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Throughout this paper, we outline some aspects of fractional calculus in Banach spaces. Some examples are demonstrated. In our
investigations, the integrals and the derivatives are understood as Pettis integrals and the corresponding derivatives. Our results
here extended all previous contributions in this context and therefore are new. To encompass the full scope of our paper, we show
that a weakly continuous solution of a fractional order integral equation, which is modeled off some fractional order boundary
value problem (where the derivatives are taken in the usual definition of the Caputo fractional weak derivative), may not solve the
problem.

1. Introduction and Preliminaries

The issue of fractional calculus for the functions that take
values in Banach spacewhere the integrals and the derivatives
are understood as Pettis integrals and the corresponding
derivatives has been studied for the first time by the authors
of [1, 2]. Following the appearance of [1], there has been a sig-
nificant interest in the study of this topic (see, e.g., [3–6]; see
also [7–9]).This paper is devoted to presenting general results
and examples for the existence of the fractional integral (and
corresponding fractional differential) operators in arbitrary
Banach space where it is endowed with its weak topology. In
our investigations, we show that the well-known properties
of the fractional calculus for functions taking values in finite
dimensional spaces also hold in infinite dimensional spaces.
Our results extend all previous contributions of the same
type in the Bochner integrability setting and in the Pettis
integrability one.

For the readers convenience, here we present some
notations and the main properties for the Pettis integrals. For
further background, unexplained terminology and details
pertaining to this paper can be found in Diestel et al. [10, 11]
and Pettis [12].

Throughout this paper, we consider the measure space(𝐼, Ω, 𝜇), where 𝐼 = [0, 1], 0 ≤ 𝑎 < 𝑏 < ∞ denote a fixed

interval of the real line, Ω denotes the Lebesgue 𝜎-algebra
L(𝐼), and 𝜇 stands for the Lebesgue measure. 𝐸 denotes a
real Banach space with a norm ‖ ⋅ ‖ and 𝐸∗ is its dual. By𝐸𝜔 we denotes the space 𝐸 when endowed with the weak
topology generated by the continuous linear functionals on𝐸. We will let 𝐶[𝐼, 𝐸𝜔] denote the Banach space of weakly
continuous functions 𝐼 → 𝐸, with the topology of weak
uniform convergence. And 𝑃[𝐼, 𝐸] denotes the space of 𝐸-
valued Pettis integrable functions in the interval 𝐼 (see [10, 12]
for the definition). Recall that (see, e.g., [10, 13–19]) theweakly
measurable function 𝑥 : 𝐼 → 𝐸 is said to be Dunford
(or Gelfand) integrable on 𝐼 if and only if 𝜑𝑥 is Lebesgue
integrable on 𝐼 for each 𝜑 ∈ 𝐸∗.
Definition 1. Let 𝑝 ∈ [1,∞]. DefineH𝑝(𝐸) to be the class of
all weaklymeasurable functions𝑥 : 𝐼 → 𝐸 having𝜑𝑥 ∈ 𝐿𝑝(𝐼)
for every 𝜑 ∈ 𝐸∗.

If 𝑝 = ∞, the added condition

l.u.b.‖𝜑‖=1 (ess sup
𝑡∈𝐼

󵄨󵄨󵄨󵄨𝜑𝑥 (𝑡)󵄨󵄨󵄨󵄨) < ∞ (1)

must be satisfied by each 𝑥 ∈ H∞(𝐸).We also define the class
H

𝑝
0 (𝐸) by

H
𝑝
0 (𝐸) fl {𝑥 ∈ 𝑃 [𝐼, 𝐸] : 𝜑𝑥 ∈ 𝐿𝑝 (𝐼)} . (2)
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Further, we define the spaceH𝜆(𝐸), 𝜆 ≥ 0 by
H𝜆 (𝐸) fl {𝑥 ∈ 𝐶 [𝐼, 𝐸𝜔] :

𝜑𝑥 is Hölderain of order 𝜆 on 𝐼, for every 𝜑
∈ 𝐸∗} .

(3)

We also defineH0(𝐸) fl 𝐶[𝐼, 𝐸𝜔].
In the following proposition, we summarize some impor-

tant facts which are the main tool in carrying out our
investigations (see [10, 12, 16, 17]).

Proposition 2. Let 𝑝, 𝑞 ∈ [1,∞] be of conjugate exponents
(that is, 1/𝑝 + 1/𝑞 = 1 with the convention that 1/∞ = 0). If𝑥 : 𝐼 → 𝐸 is weakly measurable, then

(1) if 𝑥(⋅) ∈ 𝑃[𝐼, 𝐸] and 𝑢(⋅) ∈ 𝐿∞[𝐼,R], then the follow-
ing hold 𝑥(⋅)𝑢(⋅) ∈ 𝑃[𝐼, 𝐸],

(2) 𝑥 ∈ H
𝑝
0 (𝐸), 𝑝 > 1 if and only if 𝑥(⋅)𝑢(⋅) ∈ 𝑃[𝐼, 𝐸] for

every 𝑢(⋅) ∈ 𝐿𝑞(𝐼),
(3) if 𝐸 is reflexive (containing no isometric copy of 𝑐0),

the weakly (strongly) measurable function 𝑥 : 𝐼 → 𝐸
is Pettis integrable on 𝐼 if and only if 𝑥 is Dunford
integrable on 𝐼,

(4) for any 𝑝 > 1, we have {𝑥 ∈ H𝑝(𝐸) : 𝑥 strongly
measurable} ⊆ H

𝑝
0 (𝐸). If 𝐸 is weakly sequentially

complete, this is also true for 𝑝 = 1.
We remark that there is a bounded weakly measurable

function which is not Pettis integrable (see, e.g., [19]).
A fundamental property of Pettis integral is contained in

the following.

Proposition 3 (see [12] Corollary 2.51). If 𝑥 ∈ 𝑃[𝐼, 𝐸], then
for any bounded subset Ω of elements of 𝐸∗, the integrals

∫
𝐽

󵄨󵄨󵄨󵄨𝜑 (𝑥 (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠, 𝜑 ∈ Ω (4)

are weakly equi-absolutely continuous.

Theorem 4 (mean value theorem for Pettis integral). If the
function 𝑥 : 𝐼 → 𝐸 is Pettis integrable on 𝐼, then

∫
𝐽
𝑥 (𝑠) 𝑑𝑠 ∈ |𝐽| conv (𝑥 (𝐽)) , (5)

where 𝐽 ⊂ 𝐼, |𝐽| is the length of 𝐽 and conv(𝑥(𝐽)) is the closed
convex hull of 𝑥(𝐽).
2. Fractional Integrals of
Vector-Valued Functions

In this section, we define and study the Riemann-Liouville
fractional integral operators and the corresponding fractional
derivatives in Banach spaces.

Devoted by the definition of the Riemann-Liouville
fractional integral of real-valued function, we introduce the
following.

Definition 5. Let 𝑥 : 𝐼 → 𝐸. The Riemann-Liouville
fractional Pettis integral (shortly RFPI) of 𝑥 of order 𝛼 > 0
is defined by

I
𝛼𝑥 (𝑡) fl 1Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑥 (𝑠) 𝑑𝑠, 𝑡 > 0. (6)

In the preceding definition, “∫ ” stands for the Pettis
integral.

When 𝐸 = R, it is well known (see, e.g., [20, 21]) that
the operator I𝛼 sends 𝐿𝑞[0, 𝑏], 𝑏 ∈ (0,∞) continuously to𝐿𝑝[0, 𝑏] if 𝑝 ∈ [1,∞] satisfy 𝑞 > 1/(𝛼 + (1/𝑝)).

This seems to be a good place to put the following.

Example 6. Let 𝐸 be an infinite dimensional Banach space
that fails cotype (see [22] and the references therein). Define
the strongly measurable function 𝑥 : [0, 1] → 𝐸 by

𝑥 (𝑡) fl ∞∑
𝑛=1

2𝑛∑
𝑘=1

𝑐𝑛 𝜒𝐴𝑛𝑘 (𝑡)𝜇 (𝐴𝑛
𝑘
) 𝑒𝑛𝑘, 𝜇 : Lebesgue measure, (7)

with similar notations as in ([13], Corollary 4) where we
choose 𝑐𝑛 = 2𝐾𝜓(23−𝑛), 𝐾 > 1, 𝜓(𝑡) fl 𝑡𝜖, 𝜖 = 0.9 and
{𝐴𝑛

𝑘 = [𝑎𝑘3𝑛 , 𝑏𝑘3𝑛 ] : 𝑛 = 0, 1, 2, . . . , 𝑘 = 1, 2, 3, . . . , 2𝑛} (8)

to be the fat Cantor sets (that is, 𝜇(𝐴𝑛
𝑘) = 1/3𝑛 holds for every𝑘 ∈ {1, 2, 3, . . . , 2𝑛}).

As cited in ([13], Corollary 4), 𝑥 is Pettis integrable
functions on [0, 1] whose indefinite integral is nowhere
weakly differentiable on [0, 1]. Here we will show that 𝑥 has
RFPI of all order 𝛼 ≥ 3/4 and

I
𝛼𝑥 (𝑡)
= ∞∑

𝑛=1

2𝑛∑
𝑘=1

𝑐𝑛 ( 𝑒𝑛𝑘𝜇 (𝐴𝑛
𝑘
) Γ (𝛼) ∫[0,𝑡]∩𝐴𝑛

𝑘

(𝑡 − 𝑠)𝛼−1 𝑑𝑠)
∈ 𝐸.

(9)

Arguing similarly as in ([13], page 368), we have in view of‖∑2𝑛

𝑘=1 𝜀𝑛𝑘𝑢𝑛𝑘‖ℓ2𝑛∞ = 1 that ∑2𝑛

𝑘=1 |𝜑(𝑒𝑛𝑘)| ≤ 2‖𝜑‖ holds for every𝜑 ∈ 𝐸∗.
Also, for any 𝑡 ∈ [0, 1] and fixed 𝑛 ∈ N, we have for some𝑛0 < 𝑛 that

2𝑛∑
𝑘=1

[∫𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜒𝐴𝑛𝑘 (𝑠)𝜇 (𝐴𝑛

𝑘
)𝑑𝑠]

2

= 2𝑛∑
𝑘=1

32𝑛 [∫
[0,𝑡]∩𝐴𝑛

𝑘

(𝑡 − 𝑠)𝛼−1 𝑑𝑠]2

= 32𝑛 2
𝑛0∑

𝑘=1

[∫
𝐴𝑛
𝑘

(𝑡 − 𝑠)𝛼−1 𝑑𝑠]2
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+ 32𝑛 [∫𝑡

𝑎2𝑛0 +1

(𝑡 − 𝑠)𝛼−1 𝑑𝑠]2

≤ 32𝑛𝛼
2𝑛0∑
𝑘=1

[(𝑡 − 𝑎𝑘3𝑛 )
𝛼 − (𝑡 − 𝑏𝑘3𝑛)

𝛼]2

+ 32𝑛𝛼2 (𝑡 − 𝑎2𝑛0+13𝑛 )2𝛼

≤ 32𝑛𝛼
2𝑛0∑
𝑘=1

[(𝑡 − 𝑎𝑘3𝑛 ) − (𝑡 − 𝑏𝑘3𝑛)]
2𝛼

+ 32𝑛𝛼2 (𝑏2𝑛0+12𝑛 − 𝑎2𝑛0+12𝑛 )2𝛼 ≤ 32𝑛2𝑛𝛼32𝑛𝛼
= 2𝑛𝛼2 32𝑛(1−𝛼).

