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The existence and growth of meromorphic solutions 𝑓(𝑧) for some 𝑞-difference equations are studied, and some estimates for
the exponent of convergence of poles of Δ 𝑞𝑓, Δ2𝑞𝑓, Δ 𝑞𝑓/𝑓, and Δ2𝑞𝑓/𝑓 are also obtained. Our theorems are improvements and
extensions of the previous results.

1. Introduction and Main Results

In 1900, Painlevé [1] first studied the differential equations,
which were called differential Painlevé equations later. More-
over, at the beginning of last century, differential Painlevé
equations had been an important research subject in the field
of the mathematics and physics.They occur in many physical
situations, such as plasma physics, statistical mechanics, and
nonlinear waves.

In the 1990s, the discrete Painlevé equations had become
important and interest research problems (see [2, 3]). For
example, let 𝑎, 𝑏, and 𝑐 be constants and 𝑛 ∈ N+, it is usual
that

𝑦𝑛+1 + 𝑦𝑛−1 = 𝑎𝑛 + 𝑏𝑦𝑛 + 𝑐,
𝑦𝑛+1 + 𝑦𝑛−1 = 𝑎𝑛 + 𝑏𝑦𝑛 + 𝑐𝑦2𝑛

(1)

are called the special discretization of discrete 𝑃𝐼, and
𝑦𝑛+1 + 𝑦𝑛−1 = (𝑎𝑛 + 𝑏) 𝑦𝑛 + 𝑐1 − 𝑦2𝑛 (2)

is called the special discretization of the discrete 𝑃𝐼𝐼.

Of late, with the development of Nevanlinna theory,
Chiang and Feng [4] and Halburd and Korhonen [5] estab-
lished independently those results about the difference analog
of the lemma on the logarithmic derivative, and there has
been an increasing interest in studying complex difference
equations. And there were a number of papers (see [4, 6,
7]) concerning complex difference equations and difference
analogs of Nevanlinna theory, by applying the results of
Chiang and Feng [4] and Halburd and Korhonen [5]. For
example, Halburd and Korhonen [5, 8, 9] used Nevanlinna
theory to analyze the following equation:

𝑤 (𝑧 + 1) + 𝑤 (𝑧 − 1) = 𝑅 (𝑧, 𝑤) , (3)
where 𝑅(𝑧, 𝑤) is rational in𝑤 and meromorphic in 𝑧, and we
single out the difference of Painlevé 𝐼 and 𝐼𝐼 equations such
as

𝑤 (𝑧 + 1) + 𝑤 (𝑧 − 1) = 𝑎𝑧 + 𝑏𝑤 (𝑧) + 𝑐, (4)

𝑤 (𝑧 + 1) + 𝑤 (𝑧 − 1) = 𝑎𝑧 + 𝑏𝑤 (𝑧) + 𝑐
𝑤 (𝑧)2 , (5)

𝑤 (𝑧 + 1) + 𝑤 (𝑧 − 1) = (𝑎𝑧 + 𝑏)𝑤 (𝑧) + 𝑐1 − 𝑤 (𝑧)2 . (6)

In recent, Laine and Yang, Zhang and Korhonen, and
Zheng andChen further investigated the value distribution of
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𝑞-difference operator of meromorphic functions, by utilizing
the analog of Logarithmic Derivative Lemma on 𝑞-difference
operators given by Barnett et al. [10]. Moreover, during
the last decades, considerable attention has been paid to𝑞-difference operators, 𝑞-difference equations, by replacing
the 𝑞-difference 𝑓(𝑞𝑧), 𝑞 ∈ C \ {0, 1} with 𝑓(𝑧 + 𝑐) of a
meromorphic function in some complex difference equations
and complex difference operators (see [11–26]).

Throughout this paper, a term “meromorphic” will always
mean meromorphic in the complex plane C. Hereinafter,
we will use some basic results and the standard notations
of Nevanlinna theory (see [27–29]). For a meromorphic
function𝑓, we use𝜎(𝑓),𝜆(𝑓), and𝜆(1/𝑓) to denote the order,
the exponent of convergence of zeros, and the exponent of
convergence of poles of 𝑓(𝑧), respectively, and let 𝜏(𝑓) be
the exponent of convergence of fixed points of 𝑓(𝑧), which
is defined by

𝜏 (𝑓) = lim sup
𝑟→+∞

log𝑁(𝑟, 1/ (𝑓 (𝑧) − 𝑧))
log 𝑟 . (7)

Besides, we use 𝑆(𝑟, 𝑓) to denote any quantity satisfying𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)) for all 𝑟 outside a possible exceptional set𝐸 of finite logarithmic measure

lim
𝑟→∞

∫
[1,𝑟)∩𝐸

𝑑𝑡𝑡 < ∞, (8)

and a meromorphic function 𝑎(𝑧) is called a small function
with respect to 𝑓 if 𝑇(𝑟, 𝑎(𝑧)) = 𝑆(𝑟, 𝑓), and we use S(𝑓) to
denote the field of small functions relative to 𝑓(𝑧).

In 2010, Chen and Shon [30] considered the difference
Painlevé I equation (4) and obtained the following theorem.

Theorem 1 (see [30,Theorem 4]). Let 𝑎, 𝑏, and 𝑐 be constants,
where 𝑎, 𝑏 are not both equal to zero. Then

(i) if 𝑎 ̸= 0, then (4) has no rational solution;
(ii) if 𝑎 = 0, and 𝑏 ̸= 0, then (4) has a nonzero constant

solution 𝑤(𝑧) = 𝐴, where 𝐴 satisfies 2𝐴2 − 𝑐𝐴 − 𝑏 = 0.
The other rational solution 𝑤(𝑧) satisfies 𝑤(𝑧) =𝑃(𝑧)/𝑄(𝑧) + 𝐴, where 𝑃(𝑧) and 𝑄(𝑧) are relatively prime

polynomials and satisfy deg𝑃 < deg𝑄.
In 2015, the properties of solutions of a certain type

of difference equation were further investigated by Li and
Huang [31], and some results were obtained as follows.

