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We shall discuss three generalized moduli such as generalized modulus of convexity, modulus of smoothness, and modulus of Zou-
Cui of quasi-Banach spaces and give some important properties of these moduli. Furthermore, we establish relationships of these

generalized moduli with each other.

1. Introduction

The study on Banach space geometry provides many funda-
mental notions and interesting aspects and sometimes has
surprising results. The basic geometric properties such as
convexity, smoothness, and nonsquareness have made great
contributions to various fields of Banach space theory. Strict
convexity of Banach spaces was first introduced in 1936 by
Clarkson [1] (and independently by Akhiezer and Krein) as
the property that the unit sphere contains no nontrivial line
segments; that is, 1—||2_1(x+y)|| > O whenever [ x| = [yl = 1.
Clarkson [1] made use of these values to define the “uniform”
version of convexity to look at how “convex” the unit ball
is in a space. And the modulus of convexity provides a
quantification of the geometric structure of the space from
the viewpoint of convexity. A situation similar to this also
occurs in smoothness and other properties. A Banach space
X is said to be smooth if each unit vector has a unique
norm one support functional. In fact, this is equivalent to
the statement that the norm is Gateaux differentiable. This
allows us to quantify the geometric structure of the space
from the viewpoint of smoothness, namely, the modulus of
smoothness of a Banach space X. An advantage of these

quantifications is that the complete duality between uniform
convexity and uniform smoothness can be easily deduced
by the well-known Lindenstrauss formulas; that is, a Banach
space X is uniformly convex if and only if its dual space
X" is uniformly smooth. The same statement still holds if X
is replaced with X*. Thus quantifying geometric structures
might lead to better results. Note that the same duality does
not hold between strict convexity and smoothness in general,
though one of those two properties of X* implies the other
of X. There are some other ideas to quantify geometric
structures of Banach spaces.

In [2], the authors claim that modulus of convexity and
generalized convexity mold have dual relationship, and gen-
eralized convexity mold has many excellent properties.

In [3], the authors study a generalized modulus of con-
vexity where certain related geometrical properties of this
modulus are analyzed in Banach spaces.

In [4, 5], the modulus of Yang-Wang was introduced in
Banach spaces.

In [6], the modulus of Zuo-Cui was introduced in Banach
spaces. The author proved many results with this special type
of modulus.
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The most recent research work at this topic can be
consulted from [7, 8].

2. Preliminaries

There are lots of quantitative descriptions of geometrical
properties of quasi-Banach spaces. The most common way
for creating these descriptions is to define a real function
(a modulus) and a suitable coeflicient or constant closely
related to this function, depending on the space structure
under consideration. Some of the moduli and their related
coefficients (or characteristics) for quasi-Banach spaces have
also been investigated so far. These moduli are the attempts
in order to get a better understanding of the two facts about
the space:

(i) The shape of the unit ball of the concerned space.
(ii) The conditions and relations for convergence of

sequences.

The most recent research work with these moduli is investi-
gated by [7, 8].

Definition 1. For a quasi-Banach space %, the modulus of
convexity is a function 8 : (0,2] — [0, 1] defined as

_xi x|

°C 1e€€[0,2],C>1,x,x,

04 (€) = inf {1
ey

A characteristic or related coefficient of this modulus is
8y (B) =sup{e € [0,2] : 84 (€) = 0}. (2)

Definition 2. Leta € (0,1) and € € [0, 2]. For a quasi-Banach
space &, the generalized modulus of convexity is a function

("‘) :(0,2] — [0,1] defined as

B [[() x; + (1= o) x,|
C

||x1 - x2||

>1, x,%, €Sy, ———— €.
C

89 (e) = inf {1 :C

A characteristic or related coefficient of this modulus is
89 (B) = sup {e € [0,2] : 8% () = 0} . (4)

Definition 3. For a quasi-Banach space 9, the modulus of

smoothness is a function pg : [0,00) — [0, 00) defined as
_ 1 + %, | .
p@(t)—sup I_T'xl’xZGSL%" C