(10)

Therefore, for any measurable 𝐽 ⊂ [0, 1], we arrive at
∫
[0,𝑡]∩𝐽

∞∑
𝑛=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2𝑛∑
𝑘=1

𝑐𝑛Γ (𝛼) (𝑡 − 𝑠)𝛼−1 𝜒𝐴𝑛𝑘 (𝑠)𝜇 (𝐴𝑛
𝑘
)𝜑 (𝑒𝑛𝑘) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫𝑡

0

∞∑
𝑛=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2𝑛∑
𝑘=1

𝑐𝑛Γ (𝛼) (𝑡 − 𝑠)𝛼−1 𝜒𝐴𝑛𝑘 (𝑠)𝜇 (𝐴𝑛
𝑘
)𝜑 (𝑒𝑛𝑘) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∞∑

𝑛=1

𝑐𝑛Γ (𝛼) ∫
𝑡

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2𝑛∑
𝑘=1

(𝑡 − 𝑠)𝛼−1 𝜒𝐴𝑛𝑘 (𝑠)𝜇 (𝐴𝑛
𝑘
)𝜑 (𝑒𝑛𝑘) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∞∑

𝑛=1

𝑐𝑛Γ (𝛼)
2𝑛∑
𝑘=1

󵄨󵄨󵄨󵄨𝜑 (𝑒𝑛𝑘)󵄨󵄨󵄨󵄨 ∫𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜒𝐴𝑛𝑘 (𝑠)𝜇 (𝐴𝑛

𝑘
)𝑑𝑠

≤ ∞∑
𝑛=1

𝑐𝑛Γ (𝛼) (
2𝑛∑
𝑘=1

󵄨󵄨󵄨󵄨𝜑 (𝑒𝑛𝑘)󵄨󵄨󵄨󵄨2)
1/2

⋅ ( 2𝑛∑
𝑘=1

[∫𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜒𝐴𝑛𝑘 (𝑠)𝜇 (𝐴𝑛

𝑘
)𝑑𝑠]

2)
1/2

≤ 2 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩
⋅ ∞∑
𝑛=1

√2𝑛3𝑛(1−𝛼)𝑐𝑛𝛼Γ (𝛼) = 4𝐾23𝜖 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩
∞∑
𝑛=1

2𝑛(1/2−𝜖)3𝑛(1−𝛼)Γ (1 + 𝛼) .

(11)

Obviously, the latter series converges whenever 𝛼 ≥ 3/4,𝜖 = 0.9 which allows us to interchange the integral and
summation below to see that

1Γ (𝛼) ∫[0,𝑡]∩𝐽 𝜑 ((𝑡 − 𝑠)𝛼−1 𝑥 (𝑠))
= 1Γ (𝛼) ∫[0,𝑡]∩𝐽 (𝑡 − 𝑠)𝛼−1 𝜑 (𝑥 (𝑠))
= ∫

[0,𝑡]∩𝐽

∞∑
𝑛=1

2𝑛∑
𝑘=1

𝑐𝑛Γ (𝛼) (𝑡 − 𝑠)𝛼−1 𝜒𝐴𝑛𝑘 (𝑠)𝜇 (𝐴𝑛
𝑘
)𝜑 (𝑒𝑛𝑘) 𝑑𝑠

= ∞∑
𝑛=1

2𝑛∑
𝑘=1

∫
[0,𝑡]∩𝐽

𝑐𝑛Γ (𝛼) (𝑡 − 𝑠)𝛼−1 𝜒𝐴𝑛𝑘 (𝑠)𝜇 (𝐴𝑛
𝑘
)𝜑 (𝑒𝑛𝑘) 𝑑𝑠

= 𝜑[∞∑
𝑛=1

2𝑛∑
𝑘=1

𝑐𝑛 ( 𝑒𝑛𝑘𝜇 (𝐴𝑛
𝑘
) Γ (𝛼) ∫[0,𝑡]∩𝐴𝑛

𝑘

(𝑡 − 𝑠)𝛼−1 𝑑𝑠)] .

(12)

It remains to prove that

∞∑
𝑛=1

2𝑛∑
𝑘=1

𝑐𝑛 ( 𝑒𝑛𝑘𝜇 (𝐴𝑛
𝑘
) Γ (𝛼) ∫[0,𝑡]∩𝐴𝑛

𝑘

(𝑡 − 𝑠)𝛼−1 𝑑𝑠) ∈ 𝐸. (13)

Evidently, we have󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑚∑
𝑛=𝑙

2𝑛∑
𝑘=1

𝑒𝑛𝑘𝑐𝑛 (∫
[0,𝑡]∩𝐴𝑛

𝑘

(𝑡 − 𝑠)𝛼−1𝜇 (𝐴𝑛
𝑘
) Γ (𝛼)𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐸
=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑚∑
𝑛=𝑙

2𝑛∑
𝑘=1

𝑐𝑛 (∫
[0,𝑡]∩𝐴𝑛

𝑘

(𝑡 − 𝑠)𝛼−1𝜇 (𝐴𝑛
𝑘
) Γ (𝛼)𝑑𝑠)𝑇𝑛𝑢𝑛𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐸
≤ 2 𝑚∑

𝑛=𝑙

𝑐𝑛
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2𝑛∑
𝑘=1

(∫
[0,𝑡]∩𝐴𝑛

𝑘

(𝑡 − 𝑠)𝛼−1𝜇 (𝐴𝑛
𝑘
) Γ (𝛼)𝑑𝑠) 𝑢𝑛𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ2𝑛∞
= 2Γ (𝛼)

𝑚∑
𝑛=𝑙

3𝑛𝑐𝑛 max
1≤𝑘≤2𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫[0,𝑡]∩𝐴𝑛𝑘 (𝑡 − 𝑠)𝛼−1 𝜒𝐴𝑛
𝑘
(𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2Γ (𝛼)
𝑚∑
𝑛=𝑙

3𝑛𝑐𝑛 max
1≤𝑘≤2𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑏𝑘/3
𝑛

𝑎𝑘/3
𝑛
(𝑡 − 𝑠)𝛼−1 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 4𝐾23𝜖Γ (1 + 𝛼)
𝑚∑
𝑛=𝑙

3𝑛(1−𝛼)2𝜖𝑛 ,

(14)

which approaches zero as 𝑙, 𝑚 → ∞ as needed for (9).

Remark 7. Observe Example 6. We remark the following:

(1) There is a reflexive Banach space for which the
indefinite Pettis integral of the function 𝑥 defined by
(7) is nowhere weakly differentiable on [0, 1] (see [13],
the remark below Corollary 4). Meanwhile, 𝑥 has a
RFPI of all order 𝛼 ≥ 3/4.

(2) The function I𝛼𝑥(⋅) is weakly continuous on [0, 1]:
this follows easily from the definition of the Pettis
integral. In fact, we have in view of (9) that

𝜑 (I𝛼𝑥 (𝑡)) = I
𝛼𝜑 (𝑥 (𝑡))

= ∞∑
𝑛=1

2𝑛∑
𝑘=1

𝑐𝑛𝜑 (𝑒𝑛𝑘)𝜇 (𝐴𝑛
𝑘
) Γ (𝛼) ∫[0,𝑡]∩𝐴𝑛

𝑘

(𝑡 − 𝑠)𝛼−1 𝑑𝑠 (15)

holds for every 𝜑 ∈ 𝐸∗. Since󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2𝑛∑
𝑘=1

𝑐𝑛𝜑 (𝑒𝑛𝑘)𝜇 (𝐴𝑛
𝑘
) Γ (𝛼) ∫[0,𝑡]∩𝐴𝑛

𝑘

(𝑡 − 𝑠)𝛼−1 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐𝑛( 2𝑛∑
𝑘=1

󵄨󵄨󵄨󵄨𝜑 (𝑒𝑛𝑘)󵄨󵄨󵄨󵄨2)
1/2

⋅ ( 2𝑛∑
𝑘=1

[∫
[0,𝑡]∩𝐴𝑛

𝑘

(𝑡 − 𝑠)𝛼−1𝜇 (𝐴𝑛
𝑘
) Γ (𝛼)𝑑𝑠]

2)
1/2

≤ 4𝐾23𝜖 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩 2𝑛(1/2−𝜖)3𝑛(1−𝛼)Γ (1 + 𝛼) ,

(16)



4 Journal of Function Spaces

then the infinite series of continuous functions in the
left hand side of (15) converges uniformly in [0, 1].
Hence, the function 𝜑(I𝛼𝑥(⋅)) is continuous on [0, 1]
(this yields the weak continuity ofI𝛼𝑥(⋅) on [0, 1]).

In the following lemma, we gather together some simple
particular sufficient conditions that ensure the existence of
the Riemann-Liouville fractional integral of the functions
fromH𝑝(𝐸).
Lemma 8. Let 𝑥 : 𝐼 → 𝐸 be weakly measurable function. The
RFPI of the function 𝑥 of order 𝛼 > 0 makes sense a.e. on 𝐼 if
at least one of the following cases holds:

(a) 𝑥 ∈ H
𝑝
0 (𝐸), 𝑝 ∈ [1,∞] and 𝛼 ≥ 1.

(b) 𝑥 ∈ H
𝑝
0 (𝐸), 𝑝 > max{1, 1/𝛼}.

(c) 𝑥 is strongly measurable which lies in H𝑝(𝐸), where𝑝 ∈ [1,∞] provided that 𝐸 is weakly complete or
contains no copy of 𝑐0.

If 𝐸 is reflexive, this is also true for any 𝑥 ∈ H𝑝(𝐸), 𝑝 ∈ [1,∞]
and 𝛼 > 0.

In all cases, 𝜑(I𝛼𝑥) = I𝛼𝜑𝑥 holds for every 𝜑 ∈ 𝐸∗.
In the assertions ((a) and (b)), we find sufficient con-

ditions needed for the existence of I𝛼𝑥 in the situation in
which no restriction is placed on 𝐸. In the third assertion, the
properties of𝐸 allow us to characterize a function 𝑥 ∈ H𝑝(𝐸)
for whichI𝛼𝑥 exists.

Proof. Firstly, assertion (a) is direct consequence of Proposi-
tion 2 (part (1)) since 𝑠 → (𝑡 − 𝑠)𝛼−1 ∈ 𝐿∞[0, 𝑡] holds for
almost every 𝑡 ∈ 𝐼 whenever 𝛼 ≥ 1.

Secondly, to prove assertion (b), let 𝑝 > max{1, 1/𝛼} and𝑞 be the conjugate exponents to 𝑝. Since 𝑞(𝛼 − 1) + 1 > 0, we
have that 𝑠 → (𝑡 − 𝑠)𝛼−1 ∈ 𝐿𝑞[0, 𝑡] holds for every 𝑡 ∈ 𝐼. Thus,
the assertion (b) is now an easy consequence of Proposition 2
(part (2)).

Thirdly, to prove (c) we let 𝛼 > 0, 𝑝 ∈ [1,∞]
and 𝑥 ∈ H𝑝(𝐸) be strongly measurable. Since the strong
measurability is preserved under multiplication operation on
functions, the product (𝑡 − ⋅)𝛼−1𝑥(⋅) : [0, 𝑡] → 𝐸 is strongly
measurable on [0, 𝑡] for almost every 𝑡 ∈ 𝐼. In view of Young’s
inequality, for every 𝜑 ∈ 𝐸∗, the real-valued function,

𝑠 󳨃󳨀→ 𝜑 ((𝑡 − 𝑠)𝛼−1 𝑥 (𝑠)) = (𝑡 − 𝑠)𝛼−1 𝜑𝑥 (𝑠) , (17)

is Lebesgue integrable on [0, 𝑡], for almost every 𝑡 ∈ 𝐼. So the
assertion (c) follows immediately from Proposition 2 (parts
(3, 4)).

Similarly, when 𝐸 is reflexive, the result follows from part(3) of Proposition 2.
However, in all cases, the function 𝑠 󳨃→ (𝑡 − 𝑠)𝛼−1𝑥(𝑠) is

Pettis integrable on [0, 𝑡] for almost every 𝑡 ∈ 𝐼. That is, for
almost every 𝑡 ∈ 𝐼, there exists an element in 𝐸 denoted by
I𝛼𝑥(𝑡) such that

𝜑 (I𝛼𝑥 (𝑡)) = ∫𝑡

0
𝜑((𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝑥 (𝑠)) 𝑑𝑠

= ∫𝑡

0

(𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝜑𝑥 (𝑠) 𝑑𝑠 = I
𝛼𝜑𝑥 (𝑡)

(18)

holds for every 𝜑 ∈ 𝐸∗. This completes the proof.

Remark 9. If 𝑥 ∈ H
𝑝
0 (𝐸) such that I𝛼𝑥(𝑡) does not exist for

some 𝑡 ∈ 𝐼, then it does not exist even when we “enlarge” the
space 𝐸 into 𝐹. To see this, let 𝑥 : 𝐼 → 𝐹 such that 𝑥(𝐼) ⊂ 𝐸. If
I𝛼𝑥(𝑡) exists for some 𝑡 ∈ 𝐼, then (𝑡 − ⋅)𝛼−1𝑥(⋅) ∈ 𝑃([0, 𝑡], 𝐹).
Since 𝑥 assumes only values in 𝐸, it follows by the mean value
theorem for Pettis integral (Theorem 4) that the RFPI of 𝑥
should lie in 𝐸.

Before we come to a deep study of the mathematical
properties of the RFPI operator, let us take a look at the
following miscellaneous examples.

Example 10. Let 𝛼 > 0. Define the function 𝑥 : [0, 1] →𝐿∞[0, 1] by 𝑥(𝑡) = 𝜒[0,𝑡].
This function is weakly measurable, Pettis integrable on[0, 1], and 𝜑𝑥 is a function of bounded variation (see, e.g.,

[18]). That is, 𝑥 ∈ H∞
0 (𝐿∞). Hence, in view of Lemma 8 with𝑝 = ∞, the RFPI of 𝑥 exists on [0, 1]. Further, calculations

(cf. [4]) show that

I
𝛼𝑥 (𝑡) (⋅) = (𝑡 − ⋅)𝛼Γ (1 + 𝛼)𝜒[0,𝑡] (⋅) ∈ 𝐿∞ [0, 1] . (19)

Example 11. Let𝛼 > 0. Define the function𝑥 from the interval[0, 1] into the Hilbert space ℓ2 as
𝑥 : 𝑡 󳨃󳨀→ { 1(1 + 𝑡) , 1(2 + 𝑡) , 1(3 + 𝑡) , . . .} , 𝑡 ∈ [0, 1] . (20)

We note that

‖𝑥 (𝑡)‖2ℓ2 = ∑
𝑛

( 1𝑛 + 𝑡)
2 ≤ ∑

𝑛

1𝑛2 < ∞, 𝑡 ∈ [0, 1] . (21)

Thus, the function 𝑥 is well defined. We claim that 𝑥 is
Dunford integrable on [0, 1]. Once our claim is established,
Lemma 8 guarantees the existence ofI𝛼𝑥 on [0, 1]. It remains
to prove this claim and to calculate I𝛼𝑥.

To see this, let 𝜑 ∈ (ℓ2)∗ = ℓ2. According to the
Riesz representation theorem on Hilbert spaces there exists
a uniquely determined 𝜆 fl {𝜆𝑛} ∈ ℓ2 such that 𝜑𝑥(𝑡) =∑𝑛(𝜆𝑛/(𝑛 + 𝑡)). A standard arguments using Beppo Levi’s
Theorem yields

∫1

0

󵄨󵄨󵄨󵄨𝜑𝑥 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ ∑
𝑛

∫1

0

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨(𝑛 + 𝑡)𝑑𝑡 = ∑
𝑛

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 ln(1 + 1𝑛)
≤ ∑

𝑛

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨𝑛 ≤ ∑
𝑛

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 < ∞.
(22)

So 𝑥 is Dunford integrable on [0, 1] and hence Pettis inte-
grable on [0, 1] since ℓ2 is reflexive. Consequently, in view of
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Lemma 8, I𝛼𝑥 exists on [0, 1]. To calculate the RFPI of 𝑥 fix𝑡 ∈ [0, 1] and let 𝜑 ∈ (ℓ2)∗. We have

∫𝑡

0
𝜑((𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝑥 (𝑠)) 𝑑𝑠 = ∫𝑡

0

(𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝜑𝑥 (𝑠) 𝑑𝑠
= I

𝛼 (∞∑
𝑛=1

𝜆𝑛(𝑛 + 𝑡)) .
(23)

Since the series ∑𝑛(𝜆𝑛/(𝑛 + 𝑡)) is uniformly convergent on[0, 1], it follows in view of the generalized linearity of the
fractional integrals [23, Lemma 5], that (cf. [21, Table 9.1])

∫𝑡

0
𝜑((𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝑥 (𝑠)) 𝑑𝑠
= ∞∑

𝑛=1

𝜆𝑛𝑡𝛼𝑛Γ (1 + 𝛼) 2F1 (1, 1, 𝛼 + 1, −𝑡𝑛 ) = 𝜑 (𝑔 (𝑡)) ,
(24)

where 2F1 is the Gauss hypergeometric function evaluated at(1, 1, 𝛼 + 1, −𝑡/𝑛) and
𝑔 (𝑡) fl { 𝑡𝛼𝑛Γ (1 + 𝛼) 2F1 (1, 1, 𝛼 + 1, −𝑡𝑛 )} . (25)

Since

󵄩󵄩󵄩󵄩𝑔 (𝑡)󵄩󵄩󵄩󵄩2ℓ2 = ∑
𝑛

( 𝑡𝛼Γ (1 + 𝛼) 2F1 (1, 1, 𝛼 + 1, −𝑡𝑛 ))2

≤ 2F
2
1 (1, 1, 𝛼 + 1, −1)
Γ2 (1 + 𝛼) ∑

𝑛

1𝑛2 < ∞,
𝑡 ∈ [0, 1] ,

(26)

we see that 𝑔 ∈ ℓ2. Thus,

I
𝛼𝑥 (𝑡) = { 𝑡𝛼𝑛Γ (1 + 𝛼) 2F1 (1, 1, 𝛼 + 1, −𝑡𝑛 )} ,

𝑡 ∈ [0, 1] .
(27)

Example 12. Let 𝛼 ∈ [1/2, 1). Define the countable-valued
function 𝑥 : [0, 1] → 𝑐0 by

𝑥 (𝑡) fl {𝑥𝑛 (𝑡)} , 𝑥𝑛 fl 𝑛𝜒(1/(𝑛+1),1/𝑛]. (28)

This function is strongly measurable, Pettis integrable func-
tion on [0, 1] (see, e.g., [10, 16]). We claim that 𝑥 ∈ H𝑃

0 (𝑐0)
with 𝑝 ∈ (1/𝛼, 2]. Once our claim is established, Lemma 8
guarantees the existence of I𝛼𝑥, 𝛼 ∈ [1/2, 1) on [0, 1]. It
remains to prove this claim by showing firstly that H𝑃(𝑐0)
and to calculate I𝛼𝑥. To do this, let 𝜑 ∈ 𝑐∗0 . Then there
corresponds to 𝜑 a unique {𝜆𝑛} ∈ ℓ1 such that 𝜑𝑥 = ∑𝑛 𝜆𝑛𝑥𝑛.
By noting that

󵄩󵄩󵄩󵄩𝜆𝑛𝑥𝑛󵄩󵄩󵄩󵄩𝑝 = (∫1

0

󵄨󵄨󵄨󵄨𝜆𝑛𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨𝑝 𝑑𝑡)
1/𝑝

= 󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 (∫1/𝑛

1/(𝑛+1)
𝑛𝑝𝑑𝑡)1/𝑝 = 󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 𝑛1/𝑞(𝑛 + 1)1/𝑝

≤ 󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 𝑛1/𝑞𝑛1/𝑝 ≤ 󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨𝑛2/𝑝−1 ≤ 󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨

(29)

holds for any 𝑝 ∈ (1/𝛼, 2], a standard argument using Levi’s
Theorem (or Lebesgue dominated convergence theorem) and
Minkowski’s inequality yields

[∫1

0

󵄨󵄨󵄨󵄨𝜑𝑥 (𝑡)󵄨󵄨󵄨󵄨𝑝 𝑑𝑡]
1/𝑝 ≤ [∫1

0
(∞∑
𝑛=1

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 𝑥𝑛 (𝑡))
𝑝 𝑑𝑡]1/𝑝

= [
[
lim
𝑘→∞

∫1

0
( 𝑘∑
𝑛=1

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 𝑥𝑛 (𝑡))
𝑝

𝑑𝑡]
]
1/𝑝

≤ [
[
lim
𝑘→∞

( 𝑘∑
𝑛=1

󵄩󵄩󵄩󵄩𝜆𝑛𝑥𝑛󵄩󵄩󵄩󵄩𝑝)
𝑝]
]
1/𝑝

≤ ∞∑
𝑛=1

󵄩󵄩󵄩󵄩𝜆𝑛𝑥𝑛󵄩󵄩󵄩󵄩𝑝
≤ ∞∑

𝑛=1

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 < ∞.

(30)

Thus, 𝜑𝑥(⋅) ∈ 𝐿𝑝[0, 1], 𝑝 ∈ (1/𝛼, 2] holds for every 𝜑 ∈ 𝑐∗0
(that is, 𝑥 ∈ H𝑃(𝑐0)). Since 𝑝 > 1/𝛼 > 1, it follows by
Proposition 2, in view of the strong measurability of 𝑥, that𝑥 ∈ H𝑃

0 (𝑐0). Owing to Lemma 8, we infer that the RFPI of𝑥 of any order 𝛼 ∈ [1/2, 1) exists on the interval [0, 1]. To
compute this integral, fix 𝑡 ∈ 𝐼𝑛0 fl [1/(𝑛0+1), 1/𝑛0] for some𝑛0 ∈ N, the set of natural numbers, and let 𝜑 ∈ 𝑐∗0 . Then

∑
𝑛

∫𝑡

0

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝑠)𝛼−1 𝜆𝑛󵄨󵄨󵄨󵄨󵄨 𝑥𝑛 (𝑠) 𝑑𝑠
≤ 󵄨󵄨󵄨󵄨󵄨𝜆𝑛0 󵄨󵄨󵄨󵄨󵄨 ∫

𝑡

1/(𝑛0+1)
(𝑡 − 𝑠)𝛼−1 𝑛0𝑑𝑠

+ ∑
𝑛>𝑛0

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 ∫1/𝑛

1/(𝑛+1)
(𝑡 − 𝑠)𝛼−1 𝑛 𝑑𝑠

= 𝑛0 󵄨󵄨󵄨󵄨󵄨𝜆𝑛0 󵄨󵄨󵄨󵄨󵄨𝛼 (𝑡 − 1𝑛0 + 1)
𝛼

+ ∑
𝑛>𝑛0

𝑛 󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨𝛼 [(𝑡 − 1𝑛 + 1)
𝛼 − (𝑡 − 1𝑛)

𝛼]

≤ 𝑛0 󵄨󵄨󵄨󵄨󵄨𝜆𝑛0 󵄨󵄨󵄨󵄨󵄨𝛼 (𝑡 − 1𝑛0 + 1)
𝛼

+ ∑
𝑛>𝑛0

𝑛 󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨𝛼 [(𝑡 − 1𝑛 + 1) − (𝑡 − 1𝑛)]
𝛼

≤ 𝑛0 󵄨󵄨󵄨󵄨󵄨𝜆𝑛0 󵄨󵄨󵄨󵄨󵄨𝛼 (𝑡 − 1𝑛0 + 1)
𝛼 + ∑

𝑛>𝑛0

𝑛 󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨𝛼 1𝑛𝛼 (𝑛 + 1)𝛼

≤ 𝑛0 󵄨󵄨󵄨󵄨󵄨𝜆𝑛0 󵄨󵄨󵄨󵄨󵄨𝛼 (𝑡 − 1𝑛0 + 1)
𝛼 + ∑

𝑛>𝑛0

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨𝛼 1𝑛2𝛼−1

≤ 𝑛0 󵄨󵄨󵄨󵄨󵄨𝜆𝑛0 󵄨󵄨󵄨󵄨󵄨𝛼 (𝑡 − 1𝑛0 + 1)
𝛼 + ∑

𝑛>𝑛0

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨𝛼 < ∞.
(because 𝛼 ∈ [12 , 1)) .

(31)
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Therefore, by Beppo Levi Theorem it follows that

∫𝑡

0
𝜑((𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝑥 (𝑠)) 𝑑𝑠 = ∫𝑡

0

(𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝜑 (𝑥 (𝑠)) 𝑑𝑠
= ∫𝑡

0

(𝑡 − 𝑠)𝛼−1Γ (𝛼) ∑
𝑛

𝜆𝑛𝑛𝜒(1/(𝑛+1),1/𝑛] (𝑠) 𝑑𝑠
= ∑

𝑛

∫𝑡

0

(𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝜆𝑛𝑛𝜒(1/(𝑛+1),1/𝑛] (𝑠) 𝑑𝑠
= 𝑛0𝜆𝑛0Γ (1 + 𝛼) (𝑡 − 1𝑛0 + 1)

𝛼

+ ∑
𝑛>𝑛0

𝑛𝜆𝑛Γ (1 + 𝛼) [(𝑡 − 1𝑛 + 1)
𝛼 − (𝑡 − 1𝑛)

𝛼] .

(32)

Consequently, we conclude that

I
𝛼𝑥 (𝑡) = {0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛0−1

, 𝑛0Γ (1 + 𝛼) (𝑡 − 1𝑛0 + 1)
𝛼 ,

(𝑛0 + 1)
Γ (1 + 𝛼) [(𝑡 − 1𝑛0 + 2)

𝛼 − (𝑡 − 1𝑛0 + 1)
𝛼] , . . .} ,

(33)

where the nonzero coordinate started from the 𝑛0th place. It
can be easily seen thatI𝛼𝑥(𝑡) ∈ 𝑐0 for any 𝑡 ∈ [0, 1]. Evidently,
we have that󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛 [(𝑡 −

1𝑛 + 1)
𝛼 − (𝑡 − 1𝑛)

𝛼]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑛 [(𝑡 − 1𝑛 + 1) − (𝑡 − 1𝑛)]

𝛼 ≤ 𝑛 [ 1𝑛 (𝑛 + 1)]
𝛼

≤ 1𝑛2𝛼−1 󳨀→ 0 as 𝑛 󳨀→ ∞,
𝑛0Γ (1 + 𝛼) (𝑡 − 1𝑛0 + 1)

𝛼

≤ 𝑛0Γ (1 + 𝛼) ( 1𝑛0 − 1𝑛0 + 1)
𝛼 ≤ 1𝑛2𝛼−10 Γ (1 + 𝛼)

󳨀→ 0 as 𝑛0 󳨀→ ∞

(34)

hold for any 𝑡 ∈ [0, 1].This yieldsI𝛼
1𝑥(𝑡) ∈ 𝑐0 for any 𝑡 ∈ [0, 1]

(this is precisely what we would expect from Definition 5).

Look at part (c) of Lemma 8, with 𝛼 ∈ (0, 1) and𝐸 = 𝑐0. Below we give an example showing that the strongly
measurability hypothesis imposed on a function 𝑥 ∈ H1(𝐸)/
H1

0(𝐸) is not sufficient for the existence of I𝛼𝑥 even when 𝑥
is Denjoy-Pettis integrable (cf. [16]).

Example 13. Let 𝛼 ∈ (0, 1). Define the strongly measurable
function 𝑥 : [0, 1] → 𝑐0 by
𝑥 (𝑡) fl {𝑥𝑛 (𝑡)} ,

𝑥𝑛 (𝑡) fl 𝑛 (𝑛 + 1) [𝜒𝐼𝑛 (𝑡) − 𝜒𝐽𝑛 (𝑡)] , (35)

where

𝐼𝑛 fl ( 1𝑛 + 1 , 𝑛 + 1/2𝑛 (𝑛 + 1)) ,
𝐽𝑛 fl ( 𝑛 + 1/2𝑛 (𝑛 + 1) , 1𝑛) .

(36)

It is immediate that (cf. [16]) 𝑥 is a well-defined, Denjoy-
Pettis (but it is not Pettis) integrable on [0, 1].

In what follows, we will show that the RFPI of 𝑥 does not
exist on a subinterval of positive measure on [0, 1].

To see this, we make use of Proposition 3 as follows:
define for each intervalI𝑛 = [1/(𝑛 + 1), 1/𝑛] the functionals𝜑𝑛 ∈ 𝑐∗0 (required by Proposition 3) to be the corresponding
to the element {𝜆𝑛} fl (0, 0, . . . , 0, 1, 0, 0, . . .) ∈ ℓ1 where
the nonzero coordinate is in the 𝑛th place. Then 𝜑𝑛(𝑥(𝑡)) =𝑥𝑛(𝑡) and thus |𝜑𝑛(𝑥(𝑠))| = 𝑛(𝑛 + 1)[𝜒𝐼𝑛(𝑡) − 𝜒𝐽𝑛(𝑡)]. Clearly,
the family {𝜑𝑛} runs through the unit ball of the dual of𝑐0. Evidently, the isometric isomorphism between 𝑐∗0 and ℓ1
yields ‖𝜑𝑛‖𝑐∗0 = ‖{𝜆𝑛}‖ℓ1 = 1.

Now take 𝑡 ∈ [1/2, 1] and define the continuous function𝑓 : [1/2, 1] → R+ by

𝑓 (𝑡) fl (𝑡 − 1𝑛 + 1)
𝛼 − (𝑡 − 1𝑛)

𝛼 ,
𝑛 ≥ 2, 𝑡 ∈ [12 , 1] .

(37)

It can be easily seen that, in view of 0 < 𝛼 < 1, 𝑓󸀠 is negative
on (0, 1). By standard results from (classical) calculus, it
follows that 𝑓 is strictly decreasing on [0, 1], in particular𝑓(1) < 𝑓(𝑡) for all 𝑡 ∈ [0, 1). Thus, for any 𝑛 ≥ 2 and any𝜑 ∈ {𝜑𝑛} we have

∫
I𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜑 (
(𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝑥 (𝑠))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

= ∫
I𝑛

(𝑡 − 𝑠)𝛼−1Γ (𝛼) 󵄨󵄨󵄨󵄨𝜑 (𝑥 (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠
= ∫1/𝑛

1/(𝑛+1)

(𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝑛 (𝑛 + 1) 𝑑𝑠
= 𝑛 (𝑛 + 1)Γ (1 + 𝛼) [(𝑡 − 1𝑛 + 1)

𝛼 − (𝑡 − 1𝑛)
𝛼]

≥ 𝑛2Γ (1 + 𝛼) [(1 − 1𝑛 + 1)
𝛼 − (1 − 1𝑛)

𝛼] .

(38)

An explicit calculation using L’Hospital’s rule two times
reveals

lim
𝑛→∞

(1 − 1/ (𝑛 + 1))𝛼 − (1 − 1/𝑛)𝛼𝑛−2 = −𝛼2
⋅ lim
𝑛→∞

𝑛3 [( 𝑛𝑛 + 1)
𝛼−1 1

(𝑛 + 1)2 − (1 − 1𝑛)
𝛼−1 1𝑛2 ]

= −𝛼2 lim
𝑛→∞

𝑛 [( 𝑛𝑛 + 1)
𝛼−1 𝑛2

(𝑛 + 1)2 − (1 − 1𝑛)
𝛼−1]
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= −𝛼2 lim
𝑛→∞

𝑛 [( 𝑛𝑛 + 1)
𝛼+1 − (1𝑛)

𝛼−1] = −𝛼2
⋅ lim
𝑛→∞

𝑛2 [(𝛼 + 1) ( 𝑛𝑛 + 1)
𝛼 1
(𝑛 + 1)2

− (𝛼 − 1) (1 − 1𝑛)
𝛼−2 1𝑛2 ] = −𝛼2

⋅ lim
𝑛→∞

[(𝛼 + 1) ( 𝑛𝑛 + 1)
𝛼+2 − (𝛼 − 1) (1 − 1𝑛)

𝛼−2]
= 𝛼,

(39)

from which it follows that

∫
I𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜑 (
(𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝑥 (𝑠))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠��󳨀→0 as 𝑛 󳨀→ ∞. (40)

Therefore, in view of Proposition 3, 𝑠 󳨃→ (𝑡 − 𝑠)𝛼−1𝑥(𝑠) ∉𝑃([0, 1], 𝑐0). Hence, I𝛼𝑥 does not exist, which is what we
wished to show.

The following theorem provides a useful characterization
of the space H𝑝(𝐸), for which the statements reveal how
much the fractional integral I𝛼 is better than the function𝑥 ∈ H𝑝(𝐸). Indeed, based on Lemma 8 using an inequality
of Young, we can easily prove the following.

Lemma 14. For any 𝛼 > 0, the following holds.
(a) If 𝐸 is reflexive, then for every 𝑝 ∈ [1,∞], the operator

I𝛼 mapsH𝑝(𝐸) intoH𝑝
0 (𝐸). In particular, if 0 < 𝛼 <1, then I𝛼 : H1(𝐸) → H
1/((1−𝛼)−𝜖)
0 (𝐸) however small𝜖 > 0 is.

(b) If 𝐸 contains no copy of 𝑐0, then for every 𝑝 ∈ [1,∞],
the operator I𝛼 maps {𝑥 ∈ H

𝑝
0 (𝐸) : 𝑥 strongly

measurable} into H
𝑝
0 (𝐸). In particular, if 𝛼 ≥ 1, the

operator I𝛼 mapsH𝑝
0 (𝐸) into itself.

(c) If 𝑝 > max{1, 1/𝛼}, the operator I𝛼 sends H𝑝
0 (𝐸) to𝐶[𝐼, 𝐸𝜔] (if we define I𝛼𝑥(0) fl 0). In particular, if𝛼 ∈ (0, 1), I𝛼 : H𝑝

0 (𝐸) → H𝛼−1/𝑝(𝐸).
Proof. At the beginning, let 𝛼 > 0 and 𝑥 ∈ H𝑝(𝐸) with𝑝 ∈ [1,∞] and define the real-valued function 𝑔 : 𝐼 → R

by 𝑔(𝑡) fl 𝑡𝛼−1/Γ(𝛼). If 𝐸 is reflexive, it follows, in view of
Lemma 8, that J𝛼𝑥 exists a.e. in 𝐼 and 𝜑(I𝛼𝑥) = I𝛼𝜑𝑥
for every 𝜑 ∈ 𝐸∗. Young’s inequality guarantees that the
convolution product 𝑔 ∗ 𝜑𝑥(⋅) lies in 𝐿𝑝[𝐼]. Consequently𝜑(I𝛼𝑥) = I𝛼𝜑𝑥 = 𝑔 ∗ 𝜑𝑥 ∈ 𝐿𝑝[𝐼] for every 𝜑 ∈ 𝐸∗.
The reflexivity of 𝐸 together with Proposition 2 yields I𝛼𝑥 ∈
H

𝑝
0 (𝐸).
In particular, if 0 < 𝛼 < 1, it can be easily seen that∫

𝐼
(𝑔(𝑡))𝑞𝑑𝑡 < ∞ for every 𝑞 ∈ [1, 1/(1 − 𝛼)). That is, 𝑔 ∈𝐿1/(1−𝛼)−𝜖[𝐼], 𝜖 > 0. By Young’s inequality, it follows that𝜑(I𝛼𝑥) = 𝑔 ∗ 𝜑𝑥 ∈ 𝐿1/(1−𝛼)−𝜖[𝐼] for every 𝜑 ∈ 𝐸∗ however

small 𝜖 > 0 is. Now, the assertion (a) follows because of the
reflexivity of 𝐸.

Next, in order to prove the assertion (b) let 𝑥 ∈ H
𝑝
0 (𝐸)

and note, in view of Lemma 8, that I𝛼𝑥 exists on 𝐼. Define𝑦 : 𝐼 → 𝐸 by𝑦(𝑡) fl I𝛼𝑥(𝑡), 𝑥 ∈ H
𝑝
0 (𝐸). Since𝜑𝑦(⋅) ∈ 𝐿𝑝[𝐼]

for every𝜑 ∈ 𝐸∗, it follows that𝑦 ∈ H𝑝(𝐸). Moreover, for any𝑎, 𝑏 ∈ 𝐼 (𝑎 < 𝑏), we have
∫𝑏

𝑎
𝜑𝑦 (𝑠) 𝑑𝑡 = ∫𝑏

𝑎
I𝜑𝑥 (𝑡) 𝑑𝑡 = 1Γ (𝛼)

⋅ ∫𝑏

𝑎
∫𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜑𝑥 (𝑠) 𝑑𝑠 𝑑𝑡

= 1Γ (𝛼) [∫
𝑏

𝑎
∫𝑏

𝑠
(𝑡 − 𝑠)𝛼−1 𝜑𝑥 (𝑠) 𝑑𝑡 𝑑𝑠

+ ∫𝑎

0
∫𝑏

𝑎
(𝑡 − 𝑠)𝛼−1 𝜑𝑥 (𝑠) 𝑑𝑡 𝑑𝑠]

= 1Γ (𝛼) [∫
𝑏

𝑎
(𝑏 − 𝑠)𝛼 𝜑𝑥 (𝑠) 𝑑𝑠

+ ∫𝑎

0
[(𝑏 − 𝑠)𝛼 − (𝑎 − 𝑠)𝛼] 𝜑𝑥 (𝑠) 𝑑𝑠]

= 1Γ (𝛼) [∫
𝑎

0
(𝑏 − 𝑠)𝛼 𝜑𝑥 (𝑠) 𝑑𝑠

+ ∫𝑏

𝑎
(𝑏 − 𝑠)𝛼 𝜑𝑥 (𝑠) 𝑑𝑠 − ∫𝑎

0
(𝑎 − 𝑠)𝛼 𝜑𝑥 (𝑠) 𝑑𝑠]

= ∫𝑏

0

(𝑏 − 𝑠)𝛼Γ (1 + 𝛼)𝜑𝑥 (𝑠) 𝑑𝑠 − ∫𝑎

0

(𝑎 − 𝑠)𝛼Γ (1 + 𝛼)𝜑𝑥 (𝑠) 𝑑𝑠
= 𝜑 (𝑥[𝑎,𝑏]) ,

(41)

where

𝑥[𝑎,𝑏] fl (𝑃) ∫𝑏

0

(𝑏 − 𝑠)𝛼Γ (1 + 𝛼)𝑥 (𝑠) 𝑑𝑠
− (𝑃) ∫𝑎

0

(𝑎 − 𝑠)𝛼Γ (1 + 𝛼)𝑥 (𝑠) 𝑑𝑠.
(42)

Since 𝑥 ∈ 𝑃[𝐼, 𝐸], owing to Proposition 2 (part (1)), it follows
that (𝑏 − ⋅)𝛼𝑥(𝑠) and (𝑎 − ⋅)𝛼𝑥(𝑠) are Pettis integrable on 𝐼 and
so 𝑥[𝑎,𝑏] ∈ 𝐸.

A combination of these results yields𝜑𝑦 ∈ 𝐿𝑝(𝐼) for every𝜑 ∈ 𝐸∗ and there exists an element 𝑥[𝑎,𝑏] ∈ 𝐸 such that
𝜙𝑥[𝑎,𝑏] = ∫𝑏

𝑎
𝜑𝑦(𝑡)𝑑𝑡 for every 𝑎, 𝑏 ∈ 𝐼. Since 𝐸 contains no

copy of 𝑐0, it follows that (cf. [17, Theorem 23.]) 𝑦 ∈ 𝑃[𝐼, 𝐸].
Consequently 𝑦(⋅) ∈ H

𝑝
0 (𝐸). This is the claim (b).

To prove the assertion (c), let 𝑝 > max{1, 1/𝛼} and 𝑥 ∈
H

𝑝
0 (𝐸). By Lemma 8, we deduce that I𝛼𝑥 exists a.e. on 𝐼.

Now, let 𝑞 ∈ [1,∞] be such that 1/𝑝 + 1/𝑞 = 1. Since𝑞(𝛼 − 1) > −1, 𝑔 fl (⋅)𝛼−1/Γ(𝛼) ∈ 𝐿𝑞[𝐼]. Therefore, as a direct
consequence of Young’ inequality it follows that

𝜑 (I𝛼𝑥 (⋅)) = I
𝛼𝜑𝑥 (⋅) = 𝑔 ∗ 𝜑𝑥 (⋅) ∈ 𝐶 [𝐼,R] (43)

holds for every 𝜑 ∈ 𝐸∗. Now, we claim that I𝛼𝑥(𝑡) → 0
in 𝐸 as 𝑡 → 0. Once our claim is established, the definition
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I𝛼𝑥(0) fl 0 guarantees thatI𝛼𝑥(⋅) ∈ 𝐶[𝐼, 𝐸𝜔], which is what
wewished to show. It remains to prove our claim: without loss
of generality, assume that I𝛼𝑥(𝑡) ̸= 0. Then there exists (as
a consequence of the Hahn-Banach theorem) 𝜑 ∈ 𝐸∗ with‖𝜑‖ = 1 such that ‖I𝛼𝑥(𝑡)‖ = 𝜑(I𝛼𝑥(𝑡)) = I𝛼𝜑𝑥(𝑡). By
Hölder’s inequality we obtain

󵄨󵄨󵄨󵄨𝜑 (I𝛼𝑥 (𝑡))󵄨󵄨󵄨󵄨
≤ 1Γ (𝛼) (∫

𝑡

0
(𝑡 − 𝑠)𝑞(𝛼−1) 𝑑𝑠)1/𝑞 (∫𝑡

0

󵄨󵄨󵄨󵄨𝜑𝑥 (𝑠)󵄨󵄨󵄨󵄨𝑝 𝑑𝑠)
1/𝑝

≤ 1Γ (𝛼) ( 𝑡(𝛼−1)𝑞+1(𝛼 − 1) 𝑞 + 1)
1/𝑞 (∫

𝐼

󵄨󵄨󵄨󵄨𝜑𝑥 (𝑠)󵄨󵄨󵄨󵄨𝑝 𝑑𝑠)1/𝑝

= 𝑡𝛼−1+1/𝑞
Γ (𝛼) [𝑞 (𝛼 − 1) + 1]1/𝑞

󵄩󵄩󵄩󵄩𝜑𝑥󵄩󵄩󵄩󵄩𝐿𝑝

= 𝑡𝛼−1/𝑝 󵄩󵄩󵄩󵄩𝜑𝑥󵄩󵄩󵄩󵄩𝐿𝑝
Γ (𝛼) [𝑞 (𝛼 − 1) + 1]1/𝑞 .

(44)

This is equivalent with the following estimate:

󵄩󵄩󵄩󵄩I𝛼𝑥 (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝑡𝛼−1/𝑝 󵄩󵄩󵄩󵄩𝜑𝑥󵄩󵄩󵄩󵄩𝐿𝑝
Γ (𝛼) [𝑞 (𝛼 − 1) + 1]1/𝑞 . (45)

Owing to 𝛼 > 1/𝑝 we get I𝛼𝑥(𝑡) → 0 in 𝐸 as 𝑡 → 0 and
consequently, in view ofI𝛼𝑥(0) fl 0,I𝛼𝑥(⋅) ∈ 𝐶[𝐼, 𝐸𝜔]. This
proves the first part of the assertion (c).

Finally, let 𝛼 ∈ (0, 1) and 𝑡, 𝜏 ∈ 𝐼. Without loss of
generality, assume 𝜏 < 𝑡. Then for any 𝜑 ∈ 𝐸∗ we have by
Hölder inequality with 𝑝 > 1/𝛼, in view 𝑞(𝛼 − 1) > −1, that

󵄨󵄨󵄨󵄨𝜑 (I𝛼𝑥 (𝑡) −I
𝛼𝑥 (𝜏))󵄨󵄨󵄨󵄨 Γ (𝛼)

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜑𝑥 (𝑠) 𝑑𝑠 − ∫𝜏

0
(𝜏 − 𝑠)𝛼−1 𝜑𝑥 (𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (∫𝜏

0

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝑠)𝛼−1 − (𝜏 − 𝑠)𝛼−1󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜑𝑥 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠
+ ∫𝑡

𝜏
(𝑡 − 𝑠)𝛼−1 󵄨󵄨󵄨󵄨𝜑𝑥 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠)

= [(∫𝜏

0

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝑠)𝛼−1 − (𝜏 − 𝑠)𝛼−1󵄨󵄨󵄨󵄨󵄨𝑞 𝑑𝑠)
1/𝑞

+ (∫𝑡

𝜏
(𝑡 − 𝑠)(𝛼−1)𝑞 𝑑𝑠)1/𝑞] 󵄩󵄩󵄩󵄩𝜑𝑥󵄩󵄩󵄩󵄩𝐿𝑝[𝐼]

≤ [
[
(∫𝜏

0

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝑠)𝑞(𝛼−1) − (𝜏 − 𝑠)𝑞(𝛼−1)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠)
1/𝑞

+ ((𝑡 − 𝜏)(𝛼−1)𝑞+1(𝛼 − 1) 𝑞 + 1 )1/𝑞]
]
󵄩󵄩󵄩󵄩𝜑𝑥󵄩󵄩󵄩󵄩𝐿𝑝[𝐼]

= [(∫𝜏

0

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝑠)𝑞(𝛼−1) − (𝜏 − 𝑠)𝑞(𝛼−1)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠)
1/𝑞

+ (𝑡 − 𝜏)𝛼−1/𝑝
[𝑞 (𝛼 − 1) + 1]1/𝑞]

󵄩󵄩󵄩󵄩𝜑𝑥󵄩󵄩󵄩󵄩𝐿𝑝[𝐼] .
(46)

By noting that (𝛼 − 1)𝑞 ∈ (−1, 0) when 𝛼 ∈ (0, 1), it can be
easily seen that

∫𝜏

0

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝑠)𝑞(𝛼−1) − (𝜏 − 𝑠)𝑞(𝛼−1)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠
≤ 1𝑞 (𝛼 − 1) + 1 (𝑡 − 𝜏)𝑞(𝛼−1)+1 .

(47)

That is,

(∫𝜏

0

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝑠)𝑞(𝛼−1) − (𝜏 − 𝑠)𝑞(𝛼−1)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠)
1/𝑞

≤ (𝑡 − 𝜏)𝛼−1/𝑝
[𝑞 (𝛼 − 1) + 1]1/𝑞 .

(48)

A combination of these results yields󵄨󵄨󵄨󵄨𝜑 (I𝛼𝑥 (𝑡)) − 𝜑 (I𝛼𝑥 (𝜏))󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝜑 (I𝛼𝑥 (𝑡) −I

𝛼𝑥 (𝜏))󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩𝜑𝑥󵄩󵄩󵄩󵄩𝐿𝑝[𝐼]Γ (𝛼) 2 (𝑡 − 𝜏)𝛼−1/𝑝

[𝑞 (𝛼 − 1) + 1]1/𝑞 .
(49)

Thus,I𝛼𝑥 ∈ H𝛼−1/𝑝(𝐸). This completes the proof.

Corollary 15. For any 𝛼 > 0, I𝛼 : 𝐶[𝐼, 𝐸𝜔] → 𝐶[𝐼, 𝐸𝜔].
Proof. Let 𝑥 ∈ 𝐶[𝐼, 𝐸𝜔], then 𝜑𝑥 ∈ 𝐿∞ holds for every𝜑 ∈ 𝐸∗. By noting that the weak continuity implies a strong
measurability ([24] page 73), it follows that 𝑥 is strongly
measurable on 𝐼. Hence, in view of Proposition 2, 𝑥 ∈
H∞

0 (𝐸). Consequently 𝐶[𝐼, 𝐸𝜔] ⊆ H
𝑝
0 (𝐸) for every 𝑝 ∈[1,∞]. That is,I𝛼 : 𝐶[𝐼, 𝐸𝜔] → 𝐶[𝐼, 𝐸𝜔]. Hence, the desired

result is obtained.

Example 16. Let 𝛼 ∈ [1/2, 1). Define the function 𝑥 : [0, 1] →𝑐0 by 𝑥(𝑡) = {𝑛𝜒(1/(𝑛+1),1/𝑛]}.We have (in view of Example 12)
that

I
𝛼𝑥 (𝑡) = {0, 0, . . . , 0, 𝑛0 (𝑡 − 1/ (𝑛0 + 1))𝛼

Γ (1 + 𝛼) ,
(𝑛0 + 1)
Γ (1 + 𝛼) [(𝑡 − 1𝑛0 + 2)

𝛼 − (𝑡 − 1𝑛0 + 1)
𝛼] , . . .} .

(50)

To show that I𝛼𝑥 is norm continuous on [0, 1], let 𝜏, 𝑡 ∈[0, 1]. With no loss of generality, we may assume that 𝑡, 𝜏 ∈𝐼𝑛0 , for some 𝑛0 ∈ N. Since the nonzero terms of the sequence
in (50) are nonincreasing, then, in view of

|𝑡 − 𝜏| ≤ ( 1𝑛0 − 1𝑛0 + 1) = 1𝑛0 (𝑛0 + 1) ≤ 1𝑛20 , (51)
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we have
󵄩󵄩󵄩󵄩I𝛼𝑥 (𝑡) −I

𝛼
1𝑥 (𝜏)󵄩󵄩󵄩󵄩𝑐0

= 𝑛0Γ (1 + 𝛼)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡 −

1𝑛 + 1)
𝛼 − (𝜏 − 1𝑛 + 1)

𝛼󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑛0Γ (1 + 𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡 − 1𝑛 + 1) − (𝜏 − 1𝑛 + 1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼

≤ 𝑛0Γ (1 + 𝛼) |𝑡 − 𝜏|𝛼 ≤ 1Γ (1 + 𝛼) |𝑡 − 𝜏|𝛼√|𝑡 − 𝜏|
= |𝑡 − 𝜏|𝛼−1/2Γ (1 + 𝛼) .

(52)

Thus, the RFPI of 𝑥 is norm continuous on [0, 1]. Precisely,
since 0 < 𝛼 − 1/2 < 𝛼 − 1/𝑝 < 1, for any 𝑝 ≤ 2, then
I𝛼𝑥 ∈ H𝛼−1/2(𝐸) ⊂ H𝛼−1/𝑝(𝐸). This is precisely what one
would expect from Lemma 14 (part (c)).

Analogously, an explicit calculation reveals that I𝛼𝑥 lies
in 𝐶([0, 1], 𝐿∞[0, 1]), where 𝑥 : [0, 1] → 𝐿∞[0, 1] defined by
Example 10.

We now consider additional mapping properties of the
operator I𝛼. Precisely, we will show that the RFPI enjoys
the following commutative property which is folklore in case𝐸 = R. However, the proof is completely similar to that of [8],
Lemma 3.5.

Lemma 17. Let 𝛼, 𝛽 > 0 and 𝑝 > max{1, 1/𝛼, 1/𝛽}. Then

I
𝛼
I
𝛽𝑥 = I

𝛽
I
𝛼𝑥 = I

𝛼+𝛽𝑥 (53)

holds for every 𝑥 ∈ H
𝑝
0 (𝐸). If 𝐸 is reflexive, this is also true for

every 𝑝 ≥ 1.
Proof. Since 𝑝 > max{1, 1/𝛼, 1/𝛽}, it follows that 𝑝 >
max{1, 1/(𝛼+𝛽)}. So, by Lemmas 8 and 14, themappingsI𝛼𝑥,
I𝛽𝑥, andI𝛼+𝛽𝑥 belong toH∞

0 (𝐸) for every 𝑥 ∈ H
𝑝
0 (𝐸). Now

repeating the same process as in ([8], Lemma 3.5) implies the
claim.

When 𝐸 is reflexive, the result follows as a direct applica-
tion of Lemma 14.

3. Fractional Derivatives of
Vector-Valued Functions

After the notation of the fractional integrals of vector-
valued functions, the fractional derivatives become a natural
requirement. Before we come to the definitions and a detailed
study of the mathematical properties of fractional differential
operators, we recall the following.

Definition 18. Consider the vector-valued function 𝑥 : 𝐼 →𝐸:
(1) Let 𝜑𝑥 be differentiable on 𝐼 for every 𝜑 ∈ 𝐸∗. The

function 𝑥 is said to be weakly differentiable on 𝐼 if

there exists 𝑦 : 𝐼 → 𝐸 such that for every 𝜑 ∈ 𝐸∗ we
have

𝑑𝜑𝑥 (𝑡)𝑑𝑡 = 𝜑𝑦 (𝑡) , for every 𝑡 ∈ 𝐼. (54)

The function 𝑦 is called the weak derivative of the
function 𝑥.

(2) Let 𝜑𝑥 be differentiable a.e. on 𝐼 for every 𝜑 ∈ 𝐸∗
(the null set may vary with 𝜑 ∈ 𝐸∗). The function 𝑥
is said to be pseudo differentiable on 𝐼 if there exists
a function 𝑦 : 𝐼 → 𝐸 such that for every 𝜑 ∈ 𝐸∗ there
exists a null set𝑁(𝜑) ⊂ 𝐼 such that

(𝜑𝑥 (𝑡))󸀠 = 𝜑𝑦 (𝑡) , for every 𝑡 ∈ 𝐼𝑁 (𝜑) . (55)

In this case, the function 𝑦 is called the pseudo
derivative of 𝑥.
If 𝑥 is pseudo differentiable on 𝐼 and the null set
invariant for every 𝜑 ∈ 𝐸∗, then 𝑥 is a.e. weakly
differentiable on 𝐼.

Clearly, if 𝑥 is a.e. weakly differentiable on 𝐼, then 𝜑(𝑥)
is a.e. differentiable on 𝐼. The converse holds in a weakly
sequentially complete space (see [25], Theorem 7.3.3).

For more details of the derivatives of vector-valued
functions we refer to [10, 12, 26].

The following results play a major role in our analysis

Proposition 19 (see [27], Theorem 5.1). The function 𝑦 : 𝐼 →𝐸 is an indefinite Pettis integrable, if and only if 𝑦 is weakly
absolutely continuous on 𝐼 and have a pseudo derivative on 𝐼.
In this case, 𝑦 is an indefinite Pettis integral of any of its pseudo
derivatives.

Now we are in the position to define the fractional-type
derivatives of vector-valued functions.

Definition 20. Let 𝑥 : 𝐼 → 𝐸. For the positive integer𝑚 such
that 𝛼 ∈ (𝑚 − 1,𝑚), 𝑚 ∈ N0 fl {0, 1, 2, . . .} we define the
Caputo fractional-pseudo (weak) derivative “shortly CFPD
(CFWD)” of 𝑥 of order 𝛼 by

𝑑𝛼𝑑𝑡𝛼 𝑥 (𝑡) fl I
𝑚−𝛼𝐷𝑚𝑥 (𝑡) , (56)

where the sign “𝐷” denotes the pseudo (or weak) differential
operator. We use the notation 𝑑𝛼𝑝/𝑑𝑡𝛼 and 𝑑𝛼𝜔/𝑑𝑡𝛼 to charac-
terize the Caputo fractional-pseudo derivatives and Caputo
fractional weak derivatives, respectively.

It is well known that, although the weak derivative of a
weakly differentiable function is uniquely determined, the
pseudo derivative of the pseudo differentiable function is not
unique. Also, although any two pseudo derivatives 𝑦, 𝑧 of a
function 𝑥 : 𝐼 → 𝐸 need not be a.e. equal (see [12, Example
9.1] and [26, p. 2]), the functions 𝑦, 𝑧 are weakly equivalent
on 𝐼 (that is, 𝜑𝑦 = 𝜑𝑧 holds a.e. for every 𝜑 ∈ 𝐸∗). The
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next lemma provides a useful characterization property of the
CFPD. Really, it can be easily seen that the CFPD of a Caputo
fractional-pseudo differentiable function does not depend on
the choice of a pseudo derivative of the function.

Lemma 21. Let 𝑥 : 𝐼 → 𝐸 be pseudo differentiable function
where pseudo derivatives lie in H

𝑝
0 (𝐸). If (𝑑𝛼𝑝/𝑑𝑡𝛼)𝑥 exists on𝐼, then the CFPD of 𝑥 depends on the choice of the pseudo

derivatives of 𝑥.
Proof. Let 𝑦, 𝑧 ∈ H

𝑝
0 (𝐸) be two pseudo derivatives of the

pseudo differentiable function 𝑥. Since 𝑥 and 𝑦 are weakly
equivalent on 𝐼, then for every 𝜑 ∈ 𝐸∗ there exists a null
set N which depends on 𝜑 ∈ 𝐸∗ such that (𝑡 − 𝑠)−𝛼𝜑𝑦(𝑠) =(𝑡−𝑠)−𝛼𝜑𝑧(𝑠) for every 𝑠 ∈ [0, 𝑡]/N. Consequently, for almost
every 𝑡 ∈ 𝐼,

𝜑 (I1−𝛼𝑦 (𝑡)) = I
1−𝛼𝜑𝑦 (𝑡) = I

1−𝛼𝜑𝑧 (𝑡)
= 𝜑 (I1−𝛼𝑧 (𝑡)) (57)

holds for every 𝜑 ∈ 𝐸∗. Thus,

𝑑𝛼𝑝𝑑𝑡𝛼 𝑥 = I
1−𝛼𝐷𝑝𝑥 = I

1−𝛼𝑦 = I
1−𝛼𝑧 on 𝐼, (58)

which is what we wished to show.

We consider the following examples.

Example 22. Define 𝑥 : [0, 1] → ℓ2 by
𝑥 (𝑡) fl {ln(1 + 𝑡𝑛)} , 𝑛 ∈ N. (59)

We claim that the CFWD of 𝑥 exists on [0, 1]. To see this, we
let 𝜑 ∈ (ℓ2)∗ = ℓ2. Then there corresponds to 𝜑 a sequence{𝜆𝑛} ∈ ℓ2 such that

𝜑𝑥 (𝑡) = ∑
𝑛

𝜆𝑛 ln(1 + 𝑡𝑛) . (60)

Since the series in (60) converges uniformly on [0, 1], the
formal differentiation of 𝜑𝑥 yields

(𝜑𝑥 (𝑡))󸀠 = ∑
𝑛

𝜆𝑛𝑛 + 𝑡 = 𝜑 ({ 1𝑡 + 𝑛}) . (61)

It is not hard to justify the differentiation by noting that the
series in the right hand side of (61) is uniformly and absolutely
convergent on [0, 1]. Consequently, 𝜑𝑥 is differentiable on[0, 1] for 𝜑 ∈ (ℓ2)∗, meaning that 𝑥 is weakly differentiable on[0, 1] (because ℓ2 is weakly complete (cf. [25], Theorem 7.3.3)
and 𝐷𝜔𝑥(𝑡) = {1/(𝑡 + 𝑛)}. Owing to Lemma 25, the CFWD
of any order 𝛼 ∈ (0, 1) of 𝑥 exists on [0, 1]. To calculate the
CFWD of 𝑥 on [0, 1] we observe, in view of Example 11, that

𝑑𝛼𝜔𝑑𝑡𝛼 𝑥 (𝑡) = I
1−𝛼𝐷𝜔𝑥 (𝑡)

= { 𝑡1−𝛼𝑛Γ (2 − 𝛼) 2F1 (1, 1, 2 − 𝛼, −𝑡𝑛 )} .
(62)

Example 23. Let𝐸 be an infinite dimensionBanach space that
fails cotype. Define 𝑦 : [0, 1] → 𝐸 by 𝑦(𝑡) fl ∫𝑡

0
𝑥(𝑠)𝑑𝑠,

where 𝑥 : [0, 1] → 𝐸 given by formula (7). As cited in ([13],
Corollary 4), 𝑦 is nowhere weakly differentiable on [0, 1].
Consequently the CFWD of any order 𝛼 ∈ [3/4, 1) of 𝑦 loses
its meaning on [0, 1].
Remark 24. As shown in Example 23, there is an infinite
dimension Banach space 𝐸 and weakly absolutely continuous
function 𝑦 : 𝐼 → 𝐸 which is nowhere weakly differentiable
(hence the CFWD of 𝑦 does not exist). Also, even when 𝐸 is
separable, and 𝑦 is Lipschitz function, the pseudo derivatives
(hence the CFPD) of 𝑦 need not to exist [28].

However, Definition 20 of the CFPD (CFWD) has the
disadvantage that it completely loses its meaning if the
function𝑥 fails to be pseudo (weakly) differentiable. Precisely,
the CFPD (in particular the CFWD) of a function 𝑥 loses its
meaning if 𝑥 is not weakly absolutely continuous.

Thenext lemma gives sufficient conditions that ensure the
existence of the Caputo fractional derivatives of a function𝑥 ∈ H𝑝(𝐸).
Lemma 25. Let 𝛼 ∈ (0, 1). For the function 𝑥 : 𝐼 → 𝐸, the
following hold:

(a) If 𝑥 has a pseudo derivative 𝐷𝑝𝑥 ∈ H
𝑝
0 (𝐸), where 𝑝 >1/(1 − 𝛼), then the CFPD of 𝑥 of order 𝛼 exists on 𝐼.

Moreover, (𝑑𝛼𝑝/𝑑𝑡𝛼)𝑥 ∈ 𝐶[𝐼, 𝐸𝜔].
(b) If 𝐸 is weakly complete or contains no copy of 𝑐0 and if𝑥 has a weak derivative 𝐷𝜔𝑥 ∈ H𝑝(𝐸), where 𝑝 ∈[1,∞], then the CFWD of 𝑥 of order 𝛼 exists on 𝐼.

Moreover, (𝑑𝛼𝜔/𝑑𝑡𝛼)𝑥 ∈ 𝐶[𝐼, 𝐸𝜔].
This holds for any 𝑥 ∈ H𝑝(𝐸) with 𝑝 ∈ [1,∞] if 𝐸 is reflexive.

In all cases, 𝜑((𝑑𝛼𝑝/𝑑𝑡𝛼)𝑥) = (𝑑𝛼𝑝/𝑑𝑡𝛼)𝜑𝑥 (𝜑((𝑑𝛼𝜔/𝑑𝑡𝛼)𝑥) =(𝑑𝛼𝜔/𝑑𝑡𝛼)𝜑𝑥) holds for every 𝜑 ∈ 𝐸∗.
Proof. Since the weak (pseudo) derivative of an a.e. weakly
(pseudo) differentiable function is strongly (weakly) mea-
surable [12, 26, 28], the proof is readily available, in view of
the definition of Caputo fractional derivatives and Lemma 8.
Moreover, since 𝐷𝜔𝑥(𝐷𝑝𝑥) ∈ H

𝑝
0 (𝐸) with 𝑝 > 1/(1 − 𝛼),

it follows, in view of Lemma 14, that I1−𝛼𝐷𝜔𝑥(I1−𝛼𝐷𝑝𝑥) ∈𝐶[𝐼, 𝐸𝜔]. This completes the proof.

Besides the Caputo fractional-pseudo (weak) derivatives,
we define the Riemann-Liouville fractional-pseudo (weak)
derivatives.

Definition 26. Let 𝑥 : 𝐼 → 𝐸. For the positive integer 𝑚
such that 𝛼 ∈ (𝑚 − 1,𝑚), 𝑚 ∈ N0 fl {0, 1, 2, . . .} we define
the Riemann-Liouville fractional-pseudo (weak) derivative
“shortly RFPD (RFWD)” of 𝑥 of order 𝛼 by

D
𝛼𝑥 (𝑡) fl 𝐷𝑚

I
𝑚−𝛼𝑥 (𝑡) , (63)

where 𝐷 is defined as in Definition 20. We use the notation
D𝛼

𝑝 (D𝛼
𝜔) to characterize the Riemann-Liouville fractional-

pseudo (weak) derivatives.
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Clearly, in infinite dimension Banach spaces, the weak
absolute continuity of I𝑚−𝛼𝑥, is necessarily (but not suf-
ficient) condition for the existence of RFPD (in particular
RFWD) of 𝑥.
Lemma 27. Let 0 < 𝛼 < 1. For any 𝑥 ∈ H

𝑝
0 (𝐸) with 𝑝 >

max{1/𝛼, 1/(1 − 𝛼)}, we have
D

𝛼
𝑝I

𝛼𝑥 = 𝑥 a.e. (64)

If 𝐸 is reflexive, this is also true for every 𝑝 ≥ 1.
Proof. Our assumption 𝑥 ∈ H

𝑝
0 (𝐸)with 𝑝 > max{1/𝛼, 1/(1−𝛼)} yields, in view of Lemma 17, that

D
𝛼
𝑝I

𝛼𝑥 = 𝐷𝑝I
1−𝛼

I
𝛼𝑥 = 𝐷𝑝I

1𝑥. (65)

The claim now follows immediately, since (cf. Proposition 19)
the indefinite integral of Pettis integrable function is weakly
absolutely continuous and it is pseudo differentiable with
respect to the right endpoint of the integration interval and
its pseudo derivative equals the integrand at that point.

Remark 28. When we replace D𝛼
𝑝 by D𝛼

𝜔, then Lemma 27
is no longer necessarily true for arbitrary 𝑥 ∈ H1

0(𝐸) even
when 𝐸 is reflexive: evidently, in [13, remark below Corollary
4] the existence of a reflexive Banach space 𝐸 and a strong
measurable Pettis integrable function 𝑥 : 𝐼 → 𝐸 was proved
such that 𝑥 has nowhere weakly differentiable integral. In this
case, 𝐷𝜔I

1𝑥 lost its meaning. This gives a reason to believe
that (65) (hence (64)) withD𝛼

𝜔𝑥 could not happen.

However, we have the following result.

Lemma 29. Let 0 < 𝛼 < 1. For any 𝑥 ∈ 𝐶[𝐼, 𝐸𝜔], we have
D

𝛼
𝜔I

𝛼𝑥 = 𝑥 on 𝐼. (66)

Proof. Our assumption 𝑥 ∈ 𝐶[𝐼, 𝐸𝜔] ⊂ H∞
0 (𝐸) (see the proof

of Corollary 15) yields, in view of Lemma 17, that

D
𝛼
𝜔I

𝛼𝑥 = 𝐷𝜔I
1−𝛼

I
𝛼𝑥 = 𝐷𝜔I

1𝑥. (67)

The claim now follows immediately, since the indefinite
integral of weakly contentious function is weakly absolutely
continuous and it is weakly differentiable with respect to
the right endpoint of the integration interval and its weak
derivative equals the integrand at that point.

The following lemma is folklore in case 𝐸 = R, but to see
that it also holds in the vector-valued case, we provide a proof.

Lemma 30. Let 0 < 𝛼 < 1 and 𝑝 > max{1/𝛼, 1/(1−𝛼)}. If the
function 𝑥 : 𝐼 → 𝐸 is weakly absolutely continuous on 𝐼 and
passes a pseudo derivative inH

𝑝
0 (𝐸), then𝑑𝛼𝑝𝑥𝑑𝑡𝛼 (𝑡) = D

𝛼
𝑝𝑥 (𝑡) − 𝑡𝛼Γ (1 + 𝛼)𝑥 (0) . (68)

In particular, if 𝑥 passes a weak derivative in 𝐶[𝐼, 𝐸𝜔], then𝑑𝛼𝜔𝑥𝑑𝑡𝛼 (𝑡) = D
𝛼
𝜔𝑥 (𝑡) − 𝑡𝛼Γ (1 + 𝛼)𝑥 (0) . (69)

If 𝐸 is reflexive, this is also true for every 𝑝 ≥ 1.

Proof. We observe that, under the assumption imposed on𝐷𝑝𝑥 together with Proposition 3, the weakly absolutely
continuity of 𝑥 is equivalent to

𝑥 (𝑡) = 𝑥 (0) + ∫𝑡

0
𝐷𝑝𝑥 (𝑠) 𝑑𝑠. (70)

Hence, owing to Lemma 27, it follows that

𝑑𝛼𝑝𝑥𝑑𝑡𝛼 = I
1−𝛼𝐷𝑝𝑥 = (D𝛼

𝑝I
𝛼)I1−𝛼𝐷𝑝𝑥

= D
𝛼
𝑝 (I𝛼

I
1−𝛼)𝐷𝑝𝑥 = (𝐷𝑝I

1−𝛼)I1𝐷𝑝𝑥
= 𝐷𝑝I

1−𝛼 (𝑥 (𝑡) − 𝑥 (0))
= D

𝛼
𝑝𝑥 (𝑡) − 𝑡𝛼Γ (1 + 𝛼)𝑥 (0) ,

(71)

which is what we wished to show.
The proof of (69) is very similar to that in (68); therefore,

we omit the details.

Remark 31. As we remark above, the definition of the CFPD
of a function 𝑥 loses completely its meaning if 𝑥 is not
weakly absolutely continuous. For this reason, we are able to
use Lemma 30 to define the Caputo fractional derivative in
general; that is, we put

𝑑𝛼𝑝𝑥𝑑𝑡𝛼 (𝑡) fl D
𝛼
𝑝𝑥 (𝑡) − 𝑡𝛼Γ (1 + 𝛼)𝑥 (0) , 0 < 𝛼 < 1. (72)

Similarly, we define

𝑑𝛼𝜔𝑥𝑑𝑡𝛼 (𝑡) fl D
𝛼
𝜔𝑥 (𝑡) − 𝑡𝛼Γ (1 + 𝛼)𝑥 (0) . (73)

However, Lemma 30 claims that, for the weakly absolutely
continuous functions having Pettis integrable pseudo [weak]
derivatives, definitions (72) and (73) of the Caputo fractional-
pseudo [weak] derivatives coincide with Definition 20.

4. An Application

Let 𝑓 : 𝐼 × 𝐸 → 𝐸 be given function. Consider the boundary
value problem of the fractional type

𝑑𝛼𝜔𝑑𝑡𝛼𝑦 (𝑡) = 𝜆𝑓 (𝑡, 𝑦 (𝑡)) ,
𝛼 ∈ (0, 1) , 𝑡 ∈ [0, 1] , 𝜆 ∈ R,

𝑦 (0) + 𝑏𝑦 (1) = ℎ,
(74)

with certain constants 𝑏, ℎ ∈ R, 𝑏 ̸= −1. To obtain the
integral equation modeled off the problem (74), we let 𝑦 be
a weakly continuous solution to problem (74); then formally
we have

I
𝛼 𝑑𝛼𝜔𝑑𝑡𝛼𝑦 (𝑡) = 𝜆I𝛼𝑓 (𝑡, 𝑦 (𝑡)) , (75)
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that is

I
𝛼
I
1−𝛼𝐷𝜔𝑦 (𝑡) = 𝜆I𝛼𝑓 (𝑡, 𝑦 (𝑡)) 󳨐⇒
I
1𝐷𝜔𝑦 (𝑡) = 𝜆I𝛼𝑓 (𝑡, 𝑦 (𝑡)) . (76)

This reads (cf. [29])

𝑦 (𝑡) = 𝑦 (0) + 𝜆I𝛼𝑓 (𝑡, 𝑦 (𝑡)) ,
𝛼 ∈ (0, 1) , 𝑡 ∈ 𝐼, 𝜆 ∈ R, (77)

with some (presently unknown) quantity 𝑦(0).
Now, we solve (77) for 𝑦(0) by 𝑦(0) + 𝑏𝑦(1) = ℎ, and it

follows that

(1 + 𝑏) 𝑦 (0) + 𝜆𝑏Γ (𝛼) ∫
1

0
(1 − 𝑠)𝛼−1 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 = ℎ. (78)

Thus,

𝑦 (0) = ℎ1 + 𝑏 − 𝜆𝑏1 + 𝑏𝐼𝛼𝑓 (1, 𝑦 (1)) . (79)

Assume that the function 𝑓 is weakly-weakly continuous
function such that

(1) for any 𝑟 > 0, there is a constant 𝑀 > 0 such that‖𝑓(𝑡, 𝑦)‖ ≤ 𝑀 for all 𝑡 ∈ 𝐼 and ‖𝑦‖ ≤ 𝑟,
(2) there exists a nondecreasing continuous function 𝜓 :[0,∞) → [0,∞), 𝜓(0) = 0 and 𝜓(𝑡) < 𝑡 for all 𝑡 > 0

such that 𝛽(𝑓(𝑇 × 𝐴)) ≤ 𝜓(𝛽(𝐴)) for every bounded
set𝐴 ⊂ 𝐸, where 𝛽 stands for De Blasi’s weakmeasure
of noncompactness (see [30]).

Occasionally, if 𝑓 : 𝐼 × 𝐸 → 𝐸 is weakly-weakly continuous
and 𝐸 is reflexive, then the assumptions (1) and (2) are
automatically satisfied (see, e.g., [31]).

Theorem 32 (see [6], Theorem 3.3). Let 𝛼 ∈ (0, 1) and |𝜆| <Γ(1 + 𝛼). If 𝑓 : 𝐼 × 𝐸 → 𝐸 is weakly-weakly continuous and
satisfies the assumptions (1) and (2), then the integral equation
(77) has a weakly continuous solution 𝑦 defined on [0, 1].
Proof. We omit the proof since it is almost identical to that
in the proof in ([6], Theorem 3.3) with (small) necessary
changes.

In the following example we assume that 𝑦 ∈ 𝐶[𝐼, 𝐸𝜔]
solves (77) and we will show that, not only do we have that 𝑦
no longer necessarily solves (74) (when the Caputo fractional
weak derivative is taken in the sense of Definition 20),
but even worse, it could happen that the problem (74) is
“meaningless” on 𝐼.
Example 33. Let 𝛼 ∈ (0, 1/4]. Let 𝐸 be an indefinite
dimensional reflexive Banach space that fails cotype. Define
the weakly-weakly continuous function 𝑓 : [0, 1] × 𝐸 → 𝐸
by 𝑓 fl I1−𝛼𝑥, where 𝑥 : 𝐼 → 𝐸 is defined by formula (7).
Obviously (cf. Example 6, in view of Remark 7),𝑓 satisfies the
assumptions of Theorem 32.

Now, consider the integral equation (77) with𝑓 = I1−𝛼𝑥.
Namely, we consider the integral equation

𝑦 (𝑡) = 𝑦 (0) + 𝜆I𝛼
I
1−𝛼𝑥 (𝑡) ,

𝛼 ∈ (0, 14] , 𝑡 ∈ 𝐼, 𝜆 ∈ R. (80)

Obviously, the solution 𝑦 is weakly continuous on [0, 1] (this
is an immediate consequence of Remark 7 and Lemma 17).

Since 𝜑𝑥 ∈ 𝐿1[0, 1] holds for every 𝜑 ∈ 𝐸∗, it follows by
the commutative property of the fractional integral operators
calculus over the space of Lebesgue integrable functions (see
[21], Section 2.3) that

𝜑 (I𝛼
I
1−𝛼𝑥 (𝑡)) = I

𝛼𝜑 (I1−𝛼𝑥 (𝑡))
= I

𝛼
I
1−𝛼𝜑 (𝑥 (𝑡)) = I

1𝜑 (𝑥 (𝑡))
= 𝜑 (I1𝑥 (𝑡)) ,

(81)

that is

𝜑 (I𝛼
I
1−𝛼𝑥 (𝑡) −I

1𝑥 (𝑡)) = 0, for every 𝜑 ∈ 𝐸∗. (82)

Hence, I𝛼I1−𝛼𝑥 = I1𝑥. Consequently, problem (80) be-
comes

𝑦 (𝑡) = 𝑦 (0) + 𝜆I1𝑥 (𝑡) , 𝛼 ∈ (0, 14] , 𝑡 ∈ 𝐼. (83)

As showed in ([13], Corollary 4), the indefinite integral 𝑡 →∫𝑡
0
𝑥(𝑠)𝑑𝑠 is nowhere weakly differentiable on [0, 1]. Thus, 𝑦

is nowhere weakly differentiable on [0, 1]; hence the CFWD
of 𝑦 (hence the boundary value problem) completely loses its
meaning if the CFWD is taken in the sense of Definition 20.
This is what we wished to show.

Now, we are in the position to state and prove the
following existence theorem.

Theorem 34. If 𝑓 : 𝐼 × 𝐸 → 𝐸 is a function such that all
conditions fromTheorem 32 hold, then problem (74) (where the
Caputo fractionalweak derivative is taken in the sense (73)) has
a weak solution on [0, 1].
Proof. Let 𝑦 ∈ 𝐶[𝐼, 𝐸𝜔] be a solution to (77). Equip 𝐸 and
I × E with weak topology and note that 𝑡 󳨃→ (𝑡, 𝑦(𝑡)) is
continuous as a mapping from 𝐼 into 𝐼 × 𝐸. Since 𝑓 : 𝐼 × 𝐸 →𝐸 is weakly-weakly continuous on [0, 1], then 𝑓(⋅, 𝑦(⋅)) is a
composition of this mapping with 𝑓 and thus 𝑓(⋅, 𝑦(⋅)) is
weakly continuous on [0, 1].

Now, operating by the operatorD𝛼
𝜔 on both sides of (77),

it follows by Lemma 29 that

D
𝛼
𝜔𝑦 = D

𝛼
𝜔𝑦 (0) + 𝜆D𝛼

𝜔I
𝛼𝑓 = 𝑡−𝛼Γ (1 − 𝛼)𝑦 (0) + 𝜆𝑓. (84)

Now, insert definition (73) of the Caputo fractional
derivative, and we get

𝑑𝛼𝜔𝑑𝑡𝛼𝑦 (𝑡) = 𝜆𝑓 (𝑡, 𝑦 (𝑡)) . (85)
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With some further efforts, one can get the boundary condi-
tion 𝑦(0) + 𝑏𝑦(1) = ℎ.

Therefore, 𝑦 satisfies problem (74) which is what we
wished to show.
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[16] J. L. Gàmez and J. Mendoza, “On denjoy-dunford and denjoy-
pettis integrals,” StudiaMathematica, vol. 130, no. 2, pp. 115–133,
1998.

[17] R. A.Gordon, “TheDenjoy extension of the Bochner, Pettis, and
DUNford integrals,” Studia Mathematica, vol. 92, no. 1, pp. 73–
91, 1989.

[18] R. F. Geitz, “Pettis integration,” Proceedings of the American
Mathematical Society, vol. 82, no. 1, pp. 81–86, 1981.

[19] R. F. Geitz, “Geometry and the Pettis integral,” Transactions of
the AmericanMathematical Society, vol. 269, no. 2, pp. 535–548,
1982.

[20] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, New York, NY,
USA, Elsevier, 2006.

[21] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional
Integrals and Derivatives, Theory and Applications, Gordon and
Breach, Yverdon, Switzerland, 1993.

[22] M. Mendel and A. Naor, “Metric cotype,” Annals of Mathemat-
ics: Second Series, vol. 168, no. 1, pp. 247–298, 2008.

[23] B. Ross, S. G. Samko, and E. R. Love, “Functions that have no
first order derivative might have fractional derivatives of all
orders less than one,” Real Analysis Exchange, vol. 20, no. 1, pp.
140–157, 1994/95.

[24] E. Hille and R. S. Phillips, Functional analysis and semi-groups,
American Mathematical Society Colloquium Publications, vol.
31, American Mathematical Society, Providence, RI, USA, 1957.

[25] S. Schwabik and Y. Guoju, Topics in Banach Space Integration,
World Scientific, Singapore, 2005.

[26] D.W. Solomon, “On differentiability of vector-valued functions
of a real variable,” Studia Mathematica, vol. 29, pp. 1–4, 1967.

[27] K. Naralenkov, “On Denjoy type extensions of the Pettis
integral,” Czechoslovak Mathematical Journal, vol. 60(135), no.
3, pp. 737–750, 2010.

[28] D. W. Solomon, Denjoy integration in abstract spaces, Memoris
of the American Mathematical Society, No. 85, American
Mathematical Society, Providence, R.I., 1969.

[29] A. R. Mitchell and C. Smith, “An existence theorem for weak
solutions of differential equations in Banach spaces,” inNonlin-
ear Equations in Abstract Spaces, V. Lakshmikantham, Ed., pp.
387–404, 1978.

[30] F. S. De Blasi, “On a property of the unit sphere in a Banach
space,” Bulletin Mathematiques De La Societe Des Sciences
Mathematiques De Roumanie, vol. 21, no. 3, pp. 259–262, 1977.

[31] A. Szep, “Existence theorem for weak solutions of ordinary
differential equations in reflexive Banach spaces,” Studia Scien-
tiarum Mathematicarum Hungarica, vol. 6, pp. 197–203, 1971.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

