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Let (Ω, Σ, 𝜇) be a complete 𝜎-finite measure space, 𝜑 be a Young function, and 𝑋 and 𝑌 be Banach spaces. Let 𝐿𝜑(𝑋) denote the
Orlicz-Bochner space, andT∧

𝜑 denote the finest Lebesgue topology on 𝐿𝜑(𝑋). We study the problem of integral representation of(T∧
𝜑, ‖⋅‖𝑌)-continuous linear operators𝑇 : 𝐿𝜑(𝑋) → 𝑌with respect to the representing operator-valuedmeasures.The relationships

between (T∧
𝜑, ‖ ⋅ ‖𝑌)-continuous linear operators 𝑇 : 𝐿𝜑(𝑋) → 𝑌 and the topological properties of their representing operator

measures are established.

1. Introduction and Preliminaries

Throughout the paper, (𝑋, ‖ ⋅ ‖𝑋) and (𝑌, ‖ ⋅ ‖𝑌) denote real
Banach spaces and 𝑋∗ and 𝑌∗ denote their Banach duals,
respectively. By 𝐵𝑋 and 𝐵𝑌∗ we denote the closed unit ball in𝑋 and in 𝑌∗. LetL(𝑋, 𝑌) stand for the space of all bounded
operators from𝑋 and𝑌, equipped with the uniform operator
norm ‖ ⋅ ‖.

We assume that (Ω, Σ, 𝜇) is a complete 𝜎-finite measure
space. Denote by Σ𝑓(𝜇) the 𝛿-ring of sets 𝐴 ∈ Σ with 𝜇(𝐴) <∞. By 𝐿0(𝑋) we denote the linear space of 𝜇-equivalence
classes of all strongly Σ-measurable functions 𝑓 : Ω → 𝑋,
equipped with the topology T0 of convergence in measure
on sets of finite measure.

Nowwe recall the basic concepts and properties ofOrlicz-
Bochner spaces (see [1–6] for more details).

By a Young function we mean here a continuous convex
mapping 𝜑 : [0,∞) → [0,∞) that vanishes only at 0 and𝜑(𝑡)/𝑡 → 0 as 𝑡 → 0 and 𝜑(𝑡)/𝑡 → ∞ as 𝑡 → ∞. Let 𝜑∗ stand
for the complementary Young function of 𝜑 in the sense of
Young.

Let 𝐿𝜑(𝑋) (resp., 𝐿𝜑) denote the Orlicz-Bochner space
(resp., Orlicz space) defined by a Young function 𝜑; that
is,

𝐿𝜑 (𝑋) fl {𝑓 ∈ 𝐿0 (𝑋) : ∫
Ω
𝜑 (𝜆 󵄩󵄩󵄩󵄩𝑓 (𝜔)󵄩󵄩󵄩󵄩𝑋) 𝑑𝜇

< ∞ for some 𝜆 > 0} = {𝑓 ∈ 𝐿0 (𝑋) : 󵄩󵄩󵄩󵄩𝑓 (⋅)󵄩󵄩󵄩󵄩𝑋
∈ 𝐿𝜑} .

(1)

Then 𝐿𝜑(𝑋), equipped with the topologyT𝜑 of the norm

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜑 fl inf {𝜆 > 0 : ∫
Ω
𝜑(󵄩󵄩󵄩󵄩𝑓 (𝜔)󵄩󵄩󵄩󵄩𝑋𝜆 )𝑑𝜇 ≤ 1} , (2)

is a Banach space. For a sequence (𝑓𝑛) in 𝐿𝜑(𝑋), ‖𝑓𝑛‖𝜑 → 0 if
and only if ∫

Ω
𝜑(𝜆‖𝑓𝑛(𝜔)‖𝑋)𝑑𝜇 → 0 for all 𝜆 > 0. Let
𝐵𝐿𝜑(𝑋) fl {𝑓 ∈ 𝐿𝜑 (𝑋) : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜑 ≤ 1} . (3)

Let

𝐸𝜑 (𝑋)
= {𝑓 ∈ 𝐿0 (𝑋) : ∫

Ω
𝜑 (𝜆 󵄩󵄩󵄩󵄩𝑓 (𝜔)󵄩󵄩󵄩󵄩𝑋) 𝑑𝜇 < ∞ ∀𝜆 > 0} . (4)

Then 𝐸𝜑(𝑋) is a ‖ ⋅ ‖𝜑-closed subspace of 𝐿𝜑(𝑋).

Hindawi
Journal of Function Spaces
Volume 2018, Article ID 9380350, 9 pages
https://doi.org/10.1155/2018/9380350

http://orcid.org/0000-0002-3459-5298
https://doi.org/10.1155/2018/9380350


2 Journal of Function Spaces

Recall that a subset𝐻 of𝐿𝜑(𝑋) is said to be solidwhenever‖𝑓1(𝜔)‖𝑋 ≤ ‖𝑓2(𝜔)‖𝑋 𝜇-a.e. and 𝑓1 ∈ 𝐿𝜑(𝑋), 𝑓2 ∈ 𝐻 imply𝑓1 ∈ 𝐻. A linear topology 𝜉 on 𝐿𝜑(𝑋) is said to be locally solid
if it has a local basis at 0 consisting of solid sets (see [4]).

According to [7, Definition 2.2] and [6] we have the
following definition.

Definition 1. A locally solid topology 𝜉 on 𝐿𝜑(𝑋) is said to be
a Lebesgue topology if for a net (𝑓𝛼) in 𝐿𝜑(𝑋), ‖𝑓𝛼(⋅)‖𝑋 (o)󳨀󳨀→ 0
in the Banach lattice 𝐿𝜑 implies 𝑓𝛼 → 0 in 𝜉.

In view of the super Dedekind completeness of 𝐿𝜑 one
can restrict in the above definition to usual sequences (𝑓𝑛) in𝐿𝜑(𝑋) (see [7, Definition 2.2, p. 173]).