Theorem 2 (see [31, Theorem 3.1]). Suppose that equation

𝑤 (𝑧 + 1) + 𝑤 (𝑧 − 1) = 𝐴 (𝑧)𝑤 (𝑧) + 𝐶 (𝑧) , (9)

where𝐴(𝑧), 𝐶(𝑧) ∈ S(𝑤), admits a finite-order transcendental
meromorphic solution 𝑤(𝑧). Then

(i) 𝜆(𝑤) = 𝜆(1/𝑤) = 𝜎(𝑤);
(ii) 𝑤(𝑧) has no Borel exceptional value;
(iii) if 𝐴(𝑧) ̸≡ 2𝑧2 − 𝑧𝐶(𝑧), then the exponent of

convergence of fixed points of 𝑤(𝑧) satisfies 𝜏(𝑤) = 𝜎(𝑤).

In the same year, Qi andYang [32] discussed the following
equation:

𝑤 (𝑞𝑧) + 𝑤(𝑧𝑞) = 𝑎𝑧 + 𝑏𝑤 (𝑧) + 𝑐, (10)

which can be seen as 𝑞-difference analogs of (4), and obtained
some properties of the zeros of 𝑤(𝑧) − 𝐴, where 𝑤(𝑧) is a
solution of (10) and 𝐴 ∈ C ∪ {∞}.

Inspired by the idea of Li and Huang [31] and Qi and
Yang [32], our main purpose is further to investigate some
properties of meromorphic solutions for some 𝑞-difference
equations which are different from (10) to a certain extent,
and the following theorems are obtained.

Theorem 3. Let 𝑞 ∈ C − {0, 1}, and 𝐴(𝑧)( ̸≡ 0), 𝐶(𝑧) ∈ S(𝑓).
If

𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞) = 𝐴 (𝑧)𝑓 (𝑧) + 𝐶 (𝑧) (11)

admits a zero-order transcendental meromorphic solution𝑓(𝑧), then
(i) 𝑓(𝑧) has infinitely many poles and zeros, Δ 𝑞𝑓(𝑧) also

has infinitely many poles, and

𝜆 (𝑓) = 𝜆( 1𝑓) = 𝜆( 1Δ 𝑞𝑓) , (12)

and further, if 𝐶(𝑧) ̸≡ 0, then each of Δ2𝑞𝑓, Δ 𝑞𝑓/𝑓, Δ2𝑞𝑓/𝑓
has infinitely many poles, and

𝜆( 1Δ2𝑞𝑓) = 𝜆(
1Δ 𝑞𝑓/𝑓) = 𝜆(

1Δ2𝑞𝑓/𝑓) , (13)

(ii) if 𝐴(𝑧) ̸≡ (𝑞 + 1/𝑞)𝑧2 − 𝑧𝐶(𝑧), then 𝑓 has infinitely
many fixed points and the exponent of convergence of fixed
points of 𝑓 satisfies 𝜏(𝑓) = 𝜎(𝑓).
Theorem 4. Let 𝑞 ∈ C − {0, 1}, and 𝐴(𝑧), 𝐶(𝑧)( ̸≡ 0) ∈
S(𝑓), and assume that 𝑓(𝑧) is a zero-order transcendental
meromorphic solution of equation

𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞) = 𝐴 (𝑧) 𝑓 (𝑧) + 𝐶 (𝑧)1 − 𝑓 (𝑧)2 . (14)

Then
(i) 𝑓 has infinitely many poles and zeros, Δ 𝑞𝑓 also has

infinitely many poles, and

𝜆 (𝑓) = 𝜆( 1𝑓) = 𝜆( 1Δ 𝑞𝑓) , (15)

and further, if𝐴(𝑧) ̸≡ 0, then each ofΔ2𝑞𝑓, Δ 𝑞𝑓/𝑓, Δ2𝑞𝑓/𝑓 has
infinitely many poles, and

𝜆( 1Δ2𝑞𝑓) = 𝜆(
1Δ 𝑞𝑓/𝑓) = 𝜆(

1Δ2𝑞𝑓/𝑓) , (16)

(ii) if (𝑞 + 1/𝑞)(𝑧3 − 𝑧) + 𝑧𝐴(𝑧) ̸≡ −𝐶(𝑧), then 𝑓 has
infinitely many fixed points and the exponent of convergence of
fixed points of 𝑓 satisfies 𝜏(𝑓) = 𝜎(𝑓).
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Theorem 5. Let 𝑞 ∈ C − {0, 1}, and 𝐴(𝑧)( ̸≡ 0), 𝐶(𝑧) ∈ S(𝑓)
be identically vanishing simultaneously. And 𝑓(𝑧) is a zero-
order transcendental meromorphic solution of equation

𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞) = 𝐴 (𝑧)𝑓 (𝑧) + 𝐶 (𝑧)
𝑓 (𝑧)2 . (17)

Then
(i) 𝑓(𝑧) has infinitely many poles and zeros, Δ 𝑞𝑓(𝑧) also

has infinitely many poles, and

𝜆 (𝑓) = 𝜆( 1𝑓) = 𝜆( 1Δ 𝑞𝑓) , (18)

and further, if𝐶(𝑧) ̸≡ 0, then each ofΔ2𝑞𝑓, Δ 𝑞𝑓/𝑓, Δ2𝑞𝑓/𝑓 has
infinitely many poles, and

𝜆( 1Δ2𝑞𝑓) = 𝜆(
1Δ 𝑞𝑓/𝑓) = 𝜆(

1Δ2𝑞𝑓/𝑓) , (19)

(ii) if (𝑞 + 1/𝑞)𝑧3 − 𝑧𝐴(𝑧) ̸≡ 𝐶(𝑧), then 𝑓 has infinitely
many fixed points and the exponent of convergence of fixed
points of 𝑓 satisfies 𝜏(𝑓) = 𝜎(𝑓).
2. Some Lemmas

Let the logarithmic density of a set 𝐹 be defined by

lim sup
𝑟→∞

1
log 𝑟 ∫[1,𝑟]∩𝐹

1𝑡 𝑑𝑡. (20)

Definition 6 (see [10]). For 𝑞 ∈ C \ {0, 1}, if a polynomial in𝑓(𝑧) includes finitely many of its 𝑞-shifts 𝑓(𝑞𝑧), . . . , 𝑓(𝑞𝑛𝑧)
with meromorphic coefficients in the sense that their Nevan-
linna characteristic functions are 𝑜(𝑇(𝑟, 𝑓)) on a set 𝐹 of
logarithmic density 1, then it can be called a 𝑞-difference
polynomial of 𝑓.
Lemma 7 (see [13, Theorem 2.5]). Let 𝑓 be a transcendental
meromorphic solution of order zero of a 𝑞-difference equation
of the form