(5)
>1, Mgt, tzo}.
C
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A characteristic or related coefficient of this modulus is

py () = lim <P@( )> - tlir(r)1+<pl‘%f(t)>

t—07" t

Definition 4. Let « € (0,1) and ¢ € [0, 2]. For a quasi-Banach
space 9, the generalized modulus of smoothness is a function

pg) [0,00) — [0, 00) defined as

B (@) x; + (1 = ) x|
C

:C 21, x1,x%,

pg}‘) (t) = sup {1

ES@,MQ},

Pl ®) (7)
B {u(cx)x1 —(t/2)x2||+||(1—(x)x1 —(t/2)x2||
= sup

C
1
C bl
where x,x, € Sg, 1%, < 1, [|x,]l < 1,and C > 1.
A characteristic or related coefficient of this modulus is

(@) ()
Pz (t)> - lim <P153; (t)> 8)
t t—0* t

Definition 5. Let t € [0,00) and p € [1,00). For a quasi-

pg (%) = lim (
t—0"

Banach space 9, the modulus of Zuo-Cui is a function Eg;) :

(0, 00) — (0, 00) defined as
&2 (1)
ey + ] + vy = 1,7
= sup > , X1, X,
2C 9)

€84 C2>1

A characteristic or related coefficient of this modulus is

®) (4 _
ba - 1/C UC). (10)

fe(%)=£i_{%< ;

3. Relations Concerning Generalized
Modulus of Convexity

Lemma 6 (see [9]). Every convex function f with convex
domain in R is continuous.

Proposition 7 (see [10]). Let BB be a uniformly convex space.
Then for every d > 0, ¢ > 0, and for arbitrary vectors, x,, x, €
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B with ||x,|| < d, ||x,|| < d, and ||x; —x,[|/C = & whereC > 1,
there exists & > 0 such that

1 + x5

Slfse o

Proposition 8 (see [10]). A nontrivial quasi-Banach space 5B
is uniformly nonsquare if and only if 8 5(€) > 0.

Proposition 9. Let §4(€) be the modulus of convexity of a
quasi-Banach space BB; then
2084 (€) < 8% () <2(1 - ) 84 (e). (12)

Proof. Letx,y € &, |yl = C, and ||x — y||/C > €. Then we

have
e (e el y] s (120 [y
C C
Calxry] -2y
C C
2
JalAd L, ®
2C
SZocsup{l—M}
2C
=2a[0g4(e)],

and we have obtained the first inequality; now to prove the
second one, for any # > 0, there exist x, y € Sz with ||x[| = 1,
Iyl = C,and [x — y|I/C > e such that |x + y[|/2C < &(e) +#;
then we have

CMax+ (L —ay)| L afx+ yf+ 3 -2 [y
C C
A=)y + (=20 |y -
C

2(1-a)|x + y| . (1-2a)|y| -
2C C
2(1-a) |x+y|

<l-———F—+2(1-«a)-1
< °C +2(1-a)

<1-

(14)

2(1-a) ||x+ y||

<2(1-«)- °C

xX+y
<2(l-aw) [1—%] <2(1-a)[04()].
This completes the proof. O

Corollary 10. Let €, be the characteristic of generalized
modulus of convexity 8(“)(6) of a quasi-Banach space 8. Then

8% (e) = 0} (15)

Theorem 11. A quasi-Banach space % is uniformly nonsquare
if and only if

€g (B) = sup {e €(0,2] :

89 (e) > 0. (16)

Proof. By Proposition 8, & is uniformly nonsquare if and
only if 84(e) > 0, where € € (0,2), and by Proposition 9,
85(€) > 0ifand only if 89 > 0(e) > 0.

Combining both of these results we get the proof. O

Lemma 12. Let 9B be a quasi-Banach space and ¢ € (0,2].
Then the following statements hold:

(1) 83 (€) is convex and continuous function.
(2) 82‘) (€) is a nondecreasing function.

3) 8{2; (€)/€ is a nondecreasing function.

Proof. (1) Let

€& —€ €& —€
€ =2——|+¢|1- . 17
-2 )ra(1-222). W
Then

o () €, — € €, — €
% (@) =03 [2<22—611>+61(1_ 22—611>]
() €& €
) 2"t
389?()<2—el>
+8g)(€1)<1_€22_€1)

-€

(2)< 61> +69 (e)) (18)

() €, — €
-08g (e1) <—22_ 611 )
2185 @ -85 @)

_<€2_€1
=(5-

+8% (e,).