Note that, for a sequence (𝑓𝑛) in 𝐿𝜑(𝑋), ‖𝑓𝑛(⋅)‖𝑋 (o)󳨀󳨀→ 0
in 𝐿𝜑 if and only if ‖𝑓𝑛(𝜔)‖𝑋 → 0 𝜇-a.e. and ‖𝑓𝑛(𝜔)‖𝑋 ≤𝑢(𝜔) 𝜇-a.e. for some 0 ≤ 𝑢 ∈ 𝐿𝜑.

For 𝜀 > 0 let 𝑈𝜑(𝜀) = {𝑓 ∈ 𝐿𝜑(𝑋) : ∫
Ω
𝜑(‖𝑓(𝜔)‖𝑋)𝑑𝜇 ≤𝜀}. Then the family of all sets of the form:

∞⋃
𝑛=1

( 𝑛∑
𝑖=1

𝑈𝜑 (𝜀𝑖)) , (∗)
where (𝜀𝑛) is a sequence of positive numbers and is a local
basis at 0 for a linear topology T∧

𝜑 on 𝐿𝜑(𝑋) (see [4, 6] for
more details). Using [4, Lemma 1.1] one can show that the
sets of the form (∗) are convex and solid, so T∧

𝜑 is a locally
convex-solid topology.

We now recall terminology and basic facts concerning the
spaces of weak∗-measurable functions 𝑔 : Ω → 𝑋∗ (see
[8, 9]). Given a function 𝑔 : Ω → 𝑋∗ and 𝑥 ∈ 𝑋, let𝑔𝑥(𝜔) = 𝑔(𝜔)(𝑥) for 𝜔 ∈ Ω. By 𝐿0(𝑋∗, 𝑋) we denote the
linear space of the weak∗-equivalence classes of all weak∗-
measurable functions 𝑔 : Ω → 𝑋∗. In view of the super
Dedekind completeness of 𝐿0 the set {|𝑔𝑥| : 𝑥 ∈ 𝐵𝑋} is order
bounded in 𝐿0 for each 𝑔 ∈ 𝐿0(𝑋∗, 𝑋). Thus one can define
the so-called abstract norm𝜗 : 𝐿0(𝑋∗, 𝑋) → 𝐿0 by

𝜗 (𝑔) fl sup {󵄨󵄨󵄨󵄨𝑔𝑥󵄨󵄨󵄨󵄨 : 𝑥 ∈ 𝐵𝑋} in 𝐿0. (5)

One can easy check that the following properties of 𝜗 hold:
𝜗(𝑔) = 0 if and only if 𝑔 = 0 and 𝑔 ∈ 𝐿0(𝑋∗, 𝑋),
𝜗(𝜆𝑔) = |𝜆|𝜑(𝑔) for 𝜆 ∈ R and 𝑔 ∈ 𝐿0(𝑋∗, 𝑋),
𝜗(𝑔1 + 𝑔2) ≤ 𝜗(𝑔1) + 𝜗(𝑔2) if 𝑔1, 𝑔2 ∈ 𝐿0(𝑋∗, 𝑋),
𝜗(1𝐴𝑔) = 1𝐴𝜗(𝑔) for 𝐴 ∈ Σ and 𝑔 ∈ 𝐿0(𝑋∗, 𝑋).

It is known that, for 𝑓 ∈ 𝐿0(𝑋), 𝑔 ∈ 𝐿0(𝑋∗, 𝑋), the function⟨𝑓, 𝑔⟩ : Ω → R defined by ⟨𝑓, 𝑔⟩(𝜔) = ⟨𝑓(𝜔), 𝑔(𝜔)⟩ is
measurable and

󵄨󵄨󵄨󵄨⟨𝑓 (𝜔) , 𝑔 (𝜔)⟩󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝑓 (𝜔)󵄩󵄩󵄩󵄩𝑋 𝜗 (𝑔) (𝜔) 𝜇-a.e. (6)

Moreover, 𝜗(𝑔) = ‖𝑔(⋅)‖𝑋∗ for 𝑔 ∈ 𝐿0(𝑋∗). Let
𝐿𝜑∗ (𝑋∗, 𝑋) fl {𝑔 ∈ 𝐿0 (𝑋∗, 𝑋) : 𝜗 (𝑔) ∈ 𝐿𝜑∗} . (7)

Clearly 𝐿𝜑∗(𝑋∗) ⊂ 𝐿𝜑∗(𝑋∗, 𝑋). If, in particular, 𝑋∗ has the
Radon-Nikodymproperty (i.e.,𝑋 is anAsplund space; see [10,
p. 213]), then 𝐿𝜑∗(𝑋∗, 𝑋) = 𝐿𝜑∗(𝑋∗).

Let 𝐿𝜑(𝑋)∗ stand for the Banach dual of 𝐿𝜑(𝑋), equipped
with the conjugate norm ‖ ⋅ ‖∗𝜑.

Recall that a Young function 𝜑 satisfies the Δ 2-condition
if 𝜑(2𝑡) ≤ 𝑑𝜑(𝑡) for some 𝑑 > 1 and all 𝑡 ≥ 0. We shall say
that a Young function 𝜓 is completely weaker than another𝜑 (in symbols, 𝜓 ⊲ 𝜑) if for an arbitrary 𝑐 > 1 there exists𝑑 > 1 such that 𝜓(𝑐𝑡) ≤ 𝑑𝜑(𝑡) for all 𝑡 ≥ 0. Note that a Young
function 𝜑 satisfies the Δ 2-condition if and only if 𝜑 ⊲ 𝜑. If𝜓 ⊲ 𝜑, then 𝐿𝜑 ⊂ 𝐸𝜓 and it follows that 𝐿𝜑(𝑋) ⊂ 𝐸𝜓(𝑋).

Now we present basic properties of the topology T∧
𝜑 on𝐿𝜑(𝑋).

