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We study someproperties of a regular function inClifford analysis and generalize Liouville theoremandPlemelj formulawith values
in Clifford algebra 𝐴𝑛(R). By means of the classical Riemann boundary value problem and of the theory of a regular function, we
discuss some boundary value problems and singular integral equations in Clifford analysis and obtain the explicit solutions and
the conditions of solvability. Thus, the results in this paper will be of great significance for the study of improving and developing
complex analysis, integral equation, and boundary value theory.

1. Introduction

As we know, boundary value problems (BVPs) for holo-
morphic function and singular integral equations (SIEs) are
one of important branches in classical holomorphic function
theory of one complex variable, and they have important
applications in many fields, such as mechanics, physics, and
engineering. Many practical problems can often be trans-
formed into BVPs and SIEs. In recent decades, some kinds of
BVPs and SIEs have been well studied and a lot of results were
obtained (see, e.g., [1–6]). Clifford analysis is an important
field of modern mathematics which studies the functions
defined in R𝑛 with values in Clifford algebra space 𝐴𝑛(R)
and possesses both theoretical and applicable values, such
as physics, quantum mechanics, Maxwell equation, theory
of Yang-Mills field, and other branches of mathematics (see,
e.g., [7–10]).The results of theory of Clifford regular function
are generalizations of the classical theory of holomorphic
functions in complex analysis. A lot of results of the classical
theory of holomorphic functions can be extended to Clifford
analysis. In recent decades, many mathematical workers
devote to study the BVPs and SIEs in Clifford analysis, and
there were many important and significant results (see, e.g.,
[11–13]).

Based on the above-mentioned work, we further solve
some kinds of BVPs and SIEs in Clifford analysis as well as
BVP in quaternion analysis. We first study some properties
of a regular function and then generalize Cauchy integral
theorem and Cauchy integral formula in 𝐴𝑛(R). By means
of the Riemann boundary value problem and of the prop-
erties of the Cauchy principal value integral we obtain the
explicit expressions of general solution and their solvability
conditions for these equations. Thus, this paper generalizes
the theory of integral equations and the classical boundary
value problems for analytic function.

We begin by developing the necessary preliminaries in
Clifford algebra and analysis that we require here.

2. Preliminaries

Let 𝐴𝑛(R) be a real Clifford algebra over an 𝑛-dimensional
real vector spaceR𝑛 with the orthogonal basis {𝑒1, 𝑒2, . . . , 𝑒𝑛},
where 𝑒1 = 1 is an identity element. The product on R𝑛 is
defined by

𝑒21 = 1,
𝑒2𝑖 = −1 (𝑖 = 2, 3, . . . , 𝑛) ,
𝑒1𝑒𝑖 = 𝑒𝑖𝑒1 (𝑖 = 2, 3, . . . , 𝑛) ,
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𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖 = {{{
0, 𝑖 ̸= 𝑗;
−2, 𝑖 = 𝑗 (2 ≤ 𝑖, 𝑗 ≤ 𝑛) .

(1)

Hence, any element 𝑥 ∈ R𝑛 has the type 𝑥 = ∑𝑛𝑘=1 𝑥𝑘𝑒𝑘 (𝑥𝑘 ∈
R). And𝐴𝑛(R) is a 2𝑛−1-dimensional real linear space, whose
basis is {𝑒1, 𝑒2, . . . , 𝑒𝑛; 𝑒2𝑒3, . . . , 𝑒𝑛−1𝑒𝑛; . . . ; 𝑒2𝑒3, . . . , 𝑒𝑛}. Each
basis element of 𝐴𝑛(R) has a representation of the form𝑒𝐴 = 𝑒𝛼1𝛼2⋅⋅⋅𝛼𝑟 = 𝑒𝛼1𝑒𝛼2 ⋅ ⋅ ⋅ 𝑒𝛼𝑟 , where 𝐴 = {𝛼1, 𝛼2, . . . , 𝛼𝑟} ⊆{1, 2, . . . , 𝑛} and 1 ≤ 𝛼1 < 𝛼2 < ⋅ ⋅ ⋅ < 𝛼𝑟 ≤ 𝑛, and when𝐴 = 1, 𝛼1 = 𝑒1 = 1. Therefore, any element 𝑎 ∈ 𝐴𝑛(R) can be
denoted as 𝑎 = ∑𝐴 𝑎𝐴𝑒𝐴, where 𝑎𝐴 ∈ R is a real number. The
norm for an element 𝑎 ∈ 𝐴𝑛(R) is taken to be

|𝑎| = √(𝑎, 𝑎) = √|𝑎|2 = √∑
𝐴

󵄨󵄨󵄨󵄨𝑎𝐴󵄨󵄨󵄨󵄨2. (2)

It is easy to prove that, for any 𝑎, 𝑏 ∈ 𝐴𝑛(R), we have
|𝑎 + 𝑏| ≤ |𝑎| + |𝑏| ,
|𝑎𝑏| ≤ 2𝑛−1 |𝑎| |𝑏| . (3)