Now

85 (e) -0 () = (222 ) 15 (e)

<(=2)ea-an,
2-¢
by using Proposition 9. Hence we get

85 (&) =85 (e)) < 201 - )] <2—:1> (20)

—©

(19)

Since 8(3‘;)(6) is convex, so it is continuous by Lemma 6.
(2)Let0 < ¢ <€, <0andx,y € Sy with [|x — y|| > ¢,.
Let us consider

(ax+(1-0a)y)
=

T e (21)
u=tx+(1+t)z,

v=ty+(1-1t)=z.



Then u, v € Sy with [|u — v|| > €;; we have

| Nen+ 0 -a)v] St[l ex + -y
C C
(22)
_al, flocx + (1 - ) y )
€, C ’
thus
qup 1 - Jer (=l
C
(23)
4 gy ot
€, C
which implies that
(o) ()
€ 8 (€ o (e
85 (e) < = [6% ()] ( s (@) 0% (@) ) (24)
€ €1 €
(3) Let0 < t; < t, < 2;we have
185 (1) < 1,85 (1) < 1,65 (1) (25)
Since 8;:) (t,) > 0, so we have
() ()
8 (t2) <og (t1). (26)
This completes the proof. O

Theorem 13. Let 9B be a uniformly convex space and « €
(0, 1). Then for every d > 0, ¢ > 0 and for arbitrary vectors,

X, %, € Bwith x| <d, |x,]l <d, and |x; — x,||/C > ¢,
there exists 6 = (¢/d) > 0 such that
||(oc) x+(1-«w) x2||
¢ @7)

< [1—2(1—C+C6(§)-min{a,1—a}>]g.

Proof. Without loss of generality, assume that « € (0, 1/2] so

l(@) x; + (1 —a) x| a(x; +x,) + (1= 2a) x|
C B C

-2 1 + %,
2C
020y
C

(28)

Now by Proposition 7, there exist § > 0 such that, for || y|| < d,

wg [1—5(2)]01. (29)
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Therefore, we get

(o) %, + (1 = ) x5 |

sza(1—6<5>)d+—(1_2“)d

“[e(-0(0)

(1—20c)]d
= i2(x—2(x8<§> + c

(30)

als

- [1—2<I—C+C6<§>‘min{% 04')]

This completes the proof. O
4. Relations Concerning Generalized
Modulus of Smoothness

Theorem 14. Let 9B be a quasi-Banach space. Then for every
xe€B |xll=1,andx" ¢ X*, x| =1

)(t)—sup{ —5“’(6):t>o,ee(o,2]},
(31)
) (t):sup{%e—ég)(e):t>0, ee(o,z]}.

Proof. Throughout the proof of the first part, we take
X,y € Sg,
llll < 1,
Iyl <1,
a € (0,1),
t>0,
C=>1,
<1
lo"l <1,

(32)

9 €Sg»
[l <t

Iy l=<1,

x*, y" € Sy
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Take

i 0 =sup{(Z) <+ (5571

Nz G k- onbr():

( e+l (557)=- (5c)] -1}
sup {f [ @0+ () 7]

el (9

sup{[(@n)+ (L) o] x4 [L(-a)] y -}

:Esup{||(oc)f+(1—“)9"+_"f gl - C}

=sup{"((x)f+él_“)g” “f 1}

o £+ 1 -l
—sup {1 -l - [1- 1L L=l ]

= sup {tzeé? [8(“) (e)]} = sup {%6 - [8(9‘;‘1 (e)]} .

(33)

Hence, we get
pg)(t):sup{%e—Sgl (e):t>0, 66(0,2]}. (34)

This completes the first part of the proof.
To prove the second part, let us start as

o= {|(E) s+ ()

(%) o~ (5e)el -1}

- (%) (8))x

(20 (@)1
~sup{f[(ocx)+(1—oc)y]+g[%(x—y)]—C}

= Zsup{[(@)+(5) ] ¥+ S Lo -1 - ¢

t
- Zswp{J@x+ =@ ]+ £ eyl -

()x+(1-«) t
o {LOX LD, £y

5
1-
=sup{%||x—yll—[1—”("‘)“éj “)y"”
teC « «
= sup{ 2€C [6( )(e)]} = sup{ [6( )(e)]}
(35)
O

Lemma 15. Let B be a quasi-Banach space and T € (0,2].
Then the following statements hold:

(1) pég)(‘r) is convex and continuous function.
(2) pg)(r) is a nondecreasing function.

3) pég‘)(‘r)/‘r is a nondecreasing function.

Proof. (1) Since p@)(r) is convex, so it is continuous by
Lemma 6.