Theorem 2. Let 𝜑 be a Young function. Then the following
statements hold:

(i) T∧
𝜑 ⊂ T𝜑 andT∧

𝜑 = T𝜑 if𝜑 satisfies theΔ 2-condition.
(ii) T∧

𝜑 is the finest Lebesgue topology on 𝐿𝜑(𝑋).
(iii) T∧

𝜑 is generated by the family of norms {‖ ⋅ ‖𝜓|𝐿𝜑(𝑋) :𝜓 ⊲ 𝜑}.
(iv) (𝐿𝜑(𝑋),T∧

𝜑)∗ = {𝐹𝑔 : 𝑔 ∈ 𝐿𝜑∗(𝑋∗, 𝑋)}, where for
𝑔 ∈ 𝐿𝜑∗(𝑋∗, 𝑋),

𝐹𝑔 (𝑓) = ∫
Ω
⟨𝑓 (𝜔) , 𝑔 (𝜔)⟩ 𝑑𝜇 for 𝑓 ∈ 𝐿𝜑 (𝑋) ,

󵄩󵄩󵄩󵄩󵄩𝐹𝑔󵄩󵄩󵄩󵄩󵄩∗𝜑 = sup {∫
Ω

󵄩󵄩󵄩󵄩𝑓 (𝜔)󵄩󵄩󵄩󵄩𝑋 𝜗 (𝑔) (𝜔) 𝑑𝜇 : 𝑓 ∈ 𝐵𝐿𝜑(𝑋)}
= 󵄩󵄩󵄩󵄩𝜗 (𝑔)󵄩󵄩󵄩󵄩𝜑∗ .

(8)

(v) (𝐿𝜑(𝑋),T∧
𝜑) is a closed subset of the Banach space(𝐿𝜑(𝑋), ‖ ⋅ ‖∗𝜑).

(vi) If𝑋∗ has the Radon-Nikodym property, then the space(𝐿𝜑(𝑋),T∧
𝜑) is strongly Mackey; hence T∧

𝜑 coincides
with the Mackey topology 𝜏(𝐿𝜑(𝑋), 𝐿𝜑∗(𝑋∗)).

Proof. (i)–(iii) See [4, Theorems 6.1, 6.3 and 6.5].
(iv) In view of [6, Corollary 4.4 andTheorem 1.2], we get(𝐿𝜑(𝑋),T∧

𝜑)∗ = 𝐿𝜑(𝑋)∼𝑛 , where 𝐿𝜑(𝑋)∼𝑛 stands for the order
continuous dual of 𝐿𝜑(𝑋) (see [7, 8, 11] for more details).
According to [8, Theorem 4.1] 𝐿𝜑(𝑋)∼𝑛 = {𝐹𝑔 : 𝑔 ∈
𝐿𝜑∗(𝑋∗, 𝑋)}.

Using [11, Theorem 1.3] for 𝑔 ∈ 𝐿𝜑∗(𝑋∗, 𝑋) we have
󵄩󵄩󵄩󵄩󵄩𝐹𝑔󵄩󵄩󵄩󵄩󵄩∗𝜑 fl sup {󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω ⟨𝑓 (𝜔) , 𝑔 (𝜔)⟩ 𝑑𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 : 𝑓 ∈ 𝐵𝐿𝜑(𝑋)}
= sup {∫

Ω

󵄩󵄩󵄩󵄩𝑓 (𝜔)󵄩󵄩󵄩󵄩𝑋 𝜗 (𝑔) (𝜔) 𝑑𝜇 : 𝑓 ∈ 𝐵𝐿𝜑(𝑋)}
= 󵄩󵄩󵄩󵄩𝜗 (𝑔)󵄩󵄩󵄩󵄩𝜑∗ .

(9)

(v) See [12, § 3, Theorem 2].
(vi) See [6, Theorem 4.5].
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Let 𝛾𝜑[T𝜑,T0] (briefly 𝛾𝜑) denote the natural mixed
topology on 𝐿𝜑(𝑋); that is, 𝛾𝜑 is the finest linear topology
that agrees with T0 on ‖ ⋅ ‖𝜑-bounded sets in 𝐿𝜑(𝑋) (see
[5, 13, 14] for more details). Then 𝛾𝜑 is a locally convex-solid
Hausdorff topology (see [14, Theorem 3.2]) and 𝛾𝜑 and T𝜑

have the same bounded sets. This means that (𝐿𝜑(𝑋), 𝛾𝜑)
is a generalized DF-space (see [15]) and its follows that(𝐿𝜑(𝑋), 𝛾𝜑) is quasinormable (see [15, p. 422]). Moreover, for
a sequence (𝑓𝑛) in 𝐿𝜑(𝑋), 𝑓𝑛 → 0 in 𝛾𝜑 if and only if 𝑓𝑛 → 0
inT0 and sup𝑛‖𝑓𝑛‖𝜑 < ∞ (see [14, Theorem 3.1]).

We say that a Young function 𝜑 increases essentially more
rapidly than another 𝜓 (in symbols, 𝜓 ≪ 𝜑) if for arbitrary𝑐 > 0, 𝜓(𝑐𝑡)/𝜑(𝑡) → 0 as 𝑡 → 0 and 𝑡 → ∞.

Theorem 3. Let 𝜑 be a Young function. Then the mixed
topology 𝛾𝜑 on 𝐿𝜑(𝑋) is generated by the family of norms{‖ ⋅ ‖𝜓|𝐿𝜑(𝑋) : 𝜓 ≪ 𝜑}.
Proof. It is known that the mixed topology 𝛾𝜑 on 𝐿𝜑 is
generated by the family of norms {‖ ⋅ ‖𝜓|𝐿𝜑 : 𝜓 ≪ 𝜑} (see [16,
Theorem 2.1]). Since ‖𝑓‖𝜓 = ‖‖𝑓(⋅)‖𝑋‖𝜓 for 𝑓 ∈ 𝐿𝜑(𝑋), by
[14, (54), p. 97], the mixed topology 𝛾𝜑 on 𝐿𝜑(𝑋) is generated
by the family of norms {‖ ⋅ ‖𝜓|𝐿𝜑(𝑋) : 𝜓 ≪ 𝜑}.