In fact, we denote 𝑎 = ∑𝐴 𝑎𝐴𝑒𝐴, 𝑏 = ∑𝐴 𝑏𝐴𝑒𝐴, then
|𝑎 + 𝑏| ≤ √∑

𝐴

(󵄨󵄨󵄨󵄨𝑎𝐴󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑏𝐴󵄨󵄨󵄨󵄨)2

≤ (∑
𝐴

󵄨󵄨󵄨󵄨𝑎𝐴󵄨󵄨󵄨󵄨2)
1/2

+ (∑
𝐴

󵄨󵄨󵄨󵄨𝑏𝐴󵄨󵄨󵄨󵄨2)
1/2

= |𝑎| + |𝑏| ;

|𝑎𝑏| ≤ √∑
𝐴

22𝑛 󵄨󵄨󵄨󵄨𝑎𝐴󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝑏𝐴󵄨󵄨󵄨󵄨2

≤ 2𝑛−1(∑
𝐴

󵄨󵄨󵄨󵄨𝑎𝐴󵄨󵄨󵄨󵄨2)
1/2

(∑
𝐴

󵄨󵄨󵄨󵄨𝑏𝐴󵄨󵄨󵄨󵄨2)
1/2

= 2𝑛−1 |𝑎| |𝑏| .

(4)

Definition 1. LetΩ ⊂ R𝑛 be a nonempty, open, and connected
set. A function 𝑓(𝑥) defined in Ω and with values in Clifford
algebra 𝐴𝑛(R) can be expressed as 𝑓(𝑥) = ∑𝐴 𝑓𝐴(𝑥)𝑒𝐴; that
is, 𝑓 : Ω → 𝐴𝑛(R), where 𝑓𝐴(𝑥) is a real function.

Let 𝐶(𝑟)(Ω) denote the set of all functions defined in Ω
with derivatives of order 𝑟(≥1). We define the function class𝐹(𝑟)Ω in 𝐶(𝑟)(Ω) as follows:

𝐹(𝑟)Ω = {𝑓 | 𝑓 : Ω 󳨀→ 𝐴𝑛 (R) , 𝑓 (𝑥)

= ∑
𝐴

𝑓𝐴 (𝑥) 𝑒𝐴, 𝑓𝐴 (𝑥) ∈ 𝐶(𝑟) (Ω) , 𝑥 ∈ Ω} ,
(5)

whereΩ ⊂ R𝑛 and 𝑟(≥1) is an integer.

Definition 2. Let 𝑓 : Ω → 𝐴𝑛(R). If there exists a constant𝑀 > 0 such that
󵄨󵄨󵄨󵄨𝑓 (𝑥1) − 𝑓 (𝑥2)󵄨󵄨󵄨󵄨 ≤ 𝑀 󵄨󵄨󵄨󵄨𝑥1 − 𝑥2󵄨󵄨󵄨󵄨𝛼 , 0 < 𝛼 ≤ 1, (6)

for any 𝑥1, 𝑥2 ∈ Ω, then we call 𝑓 to be Hölder continuous
function inΩ, denoted by 𝑓 ∈ 𝐻𝛼Ω, where𝑀 and 𝛼 are called
the Hölder constant and the Hölder index, respectively. And
we define generalized Cauchy-Riemann operators (i.e., Dirac
operator)𝐷,𝐷 in 𝐹(𝑟)Ω as follows:

𝐷 = 𝑒1𝜕1 − 𝑛∑
𝑖=2

𝑒𝑖𝜕𝑖,

𝐷 = 𝑛∑
𝑖=1

𝑒𝑖𝜕𝑖.
(7)

For any 𝑓 ∈ 𝐹(𝑟)Ω (𝑟 ≥ 1), the operators 𝐷, 𝐷 act on function𝑓 being governed by the rules

𝐷𝑥𝑓 = 𝑛∑
𝑖=1

∑
𝐴

𝑒𝑖𝑒𝐴 𝜕𝑓𝐴𝜕𝑥𝑖 ,

𝑓𝐷𝑥 = ∑
𝐴

𝑛∑
𝑖=1

𝑒𝐴𝑒𝑖 𝜕𝑓𝐴𝜕𝑥𝑖 ,
(8)

then a solution of 𝐷𝑥𝑓 = 0 is called left regular function inΩ. Similarly, a solution of 𝑓𝐷𝑥 = 0 is called right regular
function. Generally the left regular function is called regular
function in short.

Let the boundary 𝜕Ω of Ω be a smooth, directional, and
compact Liapunov surface. We denote the set of all Hölder
continuous function defined on 𝜕Ω as 𝐻(𝜕Ω, 𝛽) and define
the norm as

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝛽 = 𝐶 (𝑓, 𝜕Ω) + 𝐻 (𝑓, 𝜕Ω, 𝛽) , (9)

where 𝐶(𝑓, 𝜕Ω) = max𝑡∈𝜕Ω|𝑓(𝑡)| is a continuous norm, and

𝐻(𝑓, 𝜕Ω, 𝛽) = sup
𝑡1 ̸=𝑡2 , 𝑡1,𝑡2∈𝜕Ω

󵄨󵄨󵄨󵄨𝑓 (𝑡1) − 𝑓 (𝑡2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨𝛽 (10)

is an Hölder norm. It is easy to prove that 𝐻(𝜕Ω, 𝛽) is a
Banach space.

