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We study the existence of positive solutions for the system of nonlinear semipositone boundary value problems with Riemann-
Liouville fractional derivatives D, Dy, u = f,(t,u, u ), 0<t <1, Dy, Dy, v = f,(t, wu,v,v'), 0 <t < 1,u0) =u'(0) =
u'(1) = DS, u(0) = D5 u(0) = D u(1) = 0, and v(0) = v/(0) = v'(1) = D§,v(0) = DgI'v(0) = DiH'v(1) = 0, where a € (2,3] is
a real number and Dy, is the standard Riemann-Liouville fractional derivative of order «. Under some appropriate conditions for
semipositone nonlinearities, we use the fixed point index to establish two existence theorems. Moreover, nonnegative concave and

convex functions are used to depict the coupling behavior of our nonlinearities.

1. Introduction

In this paper, we investigate the existence of positive solutions
for the system of nonlinear semipositone boundary value
problems with Riemann-Liouville fractional derivatives

Dy, Dy, u = f (t, wu',v, v') , 0<t<l,
Dy, Dy, v = f, (t, wu',v, v') , 0<t<l,
u(0) =u' (0) = (1) = D§,u(0) = Dy!'u (0)
=D{Mu(1) =0,
v(0) = v' (0) =+ (1) = D§,v(0) = D§ v (0)
=Dy lv(1) =0,

where a € (2,3] is a real number and Dy, is the standard
Riemann-Liouville fractional derivative of order «. The non-
linear terms f; € C([0,1] x Ri,R) (R, = [0,+00), R =
(-00, +00)) are bounded below; that is, f; (i = 1,2) satisfy
the following.

(HI) there exists a real number M > 0, such that
Jiltx x5, x5,x4) + M 2 0, Vt € [0,1], x; € R, i =
1,2, j=1,2,3,4.

Existence and multiplicity of solutions for fractional
differential equations are widely studied in the literature; see
[1-14] and the references therein. For example, in [1], the
authors used the Guo-Krasnosel’skii fixed point theorem to
investigate the existence of positive solutions for the singular
fractional differential system

-Dg,u (t) = Ay (t,u,v), te(0,1),
-Dy,v(t) = A, (t,u,v), te€(0,1),

u(0) =u' (0)=0,

(2)
v(0) =+ (0) =0,
u(l) =av(@,
v(1) =bu(y),
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where f; (i = 1,2) satisfy

i (tu,
—f‘( ) =0, or oo,
u+v (3)

as u + v — +00, uniformly for t € [0, 1] or a subinterval.

Condition (3) is used to study various types of fractional
systems (see [1-12] and the references therein).

In this paper we use the fixed point index to study the
existence of positive solutions for the system of nonlinear
semipositone fractional boundary value problem (1). Under
some appropriate conditions for f; (i = 1,2), we use the
fixed point index to obtain our results. Moreover, nonnegative
concave and convex functions are used to depict the coupling
behavior of our nonlinearities (see [13-15]), which depend on
the unknown functions u, v and their derivatives v’ v'.

2. Preliminary

Definition 1 (see [16, 17]). The Riemann-Liouville fractional
derivative of order « > 0 of a continuous function f :
(0, +00) — R is given by

Dy, f(t) = m (%)n

where n = [a] + 1 with [«] denoting the integer part of
a number «, provided that the right hand side is pointwise
defined on (0, +00).

We first study the Green functions of problem (1). Let

jt (- f(o)ds, (4)

0

G, (t,s) = @

1)t —(t-9)"", 0<s<t<], ()
tot—l (1 _ S)(X*Z ,

Then we have

0 a-1
G, (t,s) = =—G,(t,s) = ——
5 (£, 5) ot 1 (&9) T (o)
21— - (t-9)*2, 0<s<t<]l, ©)
272 (1-5)%2, 0<t<s<l

Lemma 2. Let f; (i = 1,2) be as in (1). Then (1) is equivalent
to

1 1
Dy,x=-f (t,-[ G, (t,8) x (s) ds,J G, (t,s) x (s) ds,
0 0

1 1
J G, (t,s) y (s)ds, J G, (t,s) y(s) ds) R
0 0
1 1
Dy,y=—f5 <t, L G, (t,5) x (s) ds, L G, (t,5) x (s) ds,

1 1
J G, (t,s) y(s) ds,J G, (t,s) y(s) ds) ,
0 0
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x(0)=x"(0)=x"(1) =0,

. , (7)
y(©0)=y (0)=y (1) =0,
which takes the form
1 1
0= [ 6w h(s] Geor@an
0 0
1 1
J G, (s,7) x (1) dT, J G, (s, 1) y (1) dT,
0 0
Jl G, (5,7) y (1) dT) ds,
' (®)

1 1
y(t) = L G, (t,9) f, (s, JO G, (s, 1) x (1) dT,

1

Jl G, (5, 7) x (1) dT,J Gy (s,7) y (1) dr,

0 0

Jl G, (s,7) y (1) dr) ds.

0

Let Dy, u = —x, Dy, v = —y. Then an argument similar to that
in [18, Lemma 2.7] and [19, Lemma 3] establishes the result (we
omit the standard details).

Lemma 3 ([19, Lemma 4]). The functions G,(t, s) € C([0, 1] x
[0,1],R,) (i = 1,2). Moreover, the following inequalities are
satisfied:

ts(1-5)" 2 <T (&) G, (t,5) <s(1—9)*7 o
9
Vt,s € [0,1],

(a-1)(@-2)t"2(1-t)s(1-9)*?<T(a)G, (t5)
S)a—z

<(a-1)t"3s(1- Vt,s € [0,1].

Lemma 4 ([19, Lemma 5]). Let ¢(t) = t(1 — £)*2 forallt e
[0,1]. Let

_al(a-1) _ 1
S Taw R a@ @
(¢—1)(x—2)T () ['(a—-1) w
a-1) (- -
k= T 2a) S

Then

1

Ky 19 (5) < L G (t,5) @ (1) dt < kg (s), .

i=1,2, Vsel0,1].
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Lemma 5. (i) If (x,(t), y.(t)) is a positive solution of (7), then
(x, (&) +w(t), vy, (t)+w(t)) is a positive solution of the following
differential equation:

1

Dy, x = —F, (t, L G, (t,s) (x(s) —w(s))ds,
jl G, (t,s) (x(s) —w(s)) ds,
0
1
J-o G, (t,5) (y(s) —w(s))ds,
1
J- G, (t,5) (y(s) —w(s)) ds) ,
0
1
Dg+y = _FZ (t’ Jl) Gl (t> S) (X (S) -—w (S)) dS, (13)
1
L G, (t,s) (x(s) —w(s)) ds,
1
L G, (t,s) (y (s) —w(s))ds,

1
L G, (t,s) (y (s) —w(s)) ds> ,
x(0)=x"(0)=x"(1) =0,
y(© =y 0=y 1=0
where
F; (t> xl"x2>'x3’x4)

{?i (t, %1, %, X3, %,), t€[0,1], xp,%5 X3,%, =0, (14)

£,(£,0,0,0,0), te[0,1], x5 Xy X3, %, <0,

and f(t, x|, x5, X3, x4) = fi(t, X1, %5, X3, X))+ M, f,:[0,1]x
Ri — R, are continuous, and

! M [P
w(t):=MJ.O Gl(t,s)ds=m<a_l—;) )
vVt € [0,1].
(ii) If (x(t), y(t)) is a solution of (13) and x(t) > w(t),
y(t) = w(t), t € [0,1], then (x,(t), y,(t)) = (x(t) -
w(t), y(t) — w(t)) is a positive solution of (7).

Proof. If (x,(t), . (t)) is a positive solution of (7) then (note
w(t) = M fol G, (t,s) ds) we obtain x,(0) + w(0) = x; 0) +
w'(0) = x;(l) +w'(1) =0and
1
Dy, (x, () +w(t)) + F, <t, J G, (t,s) x, (s)ds,
0

1 1
J G, (t,s)x, (s) ds,J G, (t,5) y, (s)ds,
0 0

Jl G, (t,9) y, (s) ds) =Dy, x, (t) + Dj,w (t)

0
1 1

+ £ (t, J G, (t,s) x, (s)ds, J G, (t,s) x, (s)ds,
0 0

1 1
J- G, (t,s) y. (s) ds,J' G, (t,s) x y, (s) ds) +M
0 0

1
=Djw(t)+M = Dg+MJ G, (t,s)ds+ M
0

=-M+M=0.
(16)

Similarly, we have

1
D&@Anﬂum+a<qua»mgg%,

1

1
J G, (t,3) x, (s)ds, j G, (t,s) y, (s)ds, 17)
0

0

1
J G, (t,s) y, (s)ds) =-M+ M = 0;
0

that is, (x, () + w(t), y,(t) + w(t)) satisfies (13). Therefore,
(i) holds. Similarly, it is easy to prove (ii). This completes the
proof. O

From Lemma 5, to obtain a positive solution of (7), we
only need to find solutions x(t), y(t) of (13) satistying (t) >
w(t), y(t) = w(t), t € [0,1]. If x(¢), y(t) are solutions of (13),
then x(t), y(t)satisty

1
x(t) = Jo G, (t,s)F, <s,

1
jquﬂum—mmw,

0

1 G, (s,7) (x (1) —~w (7)) dT,

0

s

1
G, (1) (y (1) - w(1))dr,

0

s

1

L G, (57)(y(1)-w(1)) dr) ds,
1

y(t) = L G, (t,s) F, (s,

1
Lqmﬂum—mmm,

1
_L@@nﬂﬂﬂ—ww»m,



1
L G, (7)) (y (1) —w(1))dr,

1
[, 6600 -w@)dr)ds
(8)

Let E = C[0, 1], [Ix]| = max,c(o|x(t)], P = {x € E :
x(t) = 0, t € [0,1]}. Then (E, | - ||) is a real Banach space,
and P is a cone on E. We denote B, = {x € E: x|l < p} for
p>0. Now, note that u, v solve (1) if and only if x == —-Djj, u
y = =Dy, v are fixed points of operator

1

A;i(x,y) @)= L G, (t,s) F, <S,
1

L G, (5,7) (x (r) —w (7)) dT,

Jl G, (5,7) (x (r) —w (7)) dT,
0 (19)

1
L G, (57) % (y (1) —w(1))dr,

1
L G, (s,7) (y (1) —w(1)) d‘r> ds,

A(x,y)(t)=(A,A,) (x,y)(t) forx,yeE.

Therefore, if (x, y) is a positive fixed for A with x(t) > w(t),
y(t) > w(t) for t € [0,1], then (x,,y,) = (x —w, y — w)
is a positive solution for (1). Moreover, from the continuity
of G;and F; (i = 1,2), we know that A; : Px P — P, A :
P x P — P x P are continuous and completely continuous
operators.

Lemma 6. Let Py = {x € P : x(t) > t*"||x|, t € [0,1]}. Then
P, is a cone in E and A(P x P) C Poz.

Proof. From (9) for t € [0, 1] we have

1
Adxwm=LGwmw«&
1
_Launxuﬂ—ww»m,

1
J- G, (s, 1) (x (1) -

0

w (1)) dr,

—_

J- G, () x(y(r)—w(r))dr

0

—_

1
| G u>wmm0¢<ﬂa
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. r s(1-9)*F, <s,
0

1

L G, (5,7) (x (1) —w (7)) dT,
1

L G, (5,7) (x (1) —w (1)) dT,

—

J G, (57)x (y(r) —w(1r))dr,

0

1
J G, (57)(y(1)-w(1) d‘l’) ds.

0
(20)

Also from (9) and the above inequality, for every (x, y) € P x
P, we obtain

1
A (%)) = JO G, (t,5)F, <s,
f@@ﬂum—wmwn
0

1
|| &:6n6@-wmdn,

0

—

J G, (57)x (¥ (1) —w(1))drT,

0

1 toc—l

L L (5,1) (v (1) —w (1)) dT) ds > T

. Jl s(1-9)%F, (s, @)
0

JIG (s,7) (x (1) —w (7)) dT,

0

1

L G, (5,7) (x (1) —w (1)) dT,

—

J G, (7)) % (y(r) —w(1))dr,

o

1
J G, (s7)(y (1) - w(r))dr) ds

0

> ¢! “Al (x, )’)"

for all t e [0,1]. Similarly, A,(x, y)(t) > A (x, .
Therefore A(P x P) ¢ P;. This completes the proof. O

To obtain a positive solution of (1), we seek a positive fixed
point (x*, y*) of A with x* > w, y* > w (note mean that
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x*(t) = A (x5, y)@), ¥y () = A(x", y*)(@) for t € [0,1]).
From Lemma 6, we have x*, y* € P,. For x* € P, we have

X -—wt)=x"t)-M J: G, (t,s)ds

— *(t)—i tlx_l _ﬁ
- M) \a-1 «

1 (22)
. Mt 1 t
-+ 0-To (17 2)
x* (t) M

>x" (1)

et @-DT ()

As a result, x*(t) > w(t) for t € [0,1] if |x*|| > M/(x -
I (e) = ks. Similarly, if || y* || > kg, we have y* (¢) > w(¢), for
te[0,1].

Lemma 7 (see [20]). Let Q C E be a bounded open set and
A : QNP — P a continuous or completely continuous operator.
If there exists u, € P\ {0} such that u— Au #+ pu, forallp > 0
and u € 0Q N P, then i(A, Q N P, P) = 0, where i denotes the
fixed point index on P.

Lemma 8 (see [20]). Let QO C E be a bounded open set with
0 € Q. Suppose A : QN P — P is a continuous or completely
continuous operator. If u #+ pAu for allu € 0Q NP and 0 <
p <1, theni(A,QNP,P) =1

3. Main Results

Let K = a/I(a) 2 max; [o1)(G;(ts) + G,(t,5)), In the
sequel, we use ¢;,¢,,... and d,,d,, ... to stand for different
positive constants. Now, we list our assumptions on F; (i =
1,2).

(H2) There exist h, g € C(R,, R, ) such that

(i) h is concave and strictly increasing on R, (and
lim h(x) = +00);

X—+00

(ii) there exist ¢, > 0, d; > l/kf(k1 + k3)2, for all
(t, X1, X5, Y1 ¥2) € [0, 1] x R? such that

Fl (t’xl) x2)y1’y2) 2 dlh(yl + yz) G
(23)

F2 (t’xl’ xz;ylyyz) = g('xl + xz) - Cl;

(iii) h(Kzg(x)) >K*’x—c¢ forxeR,.

(H3) For all (t, xy, x5, y1, ¥5) € [0,1] x [0,k5]4, there is a
constant M, € (0, ksk,") such that

F(txpxpy00) <My, i=1,2. (24)
(H4) There exist 3,y € C(R,, R, ) such that

(i) B is convex and strictly increasing on R, (and
lim,_,, . B(x) = +00);

(i) for all (t, x;, x5, y1, ¥,) € [0, 1] x Ri:

Fy (£, 15 X5 y15 2) < B(31 + 1) »
(25)

F2 (t, xl, xz, )/pyz) < Y (xl + xz);

(iii) there exist d, > 0 such that ﬁ(sz(x)) < K?x + d,,
forx € R,.

(H5) There exist Q : [0,1] — R, 0 € (0,1], t, € [0, 1], for
all (£, x,, x5, y1, ¥,) € [0, 1] x [0, ks]*, such that

filbxpx yn )+ M2Q(1), i=12,  (26)

where

M

@-r@

J: G, (ty,5)Q(s)ds >

Theorem 9. Suppose that (H1)-(H3) hold. Then (1) has at least
one positive solution.

Proof. We first prove that there exists R > k5 such that

(6, y)# A(x, )+ A(d¢),
¥ (x,y) € BN (PxP), 1 >0,

(28)

where ¢ € P, is a given function. Suppose there exist (x, y) €
0Br N (P x P), A = 0 with (x, y) = A(x, y) + A(¢, ¢), then
x(t) = A, (x, y)(t), y(t) = A,(x, y)(t) for t € [0, 1]. From (i),
(ii) of (H2) we have

1 1
x(t) = L G, (t,s)F, <s, L G, (s, 7) (x (1) —w (7)) dT,
1
L G, (5,7) (x (1) —w (1)) dT,
1
L G, (7)) (y (1) —w(1))dr,
1 1
J G, (57)(y(1)-w (1)) dT) ds > J G, (t,9)
0 0
1
. [dlh (J (G, (5, 1)+ G, (s,7)] [y (7) —w (1)] dT)
0
. cl] ds > d, Ll G, (ts)

-h (J: (G, (51) + G, (s,7)) ¥ (7) dT) ds
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1 1
-d, J G, (t,s) S(x (1) - w(T))dT,J G, (s, 1)
0 0
1 1
-h <J (G, (51)+G, (s, 1)) w(7) d‘[) ds x (y () —w(1))dr, J G, (s,7)
0 0
1 1 1
-q Jo G, (t,s)ds > d, L G, (t,9) (y(1) - w(1)) dT) ds>K L G, (t,53)
1 1
-h <L (G, (s5,7) + G, (5,7)] y (1) dT> ds-o¢ g (Jo (G, (s,7) + G, (5,7)]
1 1
=d, J G, (t,s) x (1) —w (1)] dT) ds - K¢ J G, (1,
0 0

1

Ky(T)dT)ds—@ s)ds=KJ G, (t,s)
0

-h<J-1 G,(51) +G, (s, 7)

1
>d, J G, (t,s) g <J (G, (5,7) + G, (5,7)]
0 0

-Jl G, (s,r);;Gz (S’T)h(Ky(T))d‘rds—cz. -[x(r)—w(r)]dr) ds — .
0
(29) (30)

From (30) and (i) of (H2) we obtain
From (ii) of (H2) we have
1

h(Ky(t)+c)=h (K L G, (t,s)
1 1
Ky () > KJ G, (t,5)F, <sj G, (5,7) 1 (31)
0 0 g <L (G, (5,7) + G, (5, 7)] [x (1) — w ()] dT) ds> .

1

x (@ -w@)dr L Gy (57) This together with (iii) of (H2) yields

1 1
h(Ky () 2h(Ky(t)+¢)—h(c)=h (K Jo G, (ts)g <L (G (5,7) + G, (5,7)] [x (1) — w(T)] d‘[) ds> —h(c)

> Jol h (#Kzg (J: (G, (s5,7) + G, (5,7)] [x (1) —w (7)] dT>> ds-h(c)

(32)
> Jl %t’s)h <K2g (Ll (G (5,7) + G, (5,7)] [x (1) —w (1)] dT>) ds—h(c)

0

1 1
> J KG, (t,s) J (G, (5,7) + G, (5,7)] [x (1) —w ()] drds — ¢,.
0 0

Then (32) is substituted into (29) and we obtain

1 1
x(t) > d, Ll G, (t,s) L G T)I:GZ (5:7) “O KG, (r.7) Ll (G, (D) + Gy (D) x (x (1) - w (D) dldr - c, | d ds

1 1 1 1
- 2>d; J G, (t,3) I (G, (1) + G, (s, 7)) J. G, (1,1) J (G, () +G,(r,D) x (x() —w () dldrdrds —cs (33)
0 0 0 0

1 1 1 1
>d, J G, (t,s) J (G, (5,7) + G, (5, 7)) J G, (1,7) J (G, (r,1)+ G, (r,])) x x () dl dr dr ds — .
0 0 0 0
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Multiplying by ¢(t) for (33) and integrating over [0, 1], we
have

1 1
|, oOx0de=did k) | p@xar
- ¢k, (),
using the fact that

1
ko© < | GE99Wd ke,
1
(k; +k3) @ (s) < L (G, (t,s) + G, (t,5)) @ (t) dt (35)
< (k, +kg) @ (s),

which can be derived from (12) in Lemma 4. From (34) we
obtain

e, I ()
d, ki (ky + k3)2 -1

1
JO Q) x(t)dt < (36)

Note that x € P, (note that x = A;(x, y) + A¢p and A (x, y) €
P, from Lemma 6 and ¢ € P;) and we have

1 1
J @ ()t ||x| dt sj @ (t)x (t)dt
0 0

ek, T ()
TARk+k)y -1 &7
¢k
Ixll < — R .
dik3 (ki +k3)" =k
From (29) we have
1 1
d, j G, () j G (s 7) IZGZ D (Ky (1)) drds
0 0
<x()+o<x@®l+¢q (38)

< ks
- dlki’ (ky + k3)2 -k

+6.
Multiplying by ¢(t) and integrating over [0, 1] we obtain

1
L (x@®) +6)g@)dt

1 1
> J o (1) dlj G, (t.9) J G+ G 0Ty (1) drdsd

0 0 K (39)
1 1
> d, L ki (s) L WPI(K)/ (1) dsdt

dik, (k; +k 1
> % j @O h(Ky () dt.

7
Consequently, we have
! K
Hh(Ky(t)dt £ ———
J, pORU @) < s
1
2 )
J +6 |o(t)dt
0 <d1k? (ky +k3)" =k, (40)
_ KL (a)k < cok, 2 +@>
dik, (k; +k3) a3 (ky +k3)" =k,
= N,.

Note that we may assume y(t) # Ofort € [0,1]. Then|y|| > 0
and h(K||y|l) > 0. For y € P,, we have

1
kI @K [y < L Ko () y () dt

Kyl ot Ky
G L o (t) KD h(K |y])dt (41)

_ K
DD

Hence, h(K| yl) < N,/k,I'(«). Notelim,_, . h(z) = +00,and
thus there exists N, > 0 such that |[Ky| < N,. Therefore if
(x,y) € 0By N (P x P), A > 0 with (x, y) = A(x, y) + A(¢, p)
then ||x|| < csk,/(d, k] (k, +k;)* —k;) and ||ly|| < N,/K. Thus
if we take R > max{ks, ¢k, /(d, k] (k, +k;)* =k, ), N,/K} then
(28) is true. Lemma 7 implies

1 - Kyl
J, pomerena s o A,

i(A,Bgn(PxP),PxP)=0. (42)

Let x, y € 0B N P. From (H3) we have
1
Al (xy) (@) = Jo G, (t,s)F <s,
1
|, 6 e Em-wmn

1
L G, (,7) (x (1) - w (1)) d,

1
| 6 enx (@ -wm)dn (43)

1 1
j G, (57)(y(1) - w(1)) dr) ds < J G, (t,
0 0

Ls(1-9)*? M
o) M,ds < L o Mds < s

= ks = lIxII,

so [[A (x, »)II < lx|l. Similarly [|A,(x, )| < Illyll. Hence
1A, )1 < N, ) for x, y € 0By N P. Thus



(x,y) #AA(x,y),

(44)
V(x,y) € 0B, N(PxP), A€ [0,1].
It follows from Lemma 8 that
i (A, By, N (PxP),PxP)=1. (45)

From (42) and (45) we have
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1
B(], 660+ 6 62) (0 - w ) dr ) s
0

1

=1 G, (t5s)
0

_ LG, (5,7) + G, (s5,7)
(],

IR K(y(@)-w(r) dT) ds

(
:

i (A, (Bg\ B, )N (PxP),(PxP))=0-1=-1. (46) <| G (ts)
0
Therefore the operator A has at least one fixed point in (Bg \ LG (5,1)+ G, (s, 7)
Eks) N (P x P) and so (1) has at least a positive solution. Tﬁis ’ L : K : B(Ky (1)) drds.
completes the proof. O (48)
Theorem 10. Suppose that (H1), (H4), and (H5) hold. Then (1)~ From (ii) of (H4), we get
has at least one positive solution. . .
Proof. We first show that there exists R > ks such that Ky@®) <K Jo G (69 By <S’ Jo Gi (s7)
1
(. y) #AA(x,y), -(x(T)—w(T))dT,J G, (s, 1)
(47) 0
¥ (x,y) €dBxn(PxP), A€ [0,1]. 1
Suppose there exist (x, y) € 0Bz N (P x P), A € [0, 1] with (x (1) —w(n))dr, L G (s7)
(x, ¥) = AA(x, ), then x(t) < A, (x, y)(t), y(t) < A,(x, y)(t) .
fort € [0, 1]. From (i), (ii) of (H4), we have % (y (1) - w (1)) dr, L G, (s,7) (49)
1 1
x(t) < J G, (t,s) F, (s,J Gy (s,7) (x (1) —w (7)) dT, 1
0 0 -(y(‘r)—w(‘r))df)dsSKJ G, (t,s)
) 0
I G, (5,7) (x (1) - w (1)) dr, 1
’ Y(J (Gi(5,7) + G, (5,7))
1 0
[ Genxo@-wm)ar
0 (x(r) —w (1)) dT) ds.
1 1
L G sy () ~w (T))df> ds = L Gi (&) From (49) and (i), (iii) of (H4) we have
1 1
B(Ky () < B (K JO G, (6s)y (L (G, (5,7) + G, (5, 7)) (x () — w (1) dT) ds)
1
< J <G1 (¢, S) <J (G, (5, 1) + Gy (5, 7)) (x (1) — w(r))dr)) ds
0 0
1
< J G (&) ( (J (G, (51)+ Gy (5,7)) (x (1) —w (1)) dT>> ds (50)
0 0

1 1
< KJ G, (t,s) (J (G, (5 T)+Gy(5,7) (x (1) —w (1)) dT + d2>ds
0 0

<K Jl G, (t,3) Jl (G, (5,7) + G, (5,7)) (x (1) —w (1)) dr ds + ds.
0 0
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Then substitute (50) into (48) and we obtain

j1 G, (s, 1)+ G, (S’T)ﬁ(Ky (2)) dr ds

1
x(t) < L G, (ts) , K

< Jl G, (t,5) Jl G (s, T)I:Gz (5.7) <1< Jl G, (1,7) Jl (G, (D) + Gy () x (x (1) = w (1)) dl dr + d3> deds  (5))
0 0 0 0

< Jl G, (t,9) Jl (G, (5,7) + G, (5, 7)) Jl G, (1,7) Jl (G (D) +Gy(rD))x (x() —w () dldrdrds +d,.
0 0 0 0

Multiplying by ¢(t) for (51) and integrating over [0, 1], from 0Br N (P xP), A € [0,1] with (x, y) = AA(x, y) then |lx| <

(35), we obtain kyd,/(ky — klkg(k2 + k4)2) and | y|| < N5/K. Thus if we take
L 1 R > maxiks, k,d,/(k, — k;k3(k, + k,;)*), N3/K} then (47) is
J @) x(t)dt < k; (k, + k4)2 J @ () x(t)dt true. Lemma 8 implies
0 0 (52)
+ T () kyd,.
Consequently, we have i(A,Bg N (PxP),PxP)=1 (56)
! I () kyd

J @ (t)x (t)dt < % (53)

0 1 -k (kz + k4) Let Bk5 = {x € P: ||x]| < ks} and consider x € aBk5 NP It

Note that x € P, (note x = AA(x, ) and A, (x, y) € P;) and follows from (H5) that

we have

1 1
a—1 1 1
L Ot x @)l dt < JO ¢ (B)x(t)dt AL (%) (t) = L G, (ty,8) Fy <s, L Gy (s7)

- I (x) k,d, 1
SliR G+ k) (54) (@ -w@dn | 66
kyd 1
llcll < k, - k1k§2(;z N k4)2. (x(r) —w (1)) drT, L G, (s,7)

From (50) and Lemrrla 3 we ha\Ie ) - (@) dr. Jol -
B(Ky(t)) < Kj G, (t,9) J (G, (5,7) + G, (5, 7)) .

0 0 G- w@)dr)ds> [ G (ts)
S(x (1) —w(r))drds +ds < K ||x]| 0

1

1 1
. J G, (t,s) Jl (G, (5:7) + G, (s, 7)) drds + d, i (S’ Jo Gi (57 (x (1) ~w(®)dr, J G (s7)
0 0

0

1

(x (1)~ w (D) dr, j G, (5.7)

0

1

1
sK||x||js(1—s)"“2L (r-0%2  (s5)

0 T () 1
+(a—-1)s*1(1-1)*?) drds +d; (y (@ -w(n)dr, L G, (s,7)
K|l 1
T (a-1)°T ()’ (- w(r>)dr) ds = L G (tos)
VA2 T (- 1) K x| !
* (- 1)T(a—1/2) T (“)2 +ds, ’ [fl <5> JO G, (57) (x(7) ~w (1)) dr,

so B(Ky(t)) is bounded. Note lim,_,, ., (z) = +00, and thus Jl

there exists N5 > 0 such that |[Ky|| < N;. Therefore if (x, y) € G, (5, 7) (x (1) —w (7)) d,

0
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1
J G, (7)) (y (1) —w(1))dr,

0

Jle (s,7)(y (T)—w(T))dT) +M] ds (57)
0

! M
> _L Gl (to,S)Q(S) ds > m,

and, hence, [|A,(x, I = A,(x, y)(t,) > lx[. Similarly
1A, (x, )l = Ay(x, ¥)(t) > |yl for y € 0B, N P. Therefore
IACx, ) > [I(x, y)ll forall x, y € E)Bk5 N (P x P). Thus

(6 7) # A(xy) + A(5,4),

V(x,y) €0B, N(PxP), P, L€[0,1]. )

It follows from Lemma 7 that
i (A, B, N (PxP),PxP)=0. (59)

From (56) and (59), we have
i(A (Bg\ B, )n(PxP),(PxP))=1-0=1. (60)

Therefore the operator A has at least one fixed point on
(Bg\ Bk5) N(PxP)and so (1) has at least one positive solution,
which completes the proof. O
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