Since 𝜓 ≪ 𝜑 implies 𝜓 ⊲ 𝜑, in view of Theorems 2 and 3,
we get

𝛾𝜑 ⊂ T
∧
𝜑. (10)

The problem of integral representation of bounded lin-
ear operators on Banach function spaces of vector-valued
functions to Banach spaces in terms of the corresponding
operator-valued measures has been the object of much study
(see [5, 17–24]). In particular, Dinculeanu (see [19, § 13, Sect.
3], [20], [21, § 8, Sect. B]) studied the problem of integral
representation of bounded linear operators from 𝐿𝑝(𝑋) to a
Banach space 𝑌. It is known that if 1 ≤ 𝑝 < ∞, 𝜇(Ω) < ∞
and an operator measure 𝑚 : Σ → L(𝑋, 𝑌) vanishes on𝜇-null sets and has the finite 𝑞-semivariation 𝑚̃𝑞(Ω) (1 <𝑞 ≤ ∞, 1/𝑝 + 1/𝑞 = 1), then one can define the integral∫
Ω
𝑓𝑑𝑚 for all 𝑓 ∈ 𝐿𝑝(𝑋). Moreover, if 𝑇 : 𝐿𝑝(𝑋) → 𝑌

is a bounded linear operator, then the associated operator
measure 𝑚 : Σ → L(𝑋, 𝑌) has the finite 𝑞-semivariation𝑚̃𝑞(Ω) and 𝑇(𝑓) = ∫Ω 𝑓𝑑𝑚 for all 𝑓 ∈ 𝐿𝑝(𝑋) (see [19, § 13,
Theorem 1 p. 259], [20, Theorem 4]). The relationships of the𝑞-semivariation 𝑚̃𝑞 to the properties of operators from 𝐿𝑝(𝑋)
to 𝑌 were studied in [22]. Diestel [23] found the integral
representation of bounded linear operators from an Orlicz-
Bochner space 𝐿𝜑(𝑋) to a Banach spaces if 𝜇(Ω) < ∞ and a
Young 𝜑 satisfies the Δ 2-condition.

The present paper is a continuation of [5], where we
establish integral representation of (𝛾𝜑, ‖ ⋅ ‖𝑌)-continuous
linear operators 𝑇 : 𝐿𝜑(𝑋) → 𝑌. We study the problem
of integration of functions in 𝐿𝜑(𝑋) with respect to the
representing operator measures of (T∧

𝜑, ‖ ⋅ ‖𝑌)-continuous
linear operators 𝑇 : 𝐿𝜑(𝑋) → 𝑌. An integral representation
theorem for (T∧

𝜑, ‖ ⋅ ‖𝑌)-continuous linear operators 𝑇 :𝐿𝜑(𝑋) → 𝑌 is established (see Theorem 9 below). We study

the relationships between (T∧
𝜑, ‖ ⋅ ‖𝑌)-continuous operators𝑇 : 𝐿𝜑(𝑋) → 𝑌 and the properties of their representing

measures𝑚 : Σ𝑓(𝜇) →L(𝑋, 𝑌).
2. 𝜑∗-Semivariation of Operator Measures

Assume that 𝑚 : Σ𝑓(𝜇) → L(𝑋, 𝑌) is an additive measure
such that𝑚 ≪ 𝜇; that is,𝑚(𝐴) = 0 if 𝜇(𝐴) = 0.

Let S(Σ𝑓(𝜇), 𝑋) denote the space of all 𝑋-valued Σ𝑓(𝜇)-
simple functions on Ω. Then 𝑠 ∈ S(Σ𝑓(𝜇), 𝑋) if 𝑠 = ∑(1𝐴𝑖 ⊗𝑥𝑖), where (𝐴 𝑖) is a finite pairwise disjoint sequence in Σ𝑓(𝜇)
and 𝑥𝑖 ∈ 𝑋. For 𝑠 = ∑𝑛𝑖=1(1𝐴𝑖 ⊗ 𝑥𝑖) ∈ S(Σ𝑓(𝜇), 𝑋) and 𝐴 ∈ Σ,
we can define the integral∫

𝐴
𝑠 𝑑𝑚 by

∫
𝐴
𝑠 𝑑𝑚 fl

𝑛∑
𝑖=1

𝑚(𝐴 𝑖 ∩ 𝐴) (𝑥𝑖) . (11)

Note that

∫
𝐴
𝑠 𝑑𝑚 = ∫

Ω
1𝐴𝑠 𝑑𝑚. (12)

For 𝑦∗ ∈ 𝑌∗, we define a measure 𝑚𝑦∗ : Σ𝑓(𝜇) → 𝑋∗ by the
equality

𝑚𝑦∗ (𝐴) (𝑥) fl 𝑦∗ (𝑚 (𝐴) (𝑥))
for 𝐴 ∈ Σ𝑓 (𝜇) , 𝑥 ∈ 𝑋. (13)

For 𝑠 = ∑𝑛𝑖=1(1𝐴𝑖 ⊗ 𝑥𝑖) ∈ S(Σ𝑓(𝜇), 𝑋) and 𝐴 ∈ Σ, we
define the integral ∫

𝐴
𝑠 𝑑𝑚𝑦∗ by the equality:

∫
𝐴
𝑠 𝑑𝑚𝑦∗ fl 𝑛∑

𝑖=1

𝑚𝑦∗ (𝐴 𝑖 ∩ 𝐴) (𝑥𝑖) . (14)

Then

𝑦∗ (∫
𝐴
𝑠 𝑑𝑚) = ∫

𝐴
𝑠 𝑑𝑚𝑦∗ . (15)

Following [23], [19, § 13] one can define the 𝜑∗-
semivariation𝑚̃𝜑∗(𝐴) of𝑚 on 𝐴 ∈ Σ by

𝑚̃𝜑∗ (𝐴) fl sup
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑛∑
𝑖=1

𝑚(𝐴 ∩ 𝐴 𝑖) (𝑥𝑖)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌 , (16)

where the supremum is taken over all finite pairwise disjoint
sets {𝐴1, . . . , 𝐴𝑛} in Σ𝑓(𝜇) and 𝑥𝑖 ∈ 𝑋 for 𝑖 = 1, . . . , 𝑛 such
that ‖∑𝑛𝑖=1(1𝐴𝑖 ⊗ 𝑥𝑖)‖𝜑 ≤ 1.