𝑈𝑞 (𝑧, 𝑓) 𝑃𝑞 (𝑧, 𝑓) = 𝑄𝑞 (𝑧, 𝑓) , (21)

where𝑈𝑞(𝑧, 𝑓), 𝑃𝑞(𝑧, 𝑓), and𝑄𝑞(𝑧, 𝑓) are 𝑞-difference polyno-
mials such that the total degree deg𝑈𝑞(𝑧, 𝑓) = 𝑛 in 𝑓(𝑧) and
its 𝑞-shifts, whereas deg𝑄𝑞(𝑧, 𝑓) ≤ 𝑛. Moreover, we assume
that𝑈𝑞(𝑧, 𝑓) contains just one term of maximal total degree in𝑓(𝑧) and its 𝑞-shifts. Then

𝑚(𝑟, 𝑃𝑞 (𝑧, 𝑓)) = 𝑜 (𝑇 (𝑟, 𝑓)) , (22)

on a set of logarithmic density 1.

Lemma 8 (see [10, Theorem 2.2]). Let 𝑓 be a nonconstant
zero-order meromorphic solution of 𝑃𝑞(𝑧, 𝑓) = 0, where𝑃𝑞(𝑧, 𝑓) is a 𝑞-difference polynomial in 𝑓(𝑧). If 𝑃𝑞(𝑧, 𝑎) ̸≡ 0
for slowly moving target 𝛼(𝑧), then

𝑚(𝑟, 1𝑓 − 𝛼) = 𝑜 (𝑇 (𝑟, 𝑓)) , (23)

on a set of logarithmic density 1.

Remark 9 (see [10]). Let 𝛼 and 𝑓 be meromorphic functions
of zero-order such that 𝑇(𝑟, 𝛼) = 𝑜(𝑇(𝑟, 𝑓)) on a set of
logarithmic density 1. Then 𝛼 is called a slowly moving target
or a small function with respect to 𝑓.
Lemma 10 (see [22, Theorems 1.1 and 1.3]). Let 𝑓(𝑧) be a
nonconstant zero-order meromorphic function and 𝑞 ∈ C\{0}.
Then

𝑇 (𝑟, 𝑓 (𝑞𝑧)) = (1 + 𝑜 (1)) 𝑇 (𝑟, 𝑓 (𝑧)) ,
𝑁 (𝑟, 𝑓 (𝑞𝑧)) = (1 + 𝑜 (1))𝑁 (𝑟, 𝑓 (𝑧)) , (24)

on a set of lower logarithmic density 1.

Lemma 11 (Valiron-Mohon’ko, see [33]). Let 𝑓(𝑧) be a mero-
morphic function. Then for all irreducible rational functions in𝑓,

𝑅 (𝑧, 𝑓 (𝑧)) = ∑𝑚𝑖=0 𝑎𝑖 (𝑧) 𝑓 (𝑧)𝑖∑𝑛𝑗=0 𝑏𝑗 (𝑧) 𝑓 (𝑧)𝑗 , (25)

with meromorphic coefficients 𝑎𝑖(𝑧), 𝑏𝑗(𝑧), the characteristic
function of 𝑅(𝑧, 𝑓(𝑧)) satisfies

𝑇 (𝑟, 𝑅 (𝑧, 𝑓 (𝑧))) = 𝑑𝑇 (𝑟, 𝑓) + 𝑂 (Ψ (𝑟)) , (26)

where 𝑑 = max{𝑚, 𝑛} and Ψ(𝑟) = max𝑖,𝑗{𝑇(𝑟, 𝑎𝑖), 𝑇(𝑟, 𝑏𝑗)}.
Lemma 12 (see [10, Theorem 1.1]). Let 𝑓(𝑧) be a nonconstant
zero-order meromorphic function and 𝑞 ∈ C \ {0}. Then

𝑚(𝑟, 𝑓 (𝑞𝑧)𝑓 (𝑧) ) = 𝑆 (𝑟, 𝑓) (27)

on a set of logarithmic density 1.

3. The Proof of Theorem 3

We first assume that 𝑓(𝑧) is of zero-order and a transcenden-
tal meromorphic solution of (11).

(i) In view of (11), it follows that

𝑓 (𝑧) [𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)] = 𝐶 (𝑧) 𝑓 (𝑧) + 𝐴 (𝑧) . (28)

Hence, we conclude from (28) and Lemma 7 that

𝑚(𝑟, 𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)) = 𝑆 (𝑟, 𝑓) , (29)

on a set 𝐹 of logarithmic density 1. Since𝑓(𝑧) is of zero-order,
then we can deduce by Lemma 10 that

𝑁(𝑟, 𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞))
≤ 𝑁 (𝑟, 𝑓 (𝑞𝑧)) + 𝑁(𝑟, 𝑓(𝑧𝑞))
= 2 (1 + 𝑜 (1))𝑁 (𝑟, 𝑓) ,

(30)

on a set of lower logarithmic density 1.
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Since 𝐴(𝑧) ̸≡ 0 and 𝐴(𝑧), 𝐶(𝑧) ∈ S(𝑓), by applying
Lemma 11 for (11), we obtain

𝑇(𝑟, 𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (31)

Thus, it follows from (29) to (31) that

𝑇 (𝑟, 𝑓) ≤ 2 (1 + 𝑜 (1))𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) , (32)

on a set 𝐹 of logarithmic density 1. Hence, it means that 𝑓(𝑧)
has infinitely many poles and

𝜆( 1𝑓) ≥ 𝜎 (𝑓) . (33)

On the other hand, it yields from (11) that

𝑃1 (𝑧, 𝑓 (𝑧)) = 𝑓 (𝑧) [𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)] − 𝐶 (𝑧) 𝑓 (𝑧)
− 𝐴 (𝑧) = 0.

(34)

Since 𝐴(𝑧) ̸≡ 0, then 𝑃1(𝑧, 0) = −𝐴(𝑧) ̸≡ 0. Thus, by
Lemma 8, it follows that

𝑚(𝑟, 1𝑓) = 𝑆 (𝑟, 𝑓) , (35)

on a set 𝐹 of logarithmic density 1. Hence,

𝑁(𝑟, 1𝑓) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) , (36)

on a set 𝐹 of logarithmic density 1. Therefore, 𝑓(𝑧) has
infinitely many zeros and 𝜆(𝑓) = 𝜎(𝑓).