Definition 3. If there exists 𝑏 (𝑏 ∈ 𝐴𝑛(R)) such that 𝑎𝑏 = 𝑏𝑎 =1, we call 𝑏 as the inverse of 𝑎, denoted by 𝑎−1.
In the following,𝑥 ∈ R𝑛 can be expressed as𝑥 = ∑𝑛𝑖=1 𝑥𝑖𝑒𝑖,𝑥 = 𝑥𝑅 + 𝑥𝑛𝑒𝑛, or 𝑥 = (𝑥𝑅, 𝑥𝑛), where 𝑥𝑅 = ∑𝑛−1𝑖=1 𝑒𝑖𝑥𝑖. Thus,

R𝑛 can be divided into three parts: R𝑛+ = {𝑥 | 𝑥𝑛 > 0}, R𝑛− ={𝑥 | 𝑥𝑛 < 0}, andR𝑛0 = {𝑥 | 𝑥𝑛 = 0}. Obviously,R𝑛+ = R𝑛+∪R𝑛0
and R

𝑛

− = R𝑛− ∪ R𝑛0. However, R𝑛0 can also be represented by
R𝑛−1, andR𝑛+,R

𝑛
− lie in the upper and lower half spaces of the

hyperplane R𝑛0, respectively.
The conjugate of a number 𝑎 is the number 𝑎 given by 𝑎 =∑𝐴 𝑎𝐴𝑒𝐴, where 𝑒𝐴 = 𝑒𝛼1𝑒𝛼2 ⋅ ⋅ ⋅ 𝑒𝛼𝑗 , 𝑒𝑗 = −𝑒𝑗 (𝑗 = 1, 2, . . . 𝑛).
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For any 𝑥 ∈ R𝑛, we know that 𝑥𝑥 = −|𝑥|2, and we can verify
that 𝑥−1 = −𝑥/|𝑥|2 is an inverse element of 𝑥 ̸= 0; that is,𝑥𝑥−1 = 𝑥−1𝑥 = 1.

Let 𝐴𝑛−1(R) be the subalgebra constructed by {𝑒1, 𝑒2, . . . ,𝑒𝑛−1}, then 𝐴𝑛−1(R) ⊆ 𝐴𝑛(R) and 𝐴𝑛(R) has the decomposi-
tion𝐴𝑛(R) = 𝐴𝑛−1(R)+𝑒𝑛𝐴𝑛−1(R). It is clear that the decom-
position is the generalization of the classical representation of
a complex number. Thus, any 𝑥 = ∑𝐴 𝑥𝐴𝑒𝐴 ∈ R𝑛(𝐴) can be
decomposed as 𝑥 = 𝑏 + 𝑐𝑒𝑛, where 𝑏, 𝑐 ∈ 𝐴𝑛−1(R). We may
define operators 𝑃, 𝑄 as 𝑃𝑥 = 𝑏, 𝑄𝑥 = 𝑐.
Definition 4. Let 𝑓(𝑥) be defined in R𝑛, 𝑎 ∈ R𝑛. If 𝐷𝑥𝑓(𝑎) =0, then we call 𝑎 to be a regular point. If𝐷𝑥𝑓(𝑎) ̸= 0, but there
always exists 𝑏 in any neighborhood of 𝑎 such that𝐷𝑥𝑓(𝑏) =0, then we call 𝑎 to be a singular point. If there is a hollow
neighborhood 𝑈(𝑎) of 𝑎 such that 𝐷𝑥𝑓(𝑥) = 0 for any 𝑥 ∈𝑈(𝑎) = 𝑈(𝑎) − {𝑎}, we call 𝑎 to be an isolated point of 𝑓(𝑥).
Definition 5. If 𝑓(𝑥) is a regular function in R𝑛, that is,𝐷𝑓(𝑥) = 0 and 𝑓(𝑥) ∈ 𝐹(𝑟)Ω , then we say that 𝑓(𝑥) is an entire
function in R𝑛, and 𝑥 = ∞ is the only singular point of 𝑓(𝑥)
in R𝑛.

3. Some Lemmas and Their Properties

In this section we present some lemmas, which are important
to our results.

Lemma 6 ((Plemelj formula) (see [7])). Let

𝐹 (𝑥) = 1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡,

𝑥 ∈ R𝑛 \ 𝜕Ω,
(11)

where 𝑤𝑛−1 = 2𝜋𝑛/2/Γ(𝑛/2) denotes the surface area of a unit
sphere in R𝑛 and 𝜃(𝑡) = ∑𝑛𝑗=1 𝑒𝑗 cos(𝑚, 𝑒𝑗). 𝑚 is a normal
vector at 𝑡 ∈ 𝜕Ω, and 𝑑𝑆𝑡 is a Lebesgue measure on 𝜕Ω.𝑓(𝑡) is a bounded Hölder continuous function on 𝜕Ω, that is,𝑓(𝑡) ∈ 𝐻(𝜕Ω, 𝛽) (0 < 𝛽 ≤ 1), then

𝐹± (𝑥) = ±12𝑓 (𝑥) + (𝑃𝑓) (𝑥) , 𝑥 ∈ 𝜕Ω, (12)

where

(𝑃𝑓) (𝑥) = 1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡, 𝑥 ∈ 𝜕Ω. (13)

Lemma 7. Let 𝑡, 𝑥 ∈ R𝑛 (𝑛 ≥ 2) and 𝑚 ≥ 0 be an integer.
Then one has󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡 − 𝑥1󵄨󵄨󵄨󵄨𝑡 − 𝑥1󵄨󵄨󵄨󵄨𝑛 −
𝑡 − 𝑥2󵄨󵄨󵄨󵄨𝑡 − 𝑥2󵄨󵄨󵄨󵄨𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐵𝑚 (𝑥1, 𝑥2, 𝑡)󵄨󵄨󵄨󵄨𝑡 − 𝑥1󵄨󵄨󵄨󵄨𝑛−1 󵄨󵄨󵄨󵄨𝑡 − 𝑥2󵄨󵄨󵄨󵄨𝑛−2 ⋅

󵄨󵄨󵄨󵄨𝑥1 − 𝑥2󵄨󵄨󵄨󵄨 ,
(14)

where

𝐵𝑚 (𝑥1, 𝑥2, 𝑡) = {{{{{

𝑚∑
𝑡=0

󵄨󵄨󵄨󵄨𝑡 − 𝑥1󵄨󵄨󵄨󵄨𝑚−𝑘 󵄨󵄨󵄨󵄨𝑡 − 𝑥2󵄨󵄨󵄨󵄨𝑘 , 𝑚 > 0;
1, 𝑚 = 0. (15)

Proof. It can easily be proved by a direct calculation.

Lemma 8. If 𝑓(𝑥) ∈ 𝐻(𝜕Ω, 𝛽), then (𝑃𝑓)(𝑥) ∈ 𝐻(𝜕Ω, 𝛽) and𝐹±(𝑥) ∈ 𝐻(𝜕Ω, 𝛽).
Proof. In order to prove that (𝑃𝑓)(𝑥) ∈ 𝐻(𝜕Ω, 𝛽), we
consider

󵄨󵄨󵄨󵄨(𝑃𝑓) (𝑥1) − (𝑃𝑓) (𝑥2)󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1𝑤𝑛−1

⋅ ∫
𝜕Ω

𝑡 − 𝑥1󵄨󵄨󵄨󵄨𝑡 − 𝑥1󵄨󵄨󵄨󵄨𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡 −
1𝑤𝑛−1

⋅ ∫
𝜕Ω

𝑡 − 𝑥2󵄨󵄨󵄨󵄨𝑡 − 𝑥2󵄨󵄨󵄨󵄨𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1𝑤𝑛−1

⋅ ∫
𝜕Ω
[ 𝑡 − 𝑥1󵄨󵄨󵄨󵄨𝑡 − 𝑥1󵄨󵄨󵄨󵄨𝑛 −

𝑡 − 𝑥2󵄨󵄨󵄨󵄨𝑡 − 𝑥2󵄨󵄨󵄨󵄨𝑛] 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1𝑤𝑛−1 ∫𝜕Ω

𝐵𝑚 (𝑥1, 𝑥2, 𝑡) 𝑓 (𝑡) 𝜃 (𝑡)󵄨󵄨󵄨󵄨𝑡 − 𝑥1󵄨󵄨󵄨󵄨𝑛−2 󵄨󵄨󵄨󵄨𝑡 − 𝑥2󵄨󵄨󵄨󵄨𝑛−2 𝑑𝑆𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑥1

− 𝑥2󵄨󵄨󵄨󵄨𝛽 = 𝑀 󵄨󵄨󵄨󵄨𝑥1 − 𝑥2󵄨󵄨󵄨󵄨𝛽 ,

(16)

where

𝑀 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1𝑤𝑛−1 ∫𝜕Ω

𝐵𝑚 (𝑥1, 𝑥2, 𝑡) 𝑓 (𝑡) 𝜃 (𝑡)󵄨󵄨󵄨󵄨𝑡 − 𝑥1󵄨󵄨󵄨󵄨𝑛−2 󵄨󵄨󵄨󵄨𝑡 − 𝑥2󵄨󵄨󵄨󵄨𝑛−2 𝑑𝑆𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ; (17)

that is, there exists a constant𝑀 > 0 such that |(𝑃𝑓)(𝑥1) −(𝑃𝑓)(𝑥2)| ≤ 𝑀|𝑥1 − 𝑥2|𝛽. Therefore, we get (𝑃𝑓)(𝑥) ∈𝐻(𝜕Ω, 𝛽).
Similarly, by Hile lemma (see [12]) we can prove ‖±𝑓/2+𝑃𝑓‖𝛽 ≤ 𝐶‖𝑓‖𝛽, thus, 𝐹±(𝑥) ∈ 𝐻(𝜕Ω, 𝛽).
The proof of Lemma 8 is complete.

Lemma 9 (see [13]). Let Ω be a bounded domain in R𝑛, then
the integral

P.V. 1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑑𝑆𝑡, 𝑥 ∈ 𝜕Ω; (18)

that is,

1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑑𝑆𝑡 (19)

exists under the meaning of Cauchy principal value, and its
value is equal to 1/2, where 𝜕Ω and 𝜃(𝑡) are the same as before.

Lemma 10 (see [14]). Let 𝑓(𝑥) ∈ 𝐻(𝜕Ω, 𝛽), then the Cauchy
type integral

𝐹 (𝑥) = 1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡, 𝑥 ∉ 𝜕Ω (20)

is a regular function in Ω, and𝐷𝑥𝐹(𝑥) = 0, 𝐹(∞) = 0.
The following Lemmas 11–13 are obvious facts, and their

proofs are similar to that of the classical theorems. More
details will be omitted here.
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Lemma 11 (generalized Liouville theorem). Let 𝑓(𝑥) be a
regular function inR𝑛 and 𝑓(𝑥) ∈ 𝐹(𝑟)Ω (𝑟 ≥ 1); that is, 𝑓(𝑥) is
an entire function. Then one has the following:

(1) If 𝑓(∞) = 0, then 𝑓(𝑥) ≡ 0.
(2) If 𝑓(∞) = 𝐶, then 𝑓(𝑥) ≡ 𝐶, where 𝐶 is a Clifford

constant.
(3) If |𝑓(𝑥)| ≤ 𝑀 (constant) for any 𝑥 ∈ R𝑛, then 𝑓(𝑥) is

a constant in R𝑛.
(4) If lim𝑥→∞𝑓(𝑥) exists, then 𝑓(𝑥) is a constant in R𝑛.

Lemma 12 (generalized Cauchy integral theorem). Let 𝑓(𝑥)
be a regular function in Ω ⊂ R𝑛 and Ω̃ be a single connected
domain ofΩ. For any smooth, closed, and rectifiable curve, 𝛾 ∈Ω̃. Then

1𝑤𝑛−1 ∫𝛾
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡 = 0, 𝑥 ∈ Ω̃. (21)

Lemma 13 (generalized Cauchy integral formula). Let 𝑓(𝑥)
be a regular function in Ω ⊂ R𝑛 and 𝑈 ⊂ Ω be a bounded
domain. 𝜕𝑈 is a smooth, differentiable, and compact surfaces.
Then

𝑓 (𝑧) = 1𝑤𝑛−1 ∫𝜕𝑈
𝑡 − 𝑧|𝑡 − 𝑧|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡 (22)

for any 𝑧 ∈ 𝑈, where 𝑈 ∪ 𝜕𝑈 = 𝑈 ⊂ Ω.
4. BVP in Clifford Analysis

Let Ω ⊂ R𝑛 be an open and connected set and the boundary𝜕Ω ofΩ be a smooth, compact, oriented, and closed Liapunov
surface. R𝑛 is divided into two domains Ω+ = Ω and Ω− =
R𝑛 \ Ω by 𝜕Ω, with ∞ ∈ Ω−. Our goal is to obtain an𝐴𝑛(R)-valued function 𝑓(𝑡) such that it is regular in Ω± and
continuous onΩ± +𝜕Ω, and we have the following boundary
value condition:

𝑓+ (𝑡) = 𝑓− (𝑡) 𝐵 + ℎ (𝑡) , 𝑡 ∈ 𝜕Ω, (23)

where 𝐵 ∈ 𝐴𝑛(R) is a given Clifford constant with 𝐵 ̸= 0 and𝐵 right inverse𝐵−1. A known function ℎ(𝑡) ∈ 𝐻(𝜕Ω, 𝛽).𝑓±(𝑡)
are the boundary values of 𝑓(𝑡) on 𝜕Ω, respectively. If the
order of𝑓(𝑡) is𝑚 at infinity, such a problem can be denoted as𝑅𝑚. Actually, the problem 𝑅0 and problem 𝑅−1 are frequently
discussed. On the problem 𝑅0, 𝑓(∞) is supposed to be finite
and nonzero. On 𝑅−1, 𝑓(∞) is assumed to be zero. In order
that a solution of (23) exists, we require 𝑓(𝑡) ∈ 𝐻(𝜕Ω, 𝛽) (i.e.,𝑓±(𝑡) ∈ 𝐻(𝜕Ω, 𝛽)) and the following condition is fulfilled:

1𝑤𝑛−1 ∫𝜕Ω
󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨

(1 + |𝑡|2)(1/2)(𝑛−1) 𝑑𝑆𝑡 < +∞, (24)

where 𝑑𝑆𝑡 is a unit area element on 𝜕Ω. Consider
𝐹 (𝑥) = 1𝑤𝑛−1 ∫𝜕Ω

𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡,
𝑥 ∈ R𝑛 \ 𝜕Ω,

(25)

where𝑤𝑛−1 is the surface area of a unit sphere inR𝑛 and 𝜃(𝑡) =∑𝑛𝑗=1 𝑒𝑗 cos(𝑚, 𝑒𝑗); 𝑚 is an outer normal vector at 𝑡 ∈ 𝜕Ω. By
Lemmas 6–8 we have

𝐹± (𝑥) = ±12𝑓 (𝑥) + (𝑃𝑓) (𝑥) , 𝑥 ∈ 𝜕Ω, (26)

where

(𝑃𝑓) (𝑥) = 1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡,

𝑥 ∈ 𝜕Ω.
(27)

Under condition (24), 𝐹(𝑥) is regular for all 𝑥 ∈ R𝑛 \ Ω
and 𝐷𝑥𝐹(𝑥) = 0. And (𝑃𝑓)(𝑥) is a singular integral and it
is convergent under the meaning of Cauchy principal value.
Moreover, 𝐹(𝑥) is continuously extended to the boundary 𝜕Ω
formΩ andR𝑛\Ω, respectively, and then obtain the boundary
values 𝐹+(𝑥) and 𝐹−(𝑥). Note that
(𝑃𝑓) (𝑥) = 1𝑤𝑛−1 ∫𝜕Ω

𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡
= lim
𝛿→0+

1𝑤𝑛−1 ∫|𝑡−𝑥|≥𝛿
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡,

𝑥 ∈ 𝜕Ω.
(28)

Particularly, when 𝑓(𝑡) = 1, we have
(𝑃1) (𝑥) = lim

𝛿→0+

1𝑤𝑛−1 ∫|𝑡−𝑥|≥𝛿
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑑𝑆𝑡 = 0,

𝑥 ∈ 𝜕Ω.
(29)

Moreover, by [15–17] and Lemma 9, we can obtain

1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑑𝑆𝑡 =

{{{{{{{

12 , 𝑥 ∈ Ω;
−12 , 𝑥 ∈ R𝑛 \ Ω.

(30)

Since 𝐵 ∈ 𝐴𝑛(𝑅) and 𝐵 (𝐵 ̸= 0) present right inverse element𝐵−1, we have 𝐵𝐵−1 = 𝐵−1𝐵 = 𝐼.
Define

𝑌 (𝑥) = {{{
𝐵, 𝑥 ∈ Ω,
1 𝑥 ∈ R𝑛 \ Ω. (31)

Obviously, 𝑌(𝑥) is a regular function and there exists an
inverse element 𝑌−1(𝑥), and

𝑌+ (𝑥) = 𝐵,
𝑌− (𝑥) = 1,

𝑌+ (𝑥) [𝑌−1 (𝑥)] = 𝐵,
𝐷𝑥𝑌 (𝑥) = 0,

𝑥 ∈ R𝑛 \ Ω.

(32)
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Therefore, (23) can be transformed into

𝐹+ (𝑥) [𝑌+ (𝑥)]−1 = 𝐹− (𝑥) [𝑌− (𝑥)]−1
+ ℎ (𝑡) [𝑌+ (𝑥)]−1 , 𝑥 ∈ 𝜕Ω. (33)

Denote

𝐻(𝑥) = 1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) ℎ (𝑡) 𝐵−1𝑑𝑆𝑡; (34)

it is easily seen that𝐻(∞) = 0,𝐷𝑥𝐻(𝑥) = 0 (𝑥 ∈ R𝑛 \Ω). By
applying Lemmas 6 and 10 for𝐻(𝑥) in (34), we obtain

𝐻+ (𝑥) − 𝐻− (𝑥) = ℎ (𝑥) 𝐵−1. (35)

Combining (33) with (35), we have

𝐹+ (𝑥) [𝑌+ (𝑥)]−1 − 𝐻+ (𝑥)
= 𝐹− (𝑥) [𝑌− (𝑥)]−1 − 𝐻− (𝑥) , 𝑥 ∈ 𝜕Ω. (36)

It follows from Painleve’s theorem (see [18]) that 𝐹(𝑥)𝑌(𝑥) −𝐻(𝑥) is a regular function in R𝑛. Since (23) find a solution
in 𝑅0, thus, by Lemma 11, 𝐹(𝑥)𝑌(𝑥) − 𝐻(𝑥) is a constant at𝑥 = ∞; that is, there exists a Clifford constant 𝐶 such that

𝐹 (𝑥) 𝑌 (𝑥) − 𝐻 (𝑥) = 𝐶; (37)

therefore, we obtain

𝐹 (𝑥) = 𝑌 (𝑥) (𝐻 (𝑥) + 𝐶) = 𝑌 (𝑥)𝐻 (𝑥) + 𝑌 (𝑥) 𝐶. (38)

From the above discussion, we obtain the main result of
this section.

Theorem 14. Under condition (24), BVP (23) has a solution.
If a solution 𝐹(𝑥) of (23) is a nonzero constant at∞, then, its
solution is of the form

𝐹 (𝑥)
= 𝑌 (𝑥)𝑤𝑛−1 ∫𝜕Ω

𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) ℎ (𝑡) 𝐵−1𝑑𝑆𝑡 + 𝑌 (𝑥) 𝐶,
𝑥 ∈ R𝑛 \ Ω,

(39)

where 𝑌(𝑥) is determined by (32).

By Theorem 14 and Lemmas 11–13, we obtain the follow-
ing.

Theorem 15. Suppose that a solution 𝐹(𝑥) of (23) is zero at∞, then (23) find a solution in problem 𝑅−1, and its solution is
given by

𝐹 (𝑥) = 𝑌 (𝑥)𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) ℎ (𝑡) 𝐵−1𝑑𝑆𝑡,

𝑥 ∈ R𝑛 \ Ω.
(40)

5. SIE in Clifford Analysis

In Clifford analysis we solve following SIE of the form

𝐾0𝑓 ≡ 𝑓 (𝑥) 𝑃 + 1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡 ⋅ 𝑄

= 𝑔 (𝑥) , 𝑥 ∈ 𝜕Ω,
(41)

where 𝑔(𝑡) ∈ 𝐻(𝜕Ω, 𝛽) (0 < 𝛽 < 1) and 𝑃, 𝑄 are Clifford
constants.𝑃+𝑄 and𝑃−𝑄 have inverse elements and denoted
them as (𝑃 + 𝑄)−1 and (𝑃 − 𝑄)−1, respectively. 𝑤𝑛−1 is the
same as the before. Ω ⊂ R𝑛 is a bounded domain and its
boundary 𝜕Ω is a smooth, oriented, and compact Lyapunov
surface. And 𝑓(𝑡) ∈ 𝐻(𝜕Ω, 𝛽) (0 < 𝛽 < 1) is an unknown
function. When 𝑔(𝑡) ≡ 0, we call that (41) is a homogeneous
equation; otherwise (41) is nonhomogeneous. Since𝑃+𝑄 and𝑃−𝑄 are reversible on 𝜕Ω, (41) is called a regular type SIEwith
Cauchy kernel, and 𝐾0 is called the corresponding singular
operator.

Define a sectionally holomorphic function as follows:

𝐹 (𝑥) = 1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡, 𝑥 ∉ 𝜕Ω; (42)

by applying Lemma 6 for (42), we obtain

𝑓 (𝑥) = 𝐹+ (𝑥) − 𝐹− (𝑥) ,
1𝑤𝑛−1 ∫𝜕Ω

𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑓 (𝑡) 𝑑𝑆𝑡 = 𝐹+ (𝑥) + 𝐹− (𝑥) ,
𝑥 ∈ 𝜕Ω.

(43)

Putting (43) into (41), one has

𝐹+ (𝑥) = 𝐹− (𝑥) (𝑃 − 𝑄) (𝑃 + 𝑄)−1 + 𝑔 (𝑥) (𝑃 + 𝑄)−1 . (44)

It follows from (42) that 𝐹(∞) = 0. If (41) has a solution𝑓(𝑡) ∈ 𝐻(𝜕Ω, 𝛽), then a function 𝐹(𝑥) defined by (42) is a
solution of (44) in class 𝑅−1. Conversely, if (44) has a solution𝐹(𝑥) in class 𝑅−1, then 𝑓(𝑥) obtained by the first equality
of (43) is a solution of (41). Indeed, by the first equality of
(43) and 𝐹(∞) = 0, we can know that (42) and the second
equality of (43) are fulfilled. Substituting (43) into (44), we
easily obtain that 𝑓(𝑡) satisfies (41). Thus, the problem (41) is
equivalent to solving the problem (44) in class 𝑅−1.

In order to solve (41), we define two functions 𝑌(𝑥) and𝐻(𝑥) as follows:
𝑌 (𝑥) = {{{

(𝑃 − 𝑄) (𝑃 + 𝑄)−1 , 𝑥 ∈ Ω
1, 𝑥 ∈ R𝑛 \ Ω,

𝐻 (𝑥) = 1𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑔 (𝑡) (𝑃 + 𝑄)−1 𝑑𝑆𝑡,

𝑥 ∈ R𝑛 \ Ω.

(45)

The remaining discussions are the same as in Section 4.
We will not elaborate on that here.

Thus, we have the following conclusions.
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Theorem 16. Suppose that 𝑃 + 𝑄, 𝑃 − 𝑄 are reversible, then
(41) has a solution on𝐻(𝜕Ω, 𝛽), and its solution is obtained by

𝑓 (𝑥) = 𝐹+ (𝑥) − 𝐹− (𝑥) , (46)

where

𝐹 (𝑥) = 𝑔 (𝑥) 𝑎 + 2𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑔 (𝑡) 𝑏̃𝑑𝑆𝑡 ⋅ 𝑐,

𝑎 = 𝑃 (𝑃 + 𝑄)−1 (𝑃 − 𝑄)−1 ,
𝑏̃ = (𝑃 + 𝑄)−1 ,
𝑐 = 𝑄 (𝑃 − 𝑄)−1 .

(47)

Note that, in Theorem 16, if 𝑃 = 0, then 𝑄−1 must exist.
Therefore, we have the following.

Corollary 17. When 𝑃 = 0, (41) is solvable, its solution is still
(46), where 𝐹(𝑥) in (46) is determined by

𝐹 (𝑥) = 2𝑤𝑛−1 ∫𝜕Ω
𝑡 − 𝑥|𝑡 − 𝑥|𝑛 𝜃 (𝑡) 𝑔 (𝑡) 𝑄−1𝑑𝑆𝑡,

𝑡 ∈ 𝜕Ω.
(48)

Proof. It can be proved directly fromTheorem 16.

6. BVP in Quaternion Analysis

Quaternion analysis researches analytical theory in quater-
nion algebra H. Quaternion algebra H is a four-dimensional
real vector spacewith the basis elements 1, 𝑖, 𝑗, 𝑘, which satisfy
the following multiplication rules:

𝑖2 = 𝑗2 = 𝑘2 = −1;
𝑖𝑗 = −𝑗𝑖 = 𝑘;
𝑗𝑘 = −𝑘𝑗 = 𝑖;
𝑘𝑖 = −𝑖𝑘 = 𝑗.

(49)

Therefore, H can be written as

H = {𝑥 | 𝑥 = 𝑥1 + 𝑖𝑥2 + 𝑗𝑥3 + 𝑘𝑥4 | 𝑥𝑡 ∈ R, 𝑡
= 1, 2, 3, 4} . (50)

Quaternion analysis offers another possibility of general-
izing complex function theory to higher dimension, and it has
wide applications in mathematical physics, Dirichlet BVPs of
higher-order partial differential equations, and other fields.
More details about quaternion analysis can be found in the
literatures [19–22].

Boundary value problem for quaternion analysis is
described as follows: given a bounded domain Ω ⊂ H, its
boundary 𝜕Ω is a smooth, compact, and oriented Liapunov
surface. Denote Ω+ = Ω, Ω− = H \ Ω. We want to get a
function 𝑓(𝑡) such that it is regular inΩ± and continuous on

Ω+ + 𝜕Ω (or Ω− + 𝜕Ω), and we have the following boundary
value condition:

𝑓+ (𝑡) = 𝑓− (𝑡) 𝐵 + ℎ (𝑡) , 𝑡 ∈ 𝜕Ω, 𝐵 ̸= 0, (51)

where 𝐵 ∈ H is a known Clifford constant and 𝐵 shows
the inverse element 𝐵−1. The known function ℎ(𝑡) is Hölder-
continuous on 𝜕Ω. If 𝑓(∞) = 𝐶 (constant) with 𝐶 ̸= 0, BVP
(51) is denoted as 𝑅0; if 𝑓(∞) = 0, this case is denoted as 𝑅−1;
if the order of 𝑓(𝑡) is 𝑚 at∞, denote it as 𝑅𝑚. By Theorems
14 and 16, we obtain a solution of (51) in 𝑅𝑚:
𝐹 (𝑞) = 𝑌 (𝑞)𝑤𝑛−1 ∫𝜕Ω

𝑡 − 𝑞󵄨󵄨󵄨󵄨𝑡 − 𝑞󵄨󵄨󵄨󵄨𝑛 𝜃 (𝑡) ℎ (𝑡) 𝐵
−1𝑑𝑆𝑡 + 𝑚∑

𝑙=0

𝑞𝑙𝑎𝑙, (52)

where 𝑎𝑙 ∈ H, 𝑞 ∈ H \ 𝜕Ω. 𝑌(𝑞), 𝑤𝑛−1, and 𝜃(𝑡) are the same
as in Section 4.

7. Conclusions

In this paper, we studied someproperties of a regular function
in Clifford analysis and generalized several classical theorems
in𝐴𝑛(R), such as Liouville theorem, Plemelj formula, Cauchy
integral theorem, and Cauchy integral formula. By means of
these theorems and of the classical boundary value theory,
we dealt with the solvability and the explicit solutions for
some classes of BVPs and SIEs in Clifford analysis. Here, our
method is different from the ones of the classical BVP, and it
is novel and effective. Thus, this paper generalizes the theory
of the classical BVPs and SIEs. By using our method, other
classes of BVPs and SIEs are discussed further in Clifford
analysis.
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