One can observe that

𝑚̃𝜑∗ (𝐴)
= sup{󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫𝐴 𝑠 𝑑𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌 : 𝑠 ∈ S (Σ𝑓 (𝜇) , 𝑋) , ‖𝑠‖𝜑 ≤ 1} . (17)

Note that

𝑚̃𝜑∗ (𝐴) ≤ 𝑚̃𝜑∗ (𝐵) if 𝐴, 𝐵 ∈ Σ with 𝐴 ⊂ 𝐵,
𝑚̃𝜑∗ (𝐴 ∪ 𝐵) ≤ 𝑚̃𝜑∗ (𝐴) + 𝑚̃𝜑∗ (𝐵) for 𝐴, 𝐵 ∈ Σ. (18)
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Let (𝑚𝑦∗)𝜑∗(𝐴) stand for the 𝜑∗-semivariation of𝑚𝑦∗ on 𝐴 ∈Σ; that is,
(𝑚𝑦∗)𝜑∗ (𝐴)
= sup {󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝐴 𝑠 𝑑𝑚𝑦∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 : 𝑠 ∈ S (Σ𝑓 (𝜇) , 𝑋) , ‖𝑠‖𝜑 ≤ 1} .
(19)

The following lemma will be useful.

Lemma 4. Let 𝜑 be a Young function and 𝑚 : Σ𝑓(𝜇) →
L(𝑋, 𝑌) be a measure with 𝑚 ≪ 𝜇 and 𝑚̃𝜑∗(Ω) < ∞. Then
the following statements hold:

(i) If𝑓 ∈ 𝐸𝜑(𝑋), then there exists a ‖ ⋅‖𝜑-Cauchy sequence(𝑠𝑛) inS(Σ𝑓(𝜇), 𝑋) such that ‖𝑠𝑛(𝜔)−𝑓(𝜔)‖𝑋 → 0 𝜇-
a.e.

(ii) If (𝑠𝑛) is a ‖ ⋅ ‖𝜑-Cauchy sequence inS(Σ𝑓(𝜇), 𝑋), then
for𝐴 ∈ Σ, (∫

𝐴
𝑠𝑛𝑑𝑚) is a Cauchy sequence in a Banach

space𝑌 and for every𝑦∗ ∈ 𝑌∗, (∫
𝐴
𝑠𝑛𝑑𝑚𝑦∗) is aCauchy

sequence in R.
(iii) If 𝑓 ∈ 𝐸𝜑(𝑋) and (𝑠󸀠𝑛) and (𝑠󸀠󸀠𝑛 ) are ‖ ⋅ ‖𝜑-Cauchy

sequence inS(Σ𝑓(𝜇), 𝑋) such that ‖𝑠󸀠𝑛(𝜔)−𝑓(𝜔)‖𝑋 →0 𝜇-a.e. and ‖𝑠󸀠󸀠𝑛 (𝜔) − 𝑓(𝜔)‖𝑋 → 0 𝜇-a.e., then for𝐴 ∈ Σ, one has
lim∫

𝐴
𝑠󸀠𝑛𝑑𝑚 = lim∫

𝐴
𝑠󸀠󸀠𝑛 𝑑𝑚, (20)

and for every 𝑦∗ ∈ 𝑌∗, one has
lim∫

𝐴
𝑠󸀠𝑛𝑑𝑚𝑦∗ = lim∫

𝐴
𝑠󸀠󸀠𝑛 𝑑𝑚𝑦∗ . (21)

Proof. (i) Let 𝑓 ∈ 𝐸𝜑(𝑋). Then there exists a sequence (𝑠𝑛)
in S(Σ𝑓(𝜇), 𝑋) such that ‖𝑠𝑛(𝜔) − 𝑓(𝜔)‖𝑋 → 0 𝜇-a.e. and‖𝑠𝑛(𝜔)‖𝑋 ≤ ‖𝑓(𝜔)‖𝑋 𝜇-a.e. for all 𝑛 ∈ N (see [21, Theorem 6,
p. 4]). Using the Lebesgue dominated convergence theorem,
we obtain that ∫

Ω
𝜑(𝜆(‖𝑠𝑛(𝜔) − 𝑓(𝜔)‖𝑋)𝑑𝜇 → 0 for all 𝜆 > 0,

so ‖𝑠𝑛 − 𝑓‖𝜑 → 0. Hence (𝑠𝑛) is a ‖ ⋅ ‖𝜑-Cauchy sequence.
(ii) Assume that (𝑠𝑛) is a ‖ ⋅ ‖𝜑-Cauchy sequence in

S(Σ𝑓(𝜇), 𝑋). Hence for 𝑛, 𝑘 ∈ N, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫𝐴 𝑠𝑛𝑑𝑚 − ∫
𝐴
𝑠𝑘𝑑𝑚󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫𝐴 (𝑠𝑛 − 𝑠𝑘) 𝑑𝑚
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌

≤ 󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑘󵄩󵄩󵄩󵄩𝜑 𝑚̃𝜑∗ (𝐴) ≤ 󵄩󵄩󵄩󵄩𝑠𝑛 − 𝑠𝑘󵄩󵄩󵄩󵄩𝜑 𝑚̃𝜑∗ (Ω) .
(22)

It follows that (∫
𝐴
𝑠𝑛𝑑𝑚) is a Cauchy sequence in 𝑌. Hence in

view of (15), for 𝑦∗ ∈ 𝑌∗, (∫
𝐴
𝑠𝑛𝑑𝑚𝑦∗) is a Cauchy sequence

in R.
(iii) Note that (𝑠󸀠𝑛 − 𝑠󸀠󸀠𝑛 ) is a ‖ ⋅ ‖𝜑-Cauchy sequence and‖𝑠󸀠𝑛(𝜔) − 𝑠󸀠󸀠𝑛 (𝜔)‖𝑋 → 0 𝜇-a.e. Hence there exists ℎ ∈ 𝐸𝜑(𝑋)

such that ‖(𝑠󸀠𝑛−𝑠󸀠󸀠𝑛 )−ℎ‖𝜑 → 0. Note thatT0|𝐸𝜑(𝑋) ⊂ T𝜑|𝐸𝜑(𝑋).
Hence (𝑠󸀠𝑛−𝑠󸀠󸀠𝑛 )−ℎ → 0 inT0 and it follows that there exists a
subsequence (𝑠󸀠𝑘𝑛−𝑠󸀠󸀠𝑘𝑛) of (𝑠󸀠𝑛−𝑠󸀠󸀠𝑛 ) such that ‖(𝑠󸀠𝑘𝑛(𝜔)−𝑠󸀠󸀠𝑘𝑛(𝜔))−

ℎ(𝜔)‖𝑋 → 0 𝜇-a.e. Then ℎ(𝜔) = 0 𝜇-a.e., so ‖𝑠󸀠𝑛 − 𝑠󸀠󸀠𝑛 ‖𝜑 → 0
and for 𝐴 ∈ Σ, we get

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫𝐴 𝑠󸀠𝑛𝑑𝑚 − ∫
𝐴
𝑠󸀠󸀠𝑛 𝑑𝑚󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫𝐴 (𝑠󸀠𝑛 − 𝑠󸀠󸀠𝑛 ) 𝑑𝑚
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌

≤ 󵄩󵄩󵄩󵄩󵄩𝑠󸀠𝑛 − 𝑠󸀠󸀠𝑛 󵄩󵄩󵄩󵄩󵄩𝜑 𝑚̃𝜑∗ (𝐴) .
(23)

It follows that

lim∫
𝐴
𝑠󸀠𝑛𝑑𝑚 = lim∫

𝐴
𝑠󸀠󸀠𝑛 𝑑𝑚 (24)

and hence, in view of (15) for every 𝑦∗ ∈ 𝑌∗, we have
lim∫

𝐴
𝑠󸀠𝑛𝑑𝑚𝑦∗ = lim∫

𝐴
𝑠󸀠󸀠𝑛 𝑑𝑚𝑦∗ . (25)

Following [21, § 13, Definition 1, p. 254], in view of
Lemma 4 we have the following.

Definition 5. Let 𝜑 be a Young function and 𝑚 : Σ𝑓(𝜇) →
L(𝑋, 𝑌) be an additive measure such that 𝑚 ≪ 𝜇 and𝑚̃𝜑∗(Ω) < ∞. Then for every 𝑓 ∈ 𝐸𝜑(𝑋) and 𝐴 ∈ Σ, we
can define the integral∫

𝐴
𝑓𝑑𝑚 by the equality

∫
𝐴
𝑓𝑑𝑚 fl lim∫

𝐴
𝑠𝑛𝑑𝑚 (26)

and for 𝑦∗ ∈ 𝑌∗, we can define the integral∫
𝐴
𝑓𝑑𝑚𝑦∗ by the

equality

∫
𝐴
𝑓𝑑𝑚𝑦∗ fl lim∫

𝐴
𝑠𝑛𝑑𝑚𝑦∗ , (27)

where (𝑠𝑛) is an arbitrary ‖ ⋅ ‖𝜑-Cauchy sequence in
S(Σ𝑓(𝜇), 𝑋) such that ‖𝑠𝑛(𝜔) − 𝑓(𝜔)‖𝑋 → 0 𝜇-a.e.
3. Integral Representation of Continuous
Operators on Orlicz-Bochner Spaces

For a bounded linear operator 𝑇 : 𝐿𝜑(𝑋) → 𝑌 let

‖𝑇‖𝜑 fl sup {󵄩󵄩󵄩󵄩𝑇 (𝑓)󵄩󵄩󵄩󵄩𝑌 : 𝑓 ∈ 𝐵𝐿𝜑(𝑋)} . (28)

Proposition 6. Let 𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a bounded linear
operator and

𝑚(𝐴) (𝑥) fl 𝑇 (1𝐴 ⊗ 𝑥) for 𝐴 ∈ Σ𝑓 (𝜇) , 𝑥 ∈ 𝑋. (29)

Then the following statements hold:

(i) For 𝐴 ∈ Σ𝑓(𝜇)𝑚(𝐴) ∈ L(𝑋, 𝑌) and ‖𝑚(𝐴)‖ ≤ ‖𝑇‖𝜑 ⋅‖1𝐴‖𝜑.
(ii) 𝑚 ≪ 𝜇.
(iii) ‖𝑚(𝐴𝑛)‖ → 0 if 𝐴𝑛 ↓ 0 with 𝐴𝑛 ∈ Σ𝑓(𝜇).
(iv) 𝑚 : Σ𝑓(𝜇) → L(𝑋, 𝑌) is countably additive; that is,𝑚(⋃∞𝑛=1 𝐵𝑛) = ∑∞𝑛=1𝑚(𝐵𝑛) if (𝐵𝑛) is a pairwise disjoint

sequence in Σ𝑓(𝜇) with⋃∞𝑛=1 𝐵𝑛 ∈ Σ𝑓(𝜇).
(v) 𝑚̃𝜑∗(Ω) ≤ ‖𝑇‖𝜑.
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Proof. (i) Let 𝐴 ∈ Σ𝑓(𝜇). Then for 𝑥 ∈ 𝐵𝑋, we have ‖1𝐴 ⊗𝑥‖𝜑 ≤ ‖1𝐴‖𝜑 and hence