Next, we will prove that 𝜆(1/Δ 𝑞𝑓) ≥ 𝜆(1/𝑓). Let 𝑧 = 𝑞𝑤,
then (11) can be rewritten as the form

𝑓 (𝑞2𝑤) + 𝑓 (𝑤) = 𝐴 (𝑞𝑤)𝑓 (𝑞𝑤) + 𝐶 (𝑞𝑤) . (37)

Then it follows from (37) that

𝑓 (𝑞𝑤) [𝑓 (𝑞2𝑤) + 𝑓 (𝑤)]
= 𝐴 (𝑞𝑤) + 𝐶 (𝑞𝑤)𝑓 (𝑞𝑤) . (38)

Moreover, it yields 𝑓(𝑞𝑤) = Δ 𝑞𝑓(𝑤) + 𝑓(𝑤) and 𝑓(𝑞2𝑤) =Δ 𝑞𝑓(𝑞𝑤) + Δ 𝑞𝑓(𝑤) + 𝑓(𝑤), where Δ 𝑞𝑓(𝑤) = 𝑓(𝑞𝑤) − 𝑓(𝑤).
Substituting them into (38), we conclude

[Δ 𝑞𝑓 (𝑤) + 𝑓 (𝑤)] [Δ 𝑞𝑓 (𝑞𝑤) + Δ 𝑞𝑓 (𝑤) + 2𝑓 (𝑤)]
= 𝐴 (𝑞𝑤) + 𝐶 (𝑞𝑤) [Δ 𝑞𝑓 (𝑤) + 𝑓 (𝑤)] , (39)

that is,

− 2𝑓 (𝑤)2
= [Δ 𝑞𝑓 (𝑞𝑤) + 3Δ 𝑞𝑓 (𝑤) − 𝐶 (𝑞𝑤)] 𝑓 (𝑤)
− 𝐴 (𝑞𝑤)
+ [Δ 𝑞𝑓 (𝑞𝑤) + Δ 𝑞𝑓 (𝑤) − 𝐶 (𝑞𝑤)] Δ 𝑞𝑓 (𝑤) .

(40)

From the conditions of Theorem 3, and by Lemma 10, we
conclude that 𝑓(𝑤) is of zero order. Thus, we conclude thatΔ 𝑞𝑓(𝑤), Δ 𝑞𝑓(𝑞𝑤) are of zero order and 𝐴(𝑞𝑤), 𝐶(𝑞𝑤) ∈
S(𝑓), and Δ 𝑞𝑓(𝑞𝑤) = Δ2𝑞𝑓(𝑤) + Δ 𝑞𝑓(𝑤), where Δ2𝑞𝑓(𝑤) flΔ 𝑞(Δ 𝑞𝑓(𝑤)). Since Δ 𝑞𝑓(𝑤) is of zero order, then

𝑁(𝑟, Δ2𝑞𝑓 (𝑤)) ≤ 2𝑁 (𝑟, Δ 𝑞𝑓 (𝑤)) + 𝑆 (𝑟, 𝑓) , (41)

on a set 𝐹 of logarithmic density 1. Thus, we can deduce from
(41) that

𝑁(𝑟, Δ 𝑞𝑓 (𝑞𝑤)) ≤ 3𝑁(𝑟, Δ 𝑞𝑓 (𝑤)) + 𝑆 (𝑟, 𝑓) , (42)

on a set 𝐹 of logarithmic density 1. Moreover, it follows from
(40) and (42) that

2𝑁 (𝑟, 𝑓 (𝑤))
= 𝑁(𝑟, [Δ 𝑞𝑓 (𝑞𝑤) + 3Δ 𝑞𝑓 (𝑤) − 𝐶 (𝑞𝑤)] 𝑓 (𝑤)
− 𝐴 (𝑞𝑤)
+ [Δ 𝑞𝑓 (𝑞𝑤) + Δ 𝑞𝑓 (𝑤) − 𝐶 (𝑞𝑤)] Δ 𝑞𝑓 (𝑤))
≤ 𝑁 (𝑟, 𝑓 (𝑤)) + 9𝑁 (𝑟, Δ 𝑞𝑓 (𝑤)) + 𝑆 (𝑟, 𝑓) ,

(43)

on a set 𝐹 of logarithmic density 1; that is,

𝑁(𝑟, 𝑓 (𝑤)) ≤ 9𝑁 (𝑟, Δ 𝑞𝑓 (𝑤)) + 𝑆 (𝑟, 𝑓) , (44)

on a set𝐹of logarithmic density 1.Then, itmeans thatΔ 𝑞𝑓(𝑤)
has infinitely many poles and

𝜆( 1Δ 𝑞𝑓 (𝑤)) ≥ 𝜆(
1𝑓 (𝑤)) . (45)

Since𝑓(𝑤) is of zero order, then we conclude from Lemma 10
that

𝜆( 1Δ 𝑞𝑓 (𝑤)) = 𝜆(
1Δ 𝑞𝑓 (𝑧/𝑞)) = 𝜆(

1Δ 𝑞𝑓 (𝑧)) ,

𝜆 ( 1𝑓 (𝑤)) = 𝜆( 1𝑓 (𝑧/𝑞)) = 𝜆( 1𝑓 (𝑧)) .
(46)

Hence, it yields

𝜆( 1Δ 𝑞𝑓) ≥ 𝜆(
1𝑓) . (47)

Thus, by (33) and (47) we conclude that

𝜆( 1Δ 𝑞𝑓) ≥ 𝜆(
1𝑓) ≥ 𝜎 (𝑓) . (48)

𝑇(𝑟, Δ 𝑞𝑓) ≤ 2𝑇(𝑟, 𝑓) + 𝑆(𝑟, 𝑓) on a set 𝐹 of logarithmic
density 1: that is, 𝜎(𝑓) ≥ 𝜎(Δ 𝑞𝑓). Thus, combining this and
(48), we conclude that Δ 𝑞𝑓(𝑧) has infinitely many poles and

𝜆 (𝑓) = 𝜆( 1𝑓) = 𝜆( 1Δ 𝑞𝑓) . (49)
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Next, we prove that

𝜆( 1Δ2𝑞𝑓) = 𝜆(
1Δ 𝑞𝑓/𝑓) = 𝜆(

1Δ2𝑞𝑓/𝑓) . (50)

At first, it can be seen that 𝐴(𝑧) + 𝐶(𝑧)𝑓(𝑧) and 𝑓(𝑧)2
are mutually prime polynomials in 𝑓(𝑧), where 𝐴(𝑧), 𝐶(𝑧) ∈
S(𝑓). In fact, taking 𝑢(𝑧, 𝑓) = 𝐴(𝑧) −𝐶(𝑧)𝑓(𝑧) and V(𝑧, 𝑓) =𝐶(𝑧)2, it yields 𝑢(𝑧, 𝑓)(𝐴(𝑧) + 𝐶(𝑧)𝑓(𝑧)) + V(𝑧, 𝑓)𝑓(𝑧)2 =𝐴(𝑧)2. Thus, in view of (11) and Lemma 11, we deduce

2𝑇 (𝑟, 𝑓) = 𝑇(𝑟, 𝐴 (𝑧) + 𝐶 (𝑧) 𝑓 (𝑧)𝑓 (𝑧)2 ) + 𝑆 (𝑟, 𝑓)
= 𝑇(𝑟, 𝑓 (𝑞𝑧) + 𝑓 (𝑧/𝑞)𝑓 (𝑧) ) + 𝑆 (𝑟, 𝑓)
≤ 2𝑇(𝑟, 𝑓 (𝑞𝑧)𝑓 (𝑧) ) + 𝑆 (𝑟, 𝑓)
= 2𝑇(𝑟, Δ 𝑞𝑓𝑓 ) + 𝑆 (𝑟, 𝑓) ,

(51)

that is,

𝑇 (𝑟, 𝑓) ≤ 𝑇(𝑟, Δ 𝑞𝑓𝑓 ) + 𝑆 (𝑟, 𝑓) . (52)

Hence, by Lemma 12, it yields

𝑁(𝑟, Δ 𝑞𝑓𝑓 ) = 𝑇(𝑟, Δ 𝑞𝑓𝑓 ) − 𝑚(𝑟, Δ 𝑞𝑓𝑓 )
≥ 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

𝑁(𝑟, Δ 𝑞𝑓𝑓 ) ≤ 𝑇(𝑟, Δ 𝑞𝑓𝑓 ) + 𝑆 (𝑟, 𝑓)
≤ 3𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(53)

Besides, in view of (11), it follows that

Δ2𝑞𝑓(𝑧𝑞) = Δ 𝑞𝑓 (𝑧) − Δ 𝑞𝑓(𝑧𝑞)
= −2𝑓 (𝑧)2 + 𝐶 (𝑧) 𝑓 (𝑧) + 𝐴 (𝑧)𝑓 (𝑧) ,

(54)

and by Lemmas 10 and 11, it yields

2𝑇 (𝑟, 𝑓 (𝑧)) = 𝑇(𝑟, −2𝑓 (𝑧)2 + 𝐶 (𝑧) 𝑓 (𝑧) + 𝐴 (𝑧)𝑓 (𝑧) )
+ 𝑆 (𝑟, 𝑓)

= 𝑇(𝑟, Δ2𝑓(𝑧𝑞)) + 𝑆 (𝑟, 𝑓)
= 𝑇 (𝑟, Δ2𝑞𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) .

(55)

Thus, it follows that

3𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≥ 𝑁(𝑟, Δ2𝑞𝑓)
= 𝑇 (𝑟, Δ2q𝑓) − 𝑚(𝑟, Δ2𝑞𝑓)
≥ 2𝑇 (𝑟, 𝑓) − 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)
= 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(56)

Finally, similar to the above argument, we have

2𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≥ 𝑁(𝑟, Δ2𝑞𝑓𝑓 )

= 𝑇(𝑟, Δ2𝑞𝑓𝑓 ) − 𝑚(𝑟, Δ2𝑞𝑓𝑓 )
≥ 𝑇 (𝑟, Δ2𝑞𝑓) − 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)
= 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(57)

Thus, we can conclude from (53), (56), and (57) that each ofΔ2𝑞𝑓, Δ 𝑞𝑓/𝑓, Δ2𝑞𝑓/𝑓 has infinitely many poles and

𝜆( 1Δ2𝑞𝑓) = 𝜆(
1Δ 𝑞𝑓/𝑓) = 𝜆(

1Δ2𝑞𝑓/𝑓) . (58)

(ii) Set 𝑔(𝑧) = 𝑓(𝑧) − 𝑧. Then 𝑔(𝑧) is a zero-order
transcendental meromorphic function with 𝜎(𝑔) = 𝜎(𝑓) and𝜏(𝑓) = 𝜆(𝑔). Substituting 𝑓(𝑧) = 𝑔(𝑧) + 𝑧 into (11), we have
𝑃2 (𝑧, 𝑔 (𝑧)) = (𝑔 (𝑧) + 𝑧) [𝑔 (𝑞𝑧) + 𝑔(𝑧𝑞)]

+ [(𝑞 + 1𝑞) 𝑧 − 𝐶 (𝑧)] 𝑔 (𝑧)
+ (𝑞 + 1𝑞) 𝑧2 − 𝑧𝐶 (𝑧) − 𝐴 (𝑧) = 0.

(59)

Since 𝑃2(𝑧, 0) = (𝑞 + 1/𝑞)𝑧2 − 𝑧𝐶(𝑧) − 𝐴(𝑧) ̸≡ 0, then by
Lemma 8, it yields

𝑚(𝑟, 1𝑔) = 𝑆 (𝑟, 𝑓) (60)

on a set 𝐹 of logarithmic density 1. By using the same
argument as in the proof of Theorem 3(i), we conclude

𝑁(𝑟, 1𝑔) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) (61)

on a set 𝐹 of logarithmic density 1, which implies 𝑓 has
infinitely many fixed points and 𝜏(𝑓) = 𝜆(𝑔) = 𝜎(𝑓).

Therefore, this completes the proof of Theorem 3.

4. The Proof of Theorem 4

We assume that 𝑓(𝑧) is a zero-order transcendental mero-
morphic solution of (14).
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(i) In view of (14), it follows that

𝑃𝑞 (𝑧, 𝑓) fl 𝑓 (𝑧)2 [𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)] + 𝐴 (𝑧) 𝑓 (𝑧)
+ 𝐶 (𝑧) − 𝑓 (𝑞𝑧) − 𝑓(𝑧𝑞) = 0.

(62)

Since 𝐶(𝑧) ̸≡ 0, then it follows that

𝑃𝑞 (𝑧, 0) ≡ 𝐶 (𝑧) ̸≡ 0. (63)

Thus, we can conclude by Lemma 8 that

𝑚(𝑟, 1𝑓) = 𝑆 (𝑟, 𝑓) , (64)

on a set 𝐹 of logarithmic density 1. Hence,

𝑁(𝑟, 1𝑓) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) , (65)

on a set 𝐹 of logarithmic density 1. Thus, it means that 𝑓(𝑧)
has infinitely many zeros and 𝜆(𝑓) = 𝜎(𝑓).

On the other hand, it follows from (14) that

𝑓 (𝑧)2 [𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)]
= 𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞) − 𝐴 (𝑧) 𝑓 (𝑧) − 𝐶 (𝑧) .

(66)

Then in view of (66) and Lemma 7, we have

𝑚(𝑟, 𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)) = 𝑆 (𝑟, 𝑓) . (67)

And by applying Lemma 11 for (14), it yields

𝑇(𝑟, 𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)) = 2𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (68)

Then, we conclude by Lemma 10 that

𝑁(𝑟, 𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞))
≤ 𝑁 (𝑟, 𝑓 (𝑞𝑧)) + 𝑁(𝑟, 𝑓(𝑧𝑞))
= 2 (1 + 𝑜 (1))𝑁 (𝑟, 𝑓)

(69)

on a set of lower logarithmic density 1. Thus, combining (67)
and (68), it follows that

𝑇 (𝑟, 𝑓) ≤ 2 (1 + 𝑜 (1))𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (70)

Hence, 𝑓(𝑧) has infinitely many poles and

𝜎 (𝑓) ≤ 𝜆( 1𝑓) . (71)

Next, we will prove that 𝜆(1/Δ 𝑞𝑓) ≥ 𝜆(1/𝑓). Let 𝑧 = 𝑞𝑤;
then (14) can be rewritten as the following form:

𝑓 (𝑞2𝑤) + 𝑓 (𝑤) = 𝐴 (𝑞𝑤)𝑓 (𝑞𝑤) + 𝐶 (𝑞𝑤)1 − 𝑓 (𝑞𝑤)2 . (72)

Then from (72) it follows that

𝑓 (𝑞𝑤)2 [𝑓 (𝑞2𝑤) + 𝑓 (𝑤)]
= 𝑓 (𝑞2𝑤) + 𝑓 (𝑤) − 𝐴 (𝑞𝑤)𝑓 (𝑞𝑤) − 𝐶 (𝑞𝑤) , (73)

and 𝑓(𝑞𝑤) = Δ 𝑞𝑓(𝑤) + 𝑓(𝑤) and 𝑓(𝑞2𝑤) = Δ 𝑞𝑓(𝑞𝑤) +Δ 𝑞𝑓(𝑤) + 𝑓(𝑤). Substituting them into (73), we have

[Δ 𝑞𝑓 (𝑤) + 𝑓 (𝑤)]2 [Δ 𝑞𝑓 (𝑞𝑤) + Δ 𝑞𝑓 (𝑤) + 2𝑓 (𝑤)]
= Δ 𝑞𝑓 (𝑞𝑤) + Δ 𝑞𝑓 (𝑤) + 2𝑓 (𝑤)
− 𝐴 (𝑞𝑤) [Δ 𝑞𝑓 (𝑤) + 𝑓 (𝑤)] − 𝐶 (𝑞𝑤) .

(74)

Thus, it follows that

−2𝑓 (𝑤)3 = 𝑃 (𝑤) 𝑓 (𝑤) + 𝑄 (𝑤) Δ 𝑞𝑓 (𝑤) + 𝑅 (𝑤) , (75)

where

𝑃 (𝑤) = [Δ 𝑞𝑓 (𝑞𝑤) + 5Δ 𝑞𝑓 (𝑤)] 𝑓 (𝑤)
+ 4 (Δ 𝑞𝑓 (𝑤))2 + 2Δ 𝑞𝑓 (𝑤)Δ 𝑞𝑓 (𝑞𝑤)
+ 𝐴 (𝑞𝑤) − 2,

𝑄 (𝑤) = Δ 𝑞𝑓 (𝑞𝑤)Δ 𝑞𝑓 (𝑤) + (Δ 𝑞𝑓 (𝑤))2 + 𝐴 (𝑞𝑤)
− 1,

𝑅 (𝑤) = 𝐶 (𝑞𝑤) − Δ 𝑞𝑓 (𝑞𝑤) .

(76)

Hence, it follows by Lemma 10 and from (75) that

3𝑁 (𝑟, 𝑓 (𝑤))
= 𝑁(𝑟, 𝑃 (𝑤) 𝑓 (𝑤) + 𝑄 (𝑤) Δ 𝑞𝑓 (𝑤) + 𝑅 (𝑤))
≤ 2𝑁 (𝑟, 𝑓 (𝑤)) + 19𝑁 (𝑟, Δ 𝑞𝑓 (𝑤)) + 𝑂 (log 𝑟)
+ 𝑆 (𝑟, 𝑓) ,

(77)

that is,

𝑁(𝑟, 𝑓 (𝑤)) ≤ 19𝑁 (𝑟, Δ 𝑞𝑓 (𝑤)) + 𝑆 (𝑟, 𝑓) . (78)

Therefore, it follows from (78) that Δ 𝑞𝑓 has infinitely many
poles and

𝜆( 1Δ 𝑞𝑓) ≥ 𝜆(
1𝑓) . (79)
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Since 𝑓(𝑤) is of zero-order, by using the same argument as
in the proof of Theorem 3, we conclude that Δ 𝑞𝑓(𝑧) has
infinitely many poles and

𝜆( 1𝑓) = 𝜆( 1Δ 𝑞𝑓) = 𝜎 (Δ 𝑞𝑓) = 𝜎 (𝑓) . (80)

Here, we will prove that

𝜆( 1Δ2𝑞𝑓) = 𝜆(
1Δ 𝑞𝑓/𝑓) = 𝜆(

1Δ2𝑞𝑓/𝑓) . (81)

Similarly, let 𝐴(𝑧), 𝐶(𝑧) ∈ S(𝑓), 𝑢(𝑧, 𝑓) = 𝐴(𝑧)2𝑓(𝑧)2 −𝐴(𝑧)𝐶(𝑧)𝑓(𝑧) + 𝐶(𝑧)2 − 𝐴(𝑧)2, and V(𝑧, 𝑓) = 𝐴(𝑧)3;
then 𝑢(𝑧, 𝑓)(𝐴(𝑧)𝑓(𝑧) + 𝐶(𝑧)) + V(𝑧, 𝑓)𝑓(𝑧)(1 − 𝑓(𝑧)2) =𝐶(𝑧)(𝐶(𝑧)2 − 𝐴(𝑧)2). Hence, it can be seen that 𝐴(𝑧)𝑓(𝑧) +𝐶(𝑧) and 𝑓(𝑧)(1 − 𝑓(𝑧)2) are mutually prime polynomials in𝑓(𝑧). Thus, from (14) and by Lemma 11, it follows that

3𝑇 (𝑟, 𝑓) = 𝑇(𝑟, 𝐴 (𝑧) + 𝐶 (𝑧) 𝑓 (𝑧)𝑓 (𝑧) (1 − 𝑓 (𝑧)2) ) + 𝑆 (𝑟, 𝑓)

= 𝑇(𝑟, 𝑓 (𝑞𝑧) + 𝑓 (𝑧/𝑞)𝑓 (𝑧) ) + 𝑆 (𝑟, 𝑓)
≤ 2𝑇(𝑟, 𝑓 (𝑞𝑧)𝑓 (𝑧) ) + 𝑆 (𝑟, 𝑓)
= 2𝑇(𝑟, Δ 𝑞𝑓𝑓 ) + 𝑆 (𝑟, 𝑓) ,

(82)

that is,

32𝑇 (𝑟, 𝑓) ≤ 𝑇(𝑟,
Δ 𝑞𝑓𝑓 ) + 𝑆 (𝑟, 𝑓) . (83)

Hence, in view of Lemmas 8 and 12, it yields

𝑁(𝑟, Δ 𝑞𝑓 (𝑧)𝑓 (𝑧) ) = 𝑇(𝑟,
Δ 𝑞𝑓 (𝑧)𝑓 (𝑧) )

− 𝑚(𝑟, Δ 𝑞𝑓 (𝑧)𝑓 (𝑧) )
≥ 32𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) ,

𝑁(𝑟, Δ 𝑞𝑓𝑓 ) ≤ 𝑇(𝑟, Δ 𝑞𝑓𝑓 ) + 𝑆 (𝑟, 𝑓)
≤ 3𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(84)

Besides, in view of (14), we have

Δ2𝑞𝑓(𝑧𝑞) = Δ 𝑞𝑓 (𝑧) − Δ 𝑞𝑓(𝑧𝑞)
= 2𝑓 (𝑧)3 + (𝐴 (𝑧) − 2) 𝑓 (𝑧) + 𝐶 (𝑧)1 − 𝑓 (𝑧)2 ,

(85)

and then by Lemma 11, it follows that

3𝑇 (𝑟, 𝑓 (𝑧))
= 𝑇(𝑟, 2𝑓 (𝑧)3 + (𝐴 (𝑧) − 2) 𝑓 (𝑧) + 𝐶 (𝑧)1 − 𝑓 (𝑧)2 )
+ 𝑆 (𝑟, 𝑓) = 𝑇(𝑟, Δ2𝑞𝑓(𝑧𝑞)) + 𝑆 (𝑟, 𝑓)

= 𝑇 (𝑟, Δ2𝑞𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) .

(86)

Thus, by Lemma 10 and the above equalities, it yields

3𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≥ 𝑁(𝑟, Δ2𝑞𝑓)
= 𝑇 (𝑟, Δ2𝑞𝑓 (𝑧)) − 𝑚 (𝑟, Δ2𝑞𝑓)
≥ 3𝑇 (𝑟, 𝑓) − 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)
= 2𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(87)

Finally, similar to the above argument, it follows that

3𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≥ 𝑁(𝑟, Δ2𝑞𝑓𝑓 )

= 𝑇(𝑟, Δ2𝑞𝑓𝑓 ) − 𝑚(𝑟, Δ2𝑞𝑓𝑓 )
≥ 𝑇 (𝑟, Δ2𝑞𝑓) − 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)
= 2𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(88)

Thus, in view of (84), (87), and (88), we can deduce that each
of Δ2𝑞𝑓, Δ 𝑞𝑓/𝑓, Δ2𝑞𝑓/𝑓 has infinitely many poles and

𝜆( 1Δ2𝑞𝑓) = 𝜆(
1Δ 𝑞𝑓/𝑓) = 𝜆(

1Δ2𝑞𝑓/𝑓) . (89)

(ii) Set 𝑔(𝑧) = 𝑓(𝑧) − 𝑧. Thus, 𝑔(𝑧) is a zero-order
transcendental meromorphic function with 𝜎(𝑔) = 𝜎(𝑓) and𝜏(𝑓) = 𝜆(𝑔). Substituting 𝑓(𝑧) = 𝑔(𝑧) + 𝑧 into (14), it follows
that

𝑃2 (𝑧, 𝑔 (𝑧)) = (𝑔 (𝑧) + 𝑧)2 [𝑔 (𝑞𝑧) + 𝑔(𝑧𝑞)]
+ 𝑔 (𝑧) [𝑔 (𝑧) + 2𝑧] (𝑞 + 1𝑞) 𝑧
− [𝑔 (𝑞𝑧) + 𝑔(𝑧𝑞)] + 𝐴 (𝑧) 𝑔 (𝑧)
+ (𝑞 + 1𝑞) (𝑧3 − 𝑧) + 𝑧𝐴 (𝑧) + 𝐶 (𝑧) .

(90)

Since 𝑃2(𝑧, 0) = (𝑞 + 1/𝑞)(𝑧3 − 𝑧) + 𝑧𝐴(𝑧) + 𝐶(𝑧) ̸≡ 0, then
in view of Lemma 8, it follows that

𝑚(𝑟, 1𝑔) = 𝑆 (𝑟, 𝑓) (91)
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on a set 𝐹 of logarithmic density 1. By using the same
argument as in the proof of Theorem 3(i), it follows that

𝑁(𝑟, 1𝑔) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) (92)

on a set 𝐹 of logarithmic density 1, which implies that 𝑓(𝑧)
has infinitely many fixed points and 𝜏(𝑓) = 𝜆(𝑔) = 𝜎(𝑓).