(2) Letx;,x, € S,0 < 7; < Ty, and & € (0, 1).

Now let

xlzﬁ[(l—a)x+<;—é>y],

x2=(1—oc)x+<2‘r—(1:>y,
B [(x(l—“)(fz—"'l)]
x5 = —) X

Lt+a(n -1,

+[T2(TZ—T1)(1—(X):|y,

2[5 +a(n - 1)

_ T2> (36)
=(1- 21y,

x4 = ( oc)x+<2C y

X ocx+<T1>

5= Yo Y

o= | %1 |
° n+a(n -1)

" [z[mlfil —Tz)]]y’

T,
x7—cxx+< )y

2C
Now
X3+ Xy = X + Xy, (37)
sl + bl = s + 3], 69)
X5 — X] = Xg» (39)
l<sl = il = flxell - (40)

From (38) and (40), we get

lesll + loeall + Dol < sl + lxall (4)



6
Similarly,
X3 - x6 = X7,
(42)
||x3|| - "’%" 2 ||x7||
Therefore, we have
les |+ loall < flcall = 1271
T T
ocx+<f)y+(l—oc)x+<f)y (43)
_ E) <2)
1 bl
<( oc)x+<2C y+ax+ )
which implies that
o _ ([
fox+ (e ) o - <= (56)]
(44)
5 _ (20l
<o (38 )]+ Ja - ex- (32 )01
thus we have
Pg) (1) < Pg) (1) (45)

This shows that p;‘)(‘r) is a nondecreasing function.
(3) This part is an immediate consequence of Theorem 14.
O

Theorem 16. For a nontrivial quasi-Banach space B with t €
[0,00) and « € (0, 1), one has

max {0, t+ 20— 1] -1} < p& <. (46)

Proof. Let x, y € S5 and « € (0, 1). Then, we have

20 ffores ()

Jo-os- (D eoman()

Ayl + (= ) il - (%) ly| - é < lxl + 1

<t.

This proves the first inequality; now to prove the second
inequality, we proceed as

o+ () -as ()] &

]
—Qu—1)+f- .
(2 =1) C

(48)

Also

Jors+ (56)r-a-ex+ (56 - &

<l Gl oozl @

1
-
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Therefore,
s dsfos ()]
c* c)”

oo (-4

<p@(t).
This completes the second inequality. Now, combining both

of the above inequalities and taking the max of the latter, we
get

max {0, t+|2a—1|—1}§p;‘) < t. (51)

This completes the proof. O

Theorem 17. A quasi-Banach space 3B is uniformly smooth if
and only if

()
py (B) = lim (p @t(t)) 0. (52)

t—0*

Proof. One has

t 1
ocx+2(l—(x)§y: [Ex+%y]+ocx+2(l—(x)§y

- [lx+£y] ocx+2(1—06)%y”+ll(1—“)x

2 2
+2(1—0¢)%y < %x+§y + [|loex
+2(1—oc)%y - %x+%y + (1 -a)x
+2(1—oc)£y < %x+%y + (a—%)x (53)

+(1—2(x)§y +||(1—oc)x+2(1—oc)%y||

ST N O
Slzx+ -y + (oc——)x
2 2 2

+(1—20c)%y(1—0c)x+2(1—(x)%y !

=X
2

<

-2l
24 B P
Hence we get
t t
||ocx+2(l—oc)5yll+|l(l—oc)x+2(1—oc) Ey"

<

ARET A
—x+ = -x-=y|.
XTI TR T

Dividing by “C” and taking supremum on both sides, we get
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{||ocx+ 2(1-a)(t/2) y| + A - ) x +2(1 - a) (t/2) y|| - 1}
sup

C
(55)
1/2 t/2 1/2) x - (t/2 -1
SSup{u( /2) x+(t/2) y| + (1/2) x - ¢/2) ] };
C
thus thus
w ox +2(1 =) (t/2) y| + |1 - ) x + 2 (1 — ) (2/2) ¥ 1 @
P c a <2—t> < P9 (). (61)
(56) *
1) (esleken] 1 et £ ;
C[Ssw 2C ol erefore, from (57) and (61) we get
which implies that (@ (4
lim (P@—(t)>:o= hm(P“;()). (62)
Pg;) 2(1-a)t] < pg (). (57) t—0* t t—0* t
Now This completes the proof. O
7[5l 3
« 4.1. Relations Concerning Modulus of Zuo-Cui
t
= [Ey - (1= ocx)] Theorem 18. Let B be a nontrivial quasi-Banach space and
p € [1,00). Then
t 1 171¢
rla-an -2+ ] 3l i
92
58 E, ()= py )+ —=. (63)
: L (58) % P C
Ll
“« Proof. By using convexity of the function f(u) = uf on
It 17¢ t (0, 00), one can easily obtain
=llzx+ | —|zyl+]||| zy -1 -ax)
2 2c1 2 2
t I, + el + ]
lla-eo-3]] z
. (64)
This can be expressed as < ||x1 " tlelp " ||x1 _ tlelp
Hx +[1/2a] ty“ + ||x - [1/2«] ty” B 2 ’
2 SO,
e[ l-a-o] P
IR a2 [ + o] + [l = 5o
¢ 2C
llo-eo-3]] ey
9 sl s -t
1 17t - 20P ’
<l Ll
2 2001 2
which implies that
t t
l-eo] o)
2 2 1 )
. ; ctPa (1) <&y (). (66)
L EIE N CRE R FIE |
o . . For p = 1, we have £ 41 (t) = 1/C + py(2).
Dividing by “C” and taking supremum on both sides For p = 2, we have 2[C{%)(t)]2 = E(t, B), where
x+[12a] ty|| + ||x — [1/2a] ty| — 1
! -1 || e
(60) 5 5 (67)
e 1220y + 0 = 0 x + /2] ] - 1 = sup {([lxy + 1, + [l = 13,[7) < 20,3 € S}

C O



Proposition 19. For a Banach space 9,

& (1)

{ [ ey + 5,7 + oy = £, ]1“’
= sup DX Xy

€Sy te[O,l],Czl}.

Proof. Consider a convex function defined by

Jx, + ol + 1, - )7

t) =
o =
Let0 < t; <t, < land x;,x, € Sg. Then

g (1) =[x + t1x2"P + % - t1x2"P =2Cf (t;)

_ 2Cf<t2 +t; (tz) N t22;2t1 (—tz))

2,

(69)

(70)
< ey + 12,7 + |1 = to0||7 = 2CF (1)
=&y ().

This shows that £ (t,) < £54(t,). Therefore, we have

1+ 1] + e, - 1]
2C

1
— sup sup
P x €5, x,€Bg

<& (t]xl) <&z ®.

Since the opposite inequality holds obviously, to get the first
inequality let

(71)

(72)

B [Ax; + tx, ||p + || Ax, - tx, ||p
g) = 2C :

Since g(A) is a convex and an even function, therefore g(A) >
g(1). Now for x,, x, € B, we have

p
+

X1 P
4ty

[l

> [y + 13, |” + ey = 15,7

tx,

X
B
> sup sup {"xl + tx2||P + ||x1 - tx2||P}

X,€85 X,€By (73)

= sup {”xl + tx2||p + ||x1 - tx2||p}

X1,X,€Bg

> sup { [, + txl"l;”’cl - tx2"P } ,

X1,X,€Bg

which obtains the second inequality. This completes the
proof. 0

Lemma 20. For any quasi-Banach space % and any 1 < p <
00, then the following statements hold:

Journal of Function Spaces

1) 5(;;)(15) is a nondecreasing function.
(2) Eg;)(t) is convex and continuous function.

(3) (Eg;)(t) — 1)/t is a nondecreasing function.

Proof. (1) Let g(t) = llx; + tx, [P + lx; — tx,||” be a convex
and even function. Let 0 < t; < t, and x;, x, € Sg. Then we
have

”xl + t1x2"P + ”Xl - t1x2"P =g(t)

t t t,—t
:g<$t2+ 2 1(_t2)>

2t 2t
t, +t t t 74)
2t h 2~ h _
= 2, g(t)+ 2, g(t)=g(t)
=[x + 1o |” + s =t |” < 2CPED (1),
which implies that
P p
1 + £, + [l — £15, <& (1) (75)

2CP

Hence Eg)(tl) < g)(tz). Since Eg)(t) is convex, so it is
continuous by Lemma 6.
(2) Let x,x, € S, 1,1, > 0,and A € (0,1) and r(s) =
sgn[sin(27s)]. Then we have
1
NE
0

1/p
+7(s) [At + (1= Q) 8] y|l”dt]

1
g) [)ttl‘l'(l—A)tz] = ﬁ[

<

1
[ Dlxsr©

1 [
2CP | )o

1/p
+ (1 =N |x+7(s) t2y||]p dt] (76)
1 1/p

< 2CP [L [||x+ r(s) tl)’“]Pdtl]

a-»
2cp

+(1-0ED (1),

' o w
Ho | +7 () o] dtz] <X (1)

This shows that Eg)(t) is convex.
(3)Let0 < t; <t, <0and A € (0,1) with t; = At,. Then

) (») (»)
B (tl) -1 < B (/\tz) -1 < B (tz) - 1' (77)
ty Atz L,

This shows that (fg)(t) — 1)/t is nondecreasing. This com-
pletes the proof. ]

Proposition 21. Let & be a quasi-Banach space, p € [1,00),
and t > 0. Then the following conditions are equivalent:
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M) EP(t) <1+t
) E(t,x,) < 1 +1.

Proof. (1) = (2) Suppose on the contrary that £(¢, x;) > 1+t;
it is enough to take (t, x;) = 1 + t. Since

1
() = sup { =
(78)
~min (|Jx; + x|, |x; = x,||) : x1, %, €S f

by using the definition of sup, for any € > 0, there exist
X, X, € Sg such that

1 + x| + e = £,
2 (79)

> min {||x; + tx, |, |x; — x|} 2 c(Q+t-¢).

Applying convexity of the function f(u) = u”, we get

(it

P\ 1/p (80)
et | + [y — s ,
_ 2 b
therefore from (79)
1/p
Jes + 6, + ey — 1]
2 (81)
> min {|x; + tx, |, [|x; —tx, [} 2 c 1+t -€).
Since € is any arbitrary so
EP (1) = 1+1, (82)

which leads a contradiction.
(2) = (1) Suppose on the contrary that Eg)(t) >1+t;it

is enough to take 5;‘;)(1‘) = 1+t. Again using the definition of

sup, for all € > 0, there exist x,, x, € S5 such that

[y + tx2||p + [y = tx2||p >2CP(1+t-¢€)?, (83)
also using
Iy + 2|7 + |3, =t P < 2CP 1+ 0P, (84)
thus
2CP (1+ 0P > ||x; + tx2||p +|x, - tx2||p
(85)
>2CP (1+t-e)f;
since € is arbitrary, so
1 + |7 + 1 — tx, |7 = 2CF (1 + 1), (86)
which implies that
1+t || = |x; — x| =C (1 +¢). (87)

So using the definition of £(t, x,) we get &(¢, x;) > 1+¢, which
leads to a contradiction. O

Corollary 22. Let & be a quasi-Banach space, p € [1,00),
and t > 0. Then the following conditions are equivalent:

(1) SB is uniformly nonsquare.
2) EP@) <1+t
(3) &(t,x;) <1+t

Theorem 23. A quasi-Banach apace 3B is uniformly smooth if

»)
t)-1/C
lim ( M) _o. (88)
t—0 t
Proof. Suppose that
(p)
t)-1/C
lim ( M) =0. (89)
t—0 t
From Theorem 18, we know that
») 1
Ep () 2 pg () + ok (90)
which implies that
1
£ (¢) - 2P (®); (1)

dividing both sides by t and applying the lim,_,,

()
‘ t)-1/C
t—0 t t—0 t
So by definition & is uniformly smooth. O

Theorem 24. Let BB be a quasi-Banach space. Then for T €
(0,1)

1 1/2
P 2) < [E ‘95”(1)+2] . (93)

Proof. If a,b € [0,2], then ((a + b)/2)* > a* + b* — 4 holds
true.
Letx, y € S and 7 € [0, 1]. Then we have

(94)
x=o1 _,
and we have
2
X+1y|+|x—T
[ l )’HZC” y| ] > |x+ ‘ry||2 +|x - TJ’HZ -4
lx + Ty||2 +]|x - T)’“z (95)

2C

2
1 (bolbeonly,

T2 2C
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Therefore, we have

/
é?(z)<[%£g)u)+z]12. (96)

Theorem 25. Let 9B be a quasi-Banach space. Then

p 4 Hp 7P
0w <[ (97)
Proof. Since
1/
B R Y i
2C
j4 P t1/p 8)
3 min {|x + y|”, < - ¥} + 2
—_ 2C bl
therefore, we have
p 4 Hp P
(1) < ii%- (99)
O
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