‖𝑚 (𝐴) (𝑥)‖𝑌 = 󵄩󵄩󵄩󵄩𝑇 (1𝐴 ⊗ 𝑥)󵄩󵄩󵄩󵄩𝑌 ≤ ‖𝑇‖𝜑 ⋅ 󵄩󵄩󵄩󵄩1𝐴 ⊗ 𝑥󵄩󵄩󵄩󵄩𝜑
≤ ‖𝑇‖𝜑 󵄩󵄩󵄩󵄩1𝐴󵄩󵄩󵄩󵄩𝜑 , (30)

so ‖𝑚(𝐴)‖ ≤ ‖𝑇‖𝜑 ⋅ ‖1𝐴‖𝜑.
(ii) This follows from (i) because ‖1𝐴‖𝜑 = 0 if 𝜇(𝐴) = 0.
(iii) Assume that 𝐴𝑛 ↓ 0 with 𝐴𝑛 ∈ Σ𝑓(𝜇). Then

1𝐴1(𝜔) ≥ 1𝐴𝑛(𝜔) ↓ 0 for 𝜔 ∈ Ω. By the Lebesgue dominated
convergence theorem, we obtain that ∫

Ω
𝜑(𝜆1𝐴𝑛(𝜔))𝑑𝜇 → 0

for every 𝜆 > 0. This means that ‖1𝐴𝑛‖𝜑 → 0 and by (i),‖𝑚(𝐴𝑛)‖ → 0.
(iv) Assume that (𝐵𝑛) is a pairwise disjoint sequence inΣ𝑓(𝜇) with 𝐵 = ⋃∞𝑛=1 𝐵𝑛 ∈ Σ𝑓(𝜇). Let 𝐴𝑛 = 𝐵 \ ⋃𝑛𝑖=1 𝐵𝑖 for𝑛 ∈ N. Then 𝐴𝑛 ∈ Σ𝑓(𝜇) and 𝐴𝑛 ↓ 0. Hence by (iii) ‖𝑚(𝐵) −∑𝑛𝑖=1𝑚(𝐵𝑖)‖ = ‖𝑚(𝐵) − 𝑚(⋃𝑛𝑖=1 𝐵𝑖)‖ = ‖𝑚(𝐴𝑛)‖ → 0.
Statement (v) is obvious.

Definition 7. Let𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a bounded linear operator
and

𝑚(𝐴) (𝑥) fl 𝑇 (1𝐴 ⊗ 𝑥) for 𝐴 ∈ Σ𝑓 (𝜇) , 𝑥 ∈ 𝑋. (31)

Then the measure 𝑚 : Σ𝑓(𝜇) → L(𝑋, 𝑌) will be called a
representing measure of 𝑇.
Proposition 8. Let 𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a (T∧

𝜑, ‖ ⋅ ‖𝑌)-
continuous linear operator and 𝑚 : Σ𝑓(𝜇) → L(𝑋, 𝑌) be
its representing measure. Then there exists a Young function 𝜓
such that 𝜓 ⊲ 𝜑 and 𝑚̃𝜓∗(Ω) < ∞.

Proof. According toTheorem 2 there exist a finite set {𝜓𝑖 : 𝑖 =1, . . . , 𝑛} of Young functions with 𝜓𝑖 ⊲ 𝜑 for 𝑖 = 1, . . . , 𝑛 and𝑎 > 0 such that󵄩󵄩󵄩󵄩𝑇 (𝑓)󵄩󵄩󵄩󵄩𝑌 ≤ 𝑎max
1≤𝑖≤𝑛

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜓𝑖 ∀𝑓 ∈ 𝐿𝜑 (𝑋) . (32)

Let𝜓(𝑡) = max1≤𝑖≤𝑛𝜓𝑖(𝑡) for 𝑡 ≥ 0.Then𝜓 is a Young function
with 𝜓 ⊲ 𝜑 and

󵄩󵄩󵄩󵄩𝑇 (𝑓)󵄩󵄩󵄩󵄩𝑌 ≤ 𝑎 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜓 ∀𝑓 ∈ 𝐿𝜑 (𝑋) . (33)

Hence
𝑚̃𝜓∗ (Ω)
= sup {‖𝑇 (𝑠)‖𝑌 : 𝑠 ∈ S (Σ𝑓 (𝜇) , 𝑋) , ‖𝑠‖𝜓 ≤ 1}
≤ 𝑎 < ∞.

(34)

For a linear operator 𝑇 : 𝐿𝜑(𝑋) → 𝑌 and 𝐴 ∈ Σ, let
𝑇𝐴 (𝑓) fl 𝑇 (1𝐴𝑓) for 𝑓 ∈ 𝐿𝜑 (𝑋) . (35)

Nowwe can state ourmain result that extends the classical
results concerning the integral representation of operators on
Lebesgue-Bochner spaces 𝐿𝑝(𝑋) (1 ≤ 𝑝 < ∞) (see [19, §
13, Theorem 1, pp. 259–261]) to operators on Orlicz-Bochner
spaces 𝐿𝜑(𝑋).

Theorem 9. Let 𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a (T∧
𝜑, ‖ ⋅ ‖𝑌)-continuous

linear operator and 𝑚 : Σ𝑓(𝜇) → L(𝑋, 𝑌) be its representing
measure. Then for 𝐴 ∈ Σ the following statements hold:

(i) 𝑇𝐴 : 𝐿𝜑(𝑋) → 𝑌 is a (T∧
𝜑, ‖ ⋅ ‖𝑌)-continuous linear

operator.
(ii) For 𝑓 ∈ 𝐿𝜑(𝑋), one has

𝑇𝐴 (𝑓) = ∫
𝐴
𝑓𝑑𝑚 (36)

and for 𝑦∗ ∈ 𝑌∗, one has
𝑦∗ (𝑇𝐴 (𝑓)) = ∫

𝐴
𝑓𝑑𝑚𝑦∗ . (37)

(iii) For 𝑓 ∈ 𝐿𝜑(𝑋), the measure 𝑚𝑓 : Σ → 𝑌 defined by
the equality

𝑚𝑓 (𝐴) fl ∫
𝐴
𝑓𝑑𝑚 for 𝐴 ∈ Σ (38)

is countably additive.
(iv) ‖𝑇𝐴‖𝜑 = 𝑚̃𝜑∗(𝐴)

and for 𝑦∗ ∈ 𝑌∗, ‖𝑦∗ ∘ 𝑇𝐴‖∗𝜑 = ‖(𝑦∗ ∘ 𝑇)𝐴‖∗𝜑 =(𝑚𝑦∗)𝜑∗(𝐴).
(v) 𝑚̃𝜑∗(𝐴) = sup{(𝑚𝑦∗)𝜑∗(𝐴) : 𝑦∗ ∈ 𝐵𝑌∗}.
(vi) For 𝑓 ∈ 𝐿𝜑(𝑋), one has

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫𝐴 𝑓𝑑𝑚
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌 ≤ 𝑚̃𝜑∗ (𝐴) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜑 (39)

and for 𝑦∗ ∈ 𝑌∗, one has
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝐴 𝑓𝑑𝑚𝑦∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (𝑚𝑦∗)𝜑∗ (𝐴) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜑 . (40)

Proof. (i) Assume that (𝑓𝛼) is a net in 𝐿𝜑(𝑋) such that𝑓𝛼 → 0
inT∧

𝜑. SinceT
∧
𝜑 is a locally solid topology on 𝐿𝜑(𝑋), we get

1𝐴𝑓𝛼 → 0 inT∧
𝜑. Hence

󵄩󵄩󵄩󵄩𝑇𝐴 (𝑓𝛼)󵄩󵄩󵄩󵄩𝑌 = 󵄩󵄩󵄩󵄩𝑇 (1𝐴𝑓𝛼)󵄩󵄩󵄩󵄩𝑌 󳨀→ 0. (41)

(ii) In view of Proposition 8 there exists a Young function𝜓 such that 𝜓 ⊲ 𝜑 and 𝑚̃𝜓∗(Ω) < ∞. Then 𝐿𝜑(𝑋) ⊂𝐸𝜓(𝑋). Let 𝑓 ∈ 𝐿𝜑(𝑋). Then there exists a sequence (𝑠𝑛)
in S(Σ𝑓(𝜇), 𝑋) such that ‖𝑠𝑛(𝜔) − 𝑓(𝜔)‖𝑋 → 0 𝜇-a.e. and‖𝑠𝑛(𝜔)‖𝑋 ≤ ‖𝑓(𝜔)‖𝑋 𝜇-a.e. for all 𝑛 ∈ N (see [21, Theorem 6,
p. 4]).Then 𝑠𝑛 → 𝑓 inT∧

𝜑 becauseT
∧
𝜑 is a Lebesgue topology.

Hence ‖𝑠𝑛 − 𝑓‖𝜓 → 0. In view of Lemma 4 we can define the
integral ∫

𝐴
𝑓𝑑𝑚 by the equality

∫
𝐴
𝑓𝑑𝑚 fl lim∫

𝐴
𝑠𝑛𝑑𝑚. (42)
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Since 𝑇𝐴(𝑠𝑛) = ∫
𝐴
𝑠𝑛𝑑𝑚 and by (i), 𝑇𝐴 is (T∧

𝜑, ‖ ⋅ ‖𝑌)-
continuous, we get

𝑇𝐴 (𝑓) = lim∫
𝐴
𝑠𝑛𝑑𝑚. (43)

Hence

𝑇𝐴 (𝑓) = ∫
𝐴
𝑓𝑑𝑚 (44)

and for 𝑦∗ ∈ 𝑌∗, we have
𝑦∗ (𝑇𝐴 (𝑓)) = lim𝑦∗ (∫

𝐴
𝑠𝑛𝑑𝑚) = lim∫

𝐴
𝑠𝑛𝑑𝑚𝑦∗

= ∫
𝐴
𝑓𝑑𝑚𝑦∗ .

(45)

(iii) Let 𝑓 ∈ 𝐿𝜑(𝑋) and (𝐴𝑛) be a sequence in Σ such
that 𝐴𝑛 ↓ 0. Then 1𝐴𝑛(𝜔) ↓ 0 for 𝜔 ∈ Ω, and
hence ‖1𝐴𝑛(𝜔)𝑓(𝜔)‖𝑋 → 0 𝜇-a.e. and ‖1𝐴𝑛(𝜔)𝑓(𝜔)‖𝑋 ≤‖𝑓(𝜔)‖𝑋 𝜇-a.e. Hence 1𝐴𝑛𝑓 → 0 in T∧

𝜑 because T∧
𝜑 is a

Lebesgue topology, and by (i) we get

󵄩󵄩󵄩󵄩󵄩𝑚𝑓 (𝐴𝑛)󵄩󵄩󵄩󵄩󵄩𝑌 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫𝐴𝑛 𝑓𝑑𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌 =
󵄩󵄩󵄩󵄩󵄩𝑇 (1𝐴𝑛𝑓)󵄩󵄩󵄩󵄩󵄩𝑌 󳨀→ 0. (46)

(iv) Note that 𝑚̃𝜑∗(𝐴) ≤ ‖𝑇𝐴‖𝜑. To show that ‖𝑇𝐴‖𝜑 ≤𝑚̃𝜑∗(𝐴), assume that 𝑓 ∈ 𝐵𝐿𝜑(𝑋). Choose a sequence (𝑠𝑛)
in S(Σ𝑓(𝜇), 𝑋) such that ‖𝑠𝑛(𝜔) − 𝑓(𝜔)‖𝑋 → 0 𝜇-a.e. and‖𝑠𝑛(𝜔)‖𝑋 ≤ ‖𝑓(𝜔)‖𝑋 𝜇-a.e. for all 𝑛 ∈ N. Since T∧

𝜑 is
a Lebesgue topology, we have 𝑠𝑛 → 𝑓 in T∧

𝜑 and hence
‖𝑇𝐴(𝑠𝑛) − 𝑇𝐴(𝑓)‖𝑌 → 0. Note that 𝑇𝐴(𝑠𝑛) = ∫𝐴 𝑠𝑛𝑑𝑚.

Let 𝜀 > