⋅ ℎ (𝑡) 𝑑𝑡𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶 ‖Ω‖𝐿1(S𝑛−1) ‖ℎ‖Δ 𝛾(R+)
⋅ 󵄨󵄨󵄨󵄨󵄨2(𝑘+1)𝑠𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨 .

(97)

On the other hand, it is easy to check that󵄩󵄩󵄩󵄩𝜎𝑘,𝑠󵄩󵄩󵄩󵄩 ≤ 𝐶 ‖Ω‖𝐿1(S𝑛−1) ‖ℎ‖Δ 𝛾(R+) ;
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𝜎𝑘,0 = 0.
(98)

By the change of the variables and Hölder’s inequality, we
have

󵄨󵄨󵄨󵄨𝜎𝑘,𝑠 (𝜉)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
2𝑘+1

2𝑘
∫
S𝑛−1

Ω(𝑦󸀠) 𝑒−2𝜋𝑖Φ𝑠(𝑡)𝑦󸀠 ⋅𝜉𝑑𝜎 (𝑦󸀠) ℎ (𝑡) 𝑑𝑡𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶 ‖ℎ‖Δ 𝛾(R+)

⋅ (∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫S𝑛−1 Ω(𝑦󸀠) 𝑒−2𝜋𝑖Φ𝑠(𝑡)𝑦󸀠 ⋅𝜉𝑑𝜎 (𝑦󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾
󸀠 𝑑𝑡𝑡 )1/𝛾󸀠 ≤ 𝐶(∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫S𝑛−1 Ω(𝑦󸀠) 𝑒−2𝜋𝑖Φ𝑠(𝑡)𝑦󸀠 ⋅𝜉𝑑𝜎 (𝑦󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/max{2,𝛾󸀠}

≤ 𝐶(∫2𝑘+1

2𝑘
∬

S𝑛−1×S𝑛−1
Ω(𝑦󸀠)Ω (𝜃)𝑒−2𝜋𝑖Φ𝑠(𝑡)(𝑦󸀠−𝜃)⋅𝜉𝑑𝜎 (𝑦󸀠) 𝑑𝜎 (𝜃) 𝑑𝑡𝑡 )1/max{2,𝛾󸀠} ≤ 𝐶(∬

S𝑛−1×S𝑛−1
𝐻𝑘 (𝜉, 𝑦󸀠, 𝜃)Ω (𝑦󸀠)

⋅ Ω (𝜃)𝑑𝜎 (𝑦󸀠) 𝑑𝜎 (𝜃))1/max{2,𝛾󸀠} ,

(99)

where

𝐻𝑘 (𝜉, 𝑦󸀠, 𝜃) = ∫2𝑘+1

2𝑘
𝑒−2𝜋𝑖Φ𝑠(𝑡)(𝑦󸀠−𝜃)⋅𝜉 𝑑𝑡𝑡 . (100)

By the Van der Corput lemma, there exists a constant 𝐶 > 0,
such that󵄨󵄨󵄨󵄨󵄨𝐻𝑘 (𝜉, 𝑦󸀠, 𝜃)󵄨󵄨󵄨󵄨󵄨

≤ 𝐶min {1, 󵄨󵄨󵄨󵄨󵄨2(𝑘+1)𝑠𝐿 𝑠 (𝜉) ⋅ (𝑦󸀠 − 𝜃)󵄨󵄨󵄨󵄨󵄨−1/𝑠} . (101)

When |2(𝑘+1)𝑠𝐿 𝑠𝜉| > 1, since 𝑡/(log 𝑡)𝛽 is increasing in (𝑒𝛽,∞), we have
󵄨󵄨󵄨󵄨󵄨𝐻𝑘 (𝜉, 𝑦󸀠, 𝜃)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶(log 2𝑒𝛽𝜆 󵄨󵄨󵄨󵄨󵄨𝜂 ⋅ (𝑦󸀠 − 𝜃)󵄨󵄨󵄨󵄨󵄨−1)𝛽(log 󵄨󵄨󵄨󵄨2(𝑘+1)𝑠𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨)𝛽 , (102)

where 𝜂 = 𝐿 𝑠(𝜉)/|𝐿 𝑠(𝜉)|. Combining (99), (102) with the fact
thatΩ ∈ 𝑊F𝛽(S𝑛−1) yields that

󵄨󵄨󵄨󵄨𝜎𝑘,𝑠 (𝜉)󵄨󵄨󵄨󵄨 ≤ 𝐶 (log 󵄨󵄨󵄨󵄨󵄨2(𝑘+1)𝑠𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨)−𝛽/max{2,𝛾󸀠} ,
if 󵄨󵄨󵄨󵄨󵄨2(𝑘+1)𝑠𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨 > 1. (103)

On the other hand, Lemma 17 yields that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑗∈Z

(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝜎𝑘,𝑠 ∗ 𝑔𝑘,𝑗󵄨󵄨󵄨󵄨󵄨2)𝑞/2)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑗∈Z

(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑘,𝑗󵄨󵄨󵄨󵄨󵄨2)𝑞/2)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
(104)

for (1/𝑝, 1/𝑞) belonging to the interior of the convex hull
of three squares (1/2, 1/2 + 1/max{2, 𝛾󸀠})2, (1/2 − 1/max{2,𝛾󸀠}, 1/2)2, and (1/2𝛾, 1 − 1/2𝛾)2. Here 𝐶 > 0 is independent
of the coefficients of {𝑃𝑗}𝑛𝑗=1.

Take 𝑎𝑘,𝑠 = 2𝑘𝑠. By (96)–(98), (103)-(104) and Proposi-
tion 24, we obtain󵄩󵄩󵄩󵄩𝑇ℎ,Ω,Γ𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛) (105)

for 𝛽 > max{2, 𝛾󸀠}, 𝛼 ∈ R, and all (1/𝑝, 1/𝑞) ∈ R𝛾,𝛽, where
R𝛾,𝛽 is given as inTheorem 4. This proves Theorem 4(i).

On the other hand, it follows fromTheorem 4(i) and (13)
that 𝑇ℎ,Ω,Γ is bounded on 𝐿𝑝(R𝑛) for 𝛽 > max{2, 𝛾󸀠} and|1/𝑝 − 1/2| < 1/max{2, 𝛾󸀠} − 1/𝛽. This together with the
arguments similar to those used in deriving [30,Theorem 1.2]
yields Theorem 4(ii).

Proof of Theorem 5. Theorem 5 follows from Theorem 4 and
Lemmas 22 and 23.

Proof of Theorem 8. DefineΦ0, Φ1, . . . , ΦΛ byΦ𝑠 (𝑦) = (𝑃(𝑠)1 (𝜑 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)) 𝑦󸀠1, . . . , 𝑃(𝑠)𝑛 (𝜑 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)) 𝑦󸀠𝑛) ,0 ≤ 𝑠 ≤ Λ. (106)

Clearly,

Φ𝑠 (𝑥) ⋅ 𝜉 = 𝑛∑
𝑗=1

𝑃(𝑠)𝑗 (𝜑 (|𝑥|)) 𝑥󸀠 ⋅ 𝜉𝑙
= 𝑠∑

𝑖=1

𝜑 (|𝑥|)𝑙𝑖 (𝐿 𝑖 (𝜉) ⋅ 𝑥󸀠) ,
(107)

for any 𝑥, 𝜉 ∈ R𝑛 and 1 ≤ 𝑠 ≤ Λ. For 0 ≤ 𝑠 ≤ Λ, define the
family of measures {𝜎𝑡,𝑠}𝑡∈R+ by∫

R𝑛
𝑓 (𝑥) 𝑑𝜎𝑡,𝑠 (𝑥)

= 1𝑡𝜌 ∫
𝑡/2<|𝑥|≤𝑡

𝑓 (Φ𝑠 (𝑥)) ℎ (|𝑥|) Ω (𝑥)|𝑥|𝑛−𝜌 𝑑𝑥, (108)
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where |𝜎𝑡,𝑠| is defined in the sameway as 𝜎𝑡,𝑠, but with ℎ andΩ
replaced by ℎ and |Ω|, respectively. By the change of variables
and Minkowski’s inequality, we have

Mℎ,Ω,Γ,𝜌𝑓 (𝑥)
= (∫∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
0∑

𝑘=−∞

2𝑘𝜌𝜎2𝑘𝑡,Λ ∗ 𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑡𝑡 )1/2

≤ 0∑
𝑘=−∞

2𝑘𝜍 (∫∞

0

󵄨󵄨󵄨󵄨𝜎2𝑘𝑡,Λ ∗ 𝑓 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2
≤ 11 − 2−𝜍 (∫∞

0

󵄨󵄨󵄨󵄨𝜎𝑡,Λ ∗ 𝑓 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 .
(109)

By Lemma 18, we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑗∈Z

(∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜎𝑡,𝑠󵄨󵄨󵄨󵄨 ∗ 𝑔𝑗,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶 ‖Ω‖𝐿1(S𝑛−1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑗∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑗,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
(110)

for (1/𝑝, 1/𝑞, 1/𝑟) belonging to the interior of the con-
vex hull of three cubes (1/2, 1/2 + 1/max{2, 𝛾󸀠})3, (1/2 −1/max{2, 𝛾󸀠}, 1/2)3, and (1/2𝛾, 1 − 1/2𝛾)3. Here 𝐶 > 0 is
independent of the coefficients of {𝑃𝑗}𝑛𝑗=1.

One can easily check that

𝜎𝑡,0 = 0; (111)󵄨󵄨󵄨󵄨𝜎𝑡,𝑠 (𝜉) − 𝜎𝑡,𝑠−1 (𝜉)󵄨󵄨󵄨󵄨 ≤ 𝐶min {1, 󵄨󵄨󵄨󵄨󵄨𝜑 (𝑡)𝑙𝑠 𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨} . (112)

It follows from (112) that

(∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨𝜎𝑡,𝑠 (𝜉) − 𝜎𝑡,𝑠−1 (𝜉)󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2

≤ 𝐶min {1, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜑 (2𝑘+1)𝑙𝑠 𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨󵄨󵄨} .
(113)

By a change of variable, we have

󵄨󵄨󵄨󵄨𝜎𝑡,𝑠 (𝜉)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝑡𝜌 ∫𝑡

𝑡/2
∫
S𝑛−1

exp(−2𝜋𝑖 𝑠∑
𝑗=1

(𝐿𝑗 (𝜉) ⋅ 𝑦󸀠) 𝜑 (𝑟)𝑙𝑗)Ω(𝑦󸀠) 𝑑𝜎 (𝑦󸀠) ℎ (𝑟) 𝑑𝑟𝑟1−𝜌
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑡

𝑡/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫S𝑛−1 exp(−2𝜋𝑖 𝑠∑
𝑗=1

(𝐿𝑗 (𝜉) ⋅ 𝑦󸀠) 𝜑 (𝑟)𝑙𝑗)Ω(𝑦󸀠) 𝑑𝜎 (𝑦󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 |ℎ (𝑟)| 𝑑𝑟𝑟
≤ 𝐶 ‖ℎ‖Δ 𝛾(R+) ‖Ω‖max{0,1−2/𝛾󸀠}

𝐿1(S𝑛−1)

× (∫𝑡

𝑡/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫S𝑛−1 exp(−2𝜋𝑖 𝑠∑
𝑗=1

(𝐿𝑗 (𝜉) ⋅ 𝑦󸀠) 𝜑 (𝑟)𝑙𝑗)Ω(𝑦󸀠) 𝑑𝜎 (𝑦󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑟𝑟 )1/max{2,𝛾󸀠} .

(114)

Since

∫𝑡

𝑡/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫S𝑛−1 exp(−2𝜋𝑖 𝑠∑
𝑗=1

(𝐿𝑗 (𝜉) ⋅ 𝑦󸀠) 𝜑 (𝑟)𝑙𝑗)Ω(𝑦󸀠) 𝑑𝜎 (𝑦󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑟𝑟

≤ ∫𝑡

𝑡/2
∬

S𝑛−1×S𝑛−1
exp(−2𝜋𝑖 𝑠∑

𝑗=1

(𝐿𝑗 (𝜉) ⋅ (𝑦󸀠 − 𝑢󸀠)) 𝜑 (𝑟)𝑙𝑗)Ω(𝑦󸀠)Ω (𝑢󸀠)𝑑𝜎 (𝑦󸀠) 𝑑𝜎 (𝑢󸀠) 𝑑𝑟𝑟
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≤ ∬
S𝑛−1×S𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨Ω (𝑦󸀠)Ω (𝑢󸀠)󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫

𝑡

𝑡/2
exp(−2𝜋𝑖 𝑠∑

𝑗=1

(𝐿𝑗 (𝜉) ⋅ (𝑦󸀠 − 𝑢󸀠)) 𝜑 (𝑟)𝑙𝑗) 𝑑𝑟𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝜎 (𝑦󸀠) 𝑑𝜎 (𝑢󸀠) ,

(115)

by Lemma 16, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

𝑡/2
exp(−2𝜋𝑖 𝑠∑

𝑗=1

(𝐿𝑗 (𝜉) ⋅ (𝑦󸀠 − 𝑢󸀠)) 𝜑 (𝑟)𝑙𝑗) 𝑑𝑟𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶min {1, 󵄨󵄨󵄨󵄨󵄨𝜑 (𝑡)𝑙𝑠 𝐿 𝑠 (𝜉) ⋅ (𝑦󸀠 − 𝑢󸀠)󵄨󵄨󵄨󵄨󵄨−1/𝑠} .
(116)

For |𝜑(𝑡)𝑙𝑠𝐿 𝑠(𝜉)| > 1, since 𝑟/(log 𝑟)𝛽 is increasing in (𝑒𝛽,∞),
we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫

𝑡

𝑡/2
exp(−2𝜋𝑖 𝑠∑

𝑗=1

(𝐿𝑗 (𝜉) ⋅ (𝑦󸀠 − 𝑢󸀠)) 𝜑 (𝑟)𝑙𝑗) 𝑑𝑟𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶(log 2𝑒𝛽𝑠 󵄨󵄨󵄨󵄨󵄨𝜂 ⋅ (𝑦󸀠 − 𝜃)󵄨󵄨󵄨󵄨󵄨−1)𝛽(log 󵄨󵄨󵄨󵄨󵄨𝜑 (𝑡)𝑙𝑠 𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨)𝛽 ,
(117)

where 𝜂 = 𝐿 𝑠(𝜉)/|𝐿 𝑠(𝜉)|. Combining (114), (115), and (117)
with the fact thatΩ ∈ 𝑊F𝛽(S𝑛−1) yields that

󵄨󵄨󵄨󵄨𝜎𝑡,𝑠 (𝜉)󵄨󵄨󵄨󵄨 ≤ 𝐶 (log 󵄨󵄨󵄨󵄨󵄨𝜑 (𝑡)𝑙𝑠 𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨)−𝛽/max{2,𝛾󸀠} (118)

when |𝜑(𝑡)𝑙𝑠𝐿 𝑠(𝜉)| > 1. It follows from (118) that

(∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨𝜎𝑡,𝑠 (𝜉)󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2

≤ 𝐶(log 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜑 (2𝑘)𝑙𝑠 𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨󵄨󵄨)−𝛽/max{2,𝛾󸀠}

(119)

when |𝜑(2𝑘)𝑙𝑠𝐿 𝑠(𝜉)| > 1.
Take 𝑎𝑘,𝑠 = 𝜑(2𝑘)𝑙𝑠 . By Remark 7 we have that 𝑐𝑙𝑠𝜑 ≥𝑎𝑘+1,𝑠/𝑎𝑘,𝑠 ≥ 𝐵𝑙𝑠𝜑 > 1. It follows from (110)-(111), (113), (119),

and Proposition 25 that󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∫∞

0

󵄨󵄨󵄨󵄨󵄨𝜎𝑡,Λ ∗ △2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

(120)

holds for 𝛽 > max{2, 𝛾󸀠}, any 𝛼 ∈ (0, 1), and all (1/𝑝, 1/𝑞) ∈
R𝛾,𝛽. Thus (120) together with (109) yields that󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨Mℎ,Ω,Γ,𝜌 (△2−𝑙𝜁𝑓)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

(121)

holds for 𝛽 > max{2, 𝛾󸀠}, any 𝛼 ∈ (0, 1), and all (1/𝑝, 1/𝑞) ∈
R𝛾,𝛽. Here𝐶 = 𝐶𝑛,𝜍,𝛼,𝑝,𝑞,𝛾,𝛽,𝜑 is independent of the coefficients
of {𝑃𝑗}𝑛𝑗=1. On the other hand, one can easily check that󵄨󵄨󵄨󵄨󵄨△𝜁 (Mℎ,Ω,Γ,𝜌𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨Mℎ,Ω,Γ,𝜌 (△𝜁 (𝑓)) (𝑥)󵄨󵄨󵄨󵄨󵄨 (122)

for any 𝑥, 𝜁 ∈ R𝑛 and󵄨󵄨󵄨󵄨󵄨Mℎ,Ω,Γ,𝜌𝑓 −Mℎ,Ω,Γ,𝜌𝑔󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨Mℎ,Ω,Γ,𝜌 (𝑓 − 𝑔)󵄨󵄨󵄨󵄨󵄨 (123)

for arbitrary functions 𝑓 and 𝑔 defined on R𝑛. By Lemma
21(i), we have󵄩󵄩󵄩󵄩󵄩Mℎ,Ω,Γ,𝜌𝑓󵄩󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨△2−𝑙𝜁 (Mℎ,Ω,Γ,𝜌𝑓)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
(124)

for all 𝛼 ∈ (0, 1) and (𝑝, 𝑞) ∈ (1,∞)2. Here 𝐶 =𝐶𝑛,𝜍,𝛼,𝑝,𝑞,𝛾,𝛽,𝜑 is independent of the coefficients of {𝑃𝑗}𝑛𝑗=1. And
(122) and (124) yield Theorem 8(i). We get from Remark 10
that Mℎ,Ω,Γ,𝜌 is bounded on 𝐿𝑝(R𝑛) for 𝛽 > max{2, 𝛾󸀠} and|1/𝑝 − 1/2| < 1/max{2, 𝛾󸀠} − 1/𝛽. Note that Mℎ,Ω,Γ,𝜌 is a
sublinear operator.These facts together with (121)–(123) yield
Theorem 8(ii). Theorem 8(iii) and (iv) follow from the 𝐿𝑝
bounds for 𝜇ℎ,Ω,Γ,𝜌 and (122)-(123).

Proof ofTheorem 11. We first consider the operatorSΩ,Γ. One
can easily check that󵄨󵄨󵄨󵄨󵄨△𝜁 (SΩ,Γ𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨SΩ,Γ (△𝜁 (𝑓)) (𝑥)󵄨󵄨󵄨󵄨󵄨 ∀𝑥, 𝜁 ∈ R

𝑑. (125)

By Lemma 21(i) and (125) we have󵄩󵄩󵄩󵄩SΩ,Γ𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨△2−𝑙𝜁 (SΩ,Γ𝑓)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨SΩ,Γ (△2−𝑙𝜁𝑓)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
(126)

for 𝛼 ∈ (0, 1) and (𝑝, 𝑞) ∈ (1,∞)2. Therefore, to prove
Theorem 11(i) for SΩ,Γ, it suffices to show that󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨SΩ,Γ (△2−𝑙𝜁𝑓)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

(127)
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for 𝛼 ∈ (0, 1) and (1/𝑝, 1/𝑞) belonging to the set of all inter-
iors of the convex hull of two squares (1/𝛽, 1/2)2 and (1/2, 1−1/𝛽)2. Here 𝐶 = 𝐶𝑛,𝛼,𝑝,𝑞,𝛽,𝜑 is independent of the coefficients
of {𝑃𝑗}𝑛𝑗=1.

Let Φ𝑠, 𝐿 𝑠, and Λ be given as in the proof of Theorem 8.
Define the family of measures {𝜎𝑡,𝑠}𝑡∈R+ and {|𝜎𝑡,𝑠|}𝑡∈R+ onR𝑛

by

𝜎𝑡,𝑠 (𝑥) = ∫
S𝑛−1

𝑒−2𝜋𝑖Φ𝑠(𝑡𝑦󸀠)⋅𝑥Ω(𝑦󸀠) 𝑑𝜎 (𝑦󸀠) ;
󵄨󵄨󵄨󵄨𝜎𝑡,𝑠󵄨󵄨󵄨󵄨 (𝑥) = ∫

S𝑛−1
𝑒−2𝜋𝑖Φ𝑠(𝑡𝑦󸀠)⋅𝑥 󵄨󵄨󵄨󵄨󵄨Ω (𝑦󸀠)󵄨󵄨󵄨󵄨󵄨 𝑑𝜎 (𝑦󸀠) . (128)

By duality we have

SΩ,Γ𝑓 (𝑥) = (∫∞

0

󵄨󵄨󵄨󵄨𝜎𝑡,Λ ∗ 𝑓 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 . (129)

One can easily check that

𝜎𝑡,0 = 0,
(∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨𝜎𝑡,𝑠 (𝜉) − 𝜎𝑡,𝑠−1 (𝜉)󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2

≤ (∫2𝑘+1

2𝑘
max {1, 󵄨󵄨󵄨󵄨󵄨𝜑 (𝑡)𝑙𝑠 𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨}2 𝑑𝑡𝑡 )1/2

≤ 𝐶min {1, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜑 (2𝑘+1)𝑙𝑠 𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨󵄨󵄨} .

(130)

On the other hand,

󵄨󵄨󵄨󵄨𝜎𝑡,𝑠 (𝜉)󵄨󵄨󵄨󵄨2 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫S𝑛−1 𝑒−2𝜋𝑖Φ𝑠(𝑡𝑦󸀠)⋅𝜉Ω(𝑦󸀠) 𝑑𝜎 (𝑦󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫S𝑛−1 exp(−2𝜋𝑖 𝑠∑

𝑖=1

𝜑 (𝑡)𝑙𝑖 (𝐿 𝑖 (𝜉) ⋅ 𝑦󸀠))
⋅ Ω (𝑦󸀠) 𝑑𝜎 (𝑦󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= ∬
S𝑛−1×S𝑛−1

exp(−2𝜋𝑖 𝑠∑
𝑖=1

𝜑 (𝑡)𝑙𝑖 (𝐿 𝑖 (𝜉) ⋅ (𝑦󸀠 − 𝜃)))
⋅ Ω (𝑦󸀠)Ω (𝜃)𝑑𝜎 (𝑦󸀠) 𝑑𝜎 (𝜃) .

(131)

It follows that

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨𝜎𝑡,𝑠 (𝜉)󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡
≤ ∬

S𝑛−1×S𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
2𝑘+1

2𝑘
exp(−2𝜋𝑖 𝑠∑

𝑖=1

𝜑 (𝑡)𝑙𝑖 (𝐿 𝑖 (𝜉) ⋅ (𝑦󸀠 − 𝜃))) 𝑑𝑡𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨⋅ 󵄨󵄨󵄨󵄨󵄨Ω (𝑦󸀠)Ω (𝜃)󵄨󵄨󵄨󵄨󵄨 𝑑𝜎 (𝑦󸀠) 𝑑𝜎 (𝜃) .
(132)

Invoking Lemma 16 we obtain󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
2𝑘+1

2𝑘
exp(−2𝜋𝑖 𝑠∑

𝑖=1

𝜑 (𝑡)𝑙𝑖 (𝐿 𝑖 (𝜉) ⋅ (𝑦󸀠 − 𝜃))) 𝑑𝑡𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ min{1, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜑 (2𝑘+1)𝑙𝑠 𝐿 𝑠 (𝜉) ⋅ (𝑦󸀠 − 𝜃)󵄨󵄨󵄨󵄨󵄨󵄨󵄨−1/𝑠} . (133)

When |𝜑(2𝑘+1)𝑙𝑠𝐿 𝑠(𝜉)| > 1, since 𝑡/(log 𝑡)𝛽 is increasing in(𝑒𝛽,∞), we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
2𝑘+1

2𝑘
exp(−2𝜋𝑖 𝑠∑

𝑖=1

𝜑 (𝑡)𝑙𝑖 (𝐿 𝑖 (𝜉) ⋅ (𝑦󸀠 − 𝜃))) 𝑑𝑡𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶(log 2𝑒𝛽𝜆 󵄨󵄨󵄨󵄨󵄨𝜂 ⋅ (𝑦󸀠 − 𝜃)󵄨󵄨󵄨󵄨󵄨−1)𝛽(log 󵄨󵄨󵄨󵄨󵄨󵄨𝜑 (2𝑘+1)𝑙𝑠 𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨󵄨)𝛽 , (134)

where 𝜂 = 𝐿 𝑠(𝜉)/|𝐿 𝑠(𝜉)|. Combining (132), (134) with the fact
thatΩ ∈ 𝑊F𝛽(S𝑛−1) yields that

(∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨𝜎𝑡,𝑠 (𝜉)󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2

≤ 𝐶(log 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜑 (2𝑘+1)𝑙𝑠 𝐿 𝑠 (𝜉)󵄨󵄨󵄨󵄨󵄨󵄨󵄨)−𝛽/2
(135)

if |𝜑(2𝑘+1)𝑙𝑠𝐿 𝑠(𝜉)| > 1. By Lemma 19 we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑗∈Z

(∫
R𝑛

(∑
𝑘∈Z

∫2𝑘+1

2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜎𝑡,𝑠󵄨󵄨󵄨󵄨 ∗ 𝑔𝑗,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶 ‖Ω‖𝐿1(S𝑛−1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑗∈Z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑘∈Z

󵄨󵄨󵄨󵄨󵄨𝑔𝑗,𝜁,𝑘󵄨󵄨󵄨󵄨󵄨2)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑞

𝐿𝑟(R𝑛)

)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
(136)

for (1/𝑝, 1/𝑞, 1/𝑟) belonging to the interior of the convex
hull of two cubes (0, 1/2)3 and (1/2, 1)3. Here 𝐶 > 0 is
independent of the coefficients of {𝑃𝑗}𝑛𝑗=1.

Take 𝑎𝑘,𝑠 = 𝜑(2𝑘)𝑙𝑠 . By Remark 7 we have that 𝑐𝑙𝑠𝜑 ≥ 𝑎𝑘+1,𝑠/𝑎𝑘,𝑠 ≥ 𝐵𝑙𝑠𝜑 > 1. By (130), (135)-(136), and Proposition 25 we
obtain that
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󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

(∫∞

0

󵄨󵄨󵄨󵄨󵄨𝜎𝑡,Λ ∗ △2−𝑙𝜁𝑓󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡𝑡 )1/2 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

(137)

for 𝛽 > 2, 𝛼 ∈ (0, 1) and (1/𝑝, 1/𝑞) belonging to the interior
of the convex hull of two squares (1/𝛽, 1/2)2 and (1/2, 1 −1/𝛽)2. Here 𝐶 = 𝐶𝑛,𝛼,𝑝,𝑞,𝛽,𝜑 is independent of the coefficients
of {𝑃𝑗}𝑛𝑗=1. Equation (137) together with (129) yields (127). By
arguments similar to those used in deriving (3.14) and (3.16)
in [31], one can obtain

MΩ,Γ,𝜌𝑓 (𝑥) ≤ 𝐶𝜍SΩ,Γ𝑓 (𝑥) ∀𝑥 ∈ R
𝑛. (138)

Thus (138) together with (127) yields that󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨MΩ,Γ,𝜌 (△2−𝑙𝜁𝑓)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

(139)

for 𝛼 ∈ (0, 1) and (1/𝑝, 1/𝑞) belonging to the set of all
interiors of the convex hull of two squares (1/𝛽, 1/2)2 and(1/2, 1 − 1/𝛽)2. Here 𝐶 = 𝐶𝑛,𝜍,𝛼,𝑝,𝑞,𝛽,𝜑 is independent of the
coefficients of {𝑃𝑗}𝑛𝑗=1. One can easily check that󵄨󵄨󵄨󵄨󵄨△𝜁 (MΩ,Γ,𝜌𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨MΩ,Γ,𝜌 (△𝜁𝑓) (𝑥)󵄨󵄨󵄨󵄨󵄨∀𝑥, 𝜁 ∈ R

𝑛. (140)

By Lemma 21(i) and (140) we have󵄩󵄩󵄩󵄩󵄩MΩ,Γ,𝜌𝑓󵄩󵄩󵄩󵄩󵄩𝐹̇𝑝,𝑞𝛼 (R𝑛)

≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑
𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨△2−𝑙𝜁 (MΩ,Γ,𝜌𝑓)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(∑

𝑙∈Z

2𝑙𝑞𝛼 (∫
R𝑛

󵄨󵄨󵄨󵄨󵄨MΩ,Γ,𝜌 (△2−𝑙𝜁𝑓)󵄨󵄨󵄨󵄨󵄨 𝑑𝜁)𝑞)1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)
(141)

for𝛼 ∈ (0, 1) and (𝑝, 𝑞) ∈ (1,∞)2.ThenTheorem 11(i) follows
from (126)-(127), (139), and (141).

It is known that both SΩ,Γ and MΩ,Γ,𝜌 are sublinear
operators. Moreover, one can easily check that󵄨󵄨󵄨󵄨SΩ,Γ𝑓 −SΩ,Γ𝑔󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨SΩ,Γ (𝑓 − 𝑔)󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨MΩ,Γ,𝜌𝑓 −MΩ,Γ,𝜌𝑔󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨MΩ,Γ,𝜌 (𝑓 − 𝑔)󵄨󵄨󵄨󵄨󵄨 (142)

for arbitrary functions 𝑓, 𝑔 defined on R𝑛. It follows from
Remark 12 that

max {󵄩󵄩󵄩󵄩SΩ,Γ𝑓󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) , 󵄩󵄩󵄩󵄩󵄩MΩ,Γ,𝜌𝑓󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛)}≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛) (143)

for 𝑝 ∈ [2, 𝛽). It follows from (142)-(143), (127), (139), and
Proposition 27 thatTheorem 11(ii) holds.Theorem 11(iii)-(iv)
follows from (125), (140), (142)-(143), and Proposition 26.
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Matemática Complutense, vol. 15, no. 2, pp. 401–416, 2002.

[23] F. Liu and H.Wu, “On the regularity of maximal operators sup-
ported by submanifolds,” Journal of Mathematical Analysis and
Applications, vol. 453, no. 1, pp. 144–158, 2017.

[24] F. Liu, “Rough maximal functions supported by subvarieties
on Triebel-Lizorkin spaces,” Revista de la Real Academia de
Ciencias Exactas, Fı́sicas y Naturales. Serie A. Matemáticas, vol.
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