Therefore, this completes the proof of Theorem 4.

5. The Proof of Theorem 5

We first assume that 𝑓(𝑧) is a zero-order transcendental
meromorphic solution of (17).

(i) In view of (17), it follows that

𝑓 (𝑧)2 [𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)] = 𝐴 (𝑧) 𝑓 (𝑧) + 𝐶 (𝑧) . (93)

Thus, we conclude from (93) and Lemma 7 that

𝑚(𝑟, 𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)) = 𝑆 (𝑟, 𝑓) . (94)

And by Lemma 10 it follows that

𝑁(𝑟, 𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞))
≤ 𝑁 (𝑟, 𝑓 (𝑞𝑧)) + 𝑁(𝑟, 𝑓(𝑧𝑞))
= 2 (1 + 𝑜 (1))𝑁 (𝑟, 𝑓) ,

(95)

on a set of lower logarithmic density 1.
If 𝐶(𝑧) ̸= 0, then by applying Lemma 11 for (17), it follows

that

𝑇(𝑟, 𝑓 (𝑞𝑧) + 𝑓(𝑧𝑞)) = 2𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (96)

Hence, from (94) to (96), it yields

𝑇 (𝑟, 𝑓) ≤ (1 + 𝑜 (1))𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (97)

If 𝐴(𝑧) ̸= 0 and 𝐶(𝑧) ≡ 0, by using the same argument as
in the proof of Theorem 3(i), it follows that

𝑇 (𝑟, 𝑓) ≤ 2 (1 + 𝑜 (1))𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (98)

Therefore, from (97) and (98), itmeans that𝑓(𝑧)has infinitely
many poles and

𝜎 (𝑓) ≤ 𝜆( 1𝑓) . (99)

Now, we will prove that 𝜆(1/Δ 𝑞𝑓) ≥ 𝜆(1/𝑓) as follows.
Set 𝑧 = 𝑞𝑤, by using the same argument as in Theo-

rem 3(i), it yields

−2𝑓 (𝑤)3 = 𝑃 (𝑤) 𝑓 (𝑤) + 𝑄 (𝑤) Δ 𝑞𝑓 (𝑤) + 𝑅 (𝑤) , (100)

where

𝑃 (𝑤) = [Δ 𝑞𝑓 (𝑞𝑤) + 5Δ 𝑞𝑓 (𝑤)] 𝑓 (𝑤)
+ 4 (Δ 𝑞𝑓 (𝑤))2 + 2Δ 𝑞𝑓 (𝑤)Δ 𝑞𝑓 (𝑞𝑤)
− 𝐴 (𝑞𝑤) ,

𝑄 (𝑤) = [Δ 𝑞𝑓 (𝑞𝑤) + Δ 𝑞𝑓 (𝑤)] Δ 𝑞𝑓 (𝑤) − 𝐴 (𝑞𝑤) ,
𝑅 (𝑤) = −𝐶 (𝑞𝑤) .

(101)

Hence, we conclude by Lemma 10 and from (100) that

3𝑁 (𝑟, 𝑓 (𝑤))
= 𝑁 (𝑟, 𝑃 (𝑤) 𝑓 (𝑤) + 𝑄 (𝑤) Δ 𝑞𝑓 (𝑤) + 𝑅 (𝑤))
≤ 2𝑁 (𝑟, 𝑓 (𝑤)) + 15𝑁 (𝑟, Δ 𝑞𝑓 (𝑤)) + 𝑂 (log 𝑟)
+ 𝑆 (𝑟, 𝑓) ,

(102)

that is,

𝑁(𝑟, 𝑓 (𝑤)) ≤ 15𝑁 (𝑟, Δ 𝑞𝑓 (𝑤)) + 𝑆 (𝑟, 𝑓) . (103)

Thus, it follows from (103) that

𝜆( 1Δ 𝑞𝑓 (𝑤)) ≥ 𝜆(
1𝑓 (𝑤)) . (104)

By using the same argument as in the proof of Theorem 3(i),
we can conclude that Δ 𝑞𝑓 has infinitely many poles, and

𝜆( 1𝑓) = 𝜆( 1Δ 𝑞𝑓) = 𝜎 (Δ 𝑞𝑓) = 𝜎 (𝑓) ,

𝜆( 1Δ2𝑞𝑓) = 𝜆(
1Δ 𝑞𝑓/𝑓) = 𝜆(

1Δ2𝑞𝑓/𝑓) .
(105)

(ii) Let 𝑔(𝑧) = 𝑓(𝑧) − 𝑧. Thus, 𝑔(𝑧) is a zero-order
transcendental meromorphic function with 𝜎(𝑔) = 𝜎(𝑓) and𝜏(𝑓) = 𝜆(𝑔). Substituting 𝑓(𝑧) = 𝑔(𝑧) + 𝑧 into (17), it follows
that

𝑃2 (𝑧, 𝑔 (𝑧)) = (𝑔 (𝑧) + 𝑧)2 [𝑔 (𝑞𝑧) + 𝑔(𝑧𝑞)]
+ 𝑔 (𝑧) [𝑔 (𝑧) + 2𝑧] (𝑞 + 1𝑞) 𝑧
− 𝐴 (𝑧) 𝑔 (𝑞𝑧) + (𝑞 + 1𝑞) 𝑧3
− 𝑧𝐴 (𝑧) − 𝐶 (𝑧) .

(106)

Since 𝑃2(𝑧, 0) = (𝑞+1/𝑞)𝑧3 −𝑧𝐴(𝑧)−𝐶(𝑧) ̸≡ 0, then it yields
by Lemma 8 that

𝑚(𝑟, 1𝑔) = 𝑆 (𝑟, 𝑓) (107)
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on a set 𝐹 of logarithmic density 1. By using the same
argument as in the proof of Theorem 3(i), we have

𝑁(𝑟, 1𝑔) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) (108)

on a set 𝐹 of logarithmic density 1, which implies that 𝑓(𝑧)
has infinitely many fixed points and 𝜏(𝑓) = 𝜆(𝑔) = 𝜎(𝑓).

Therefore, this completes the proof of Theorem 5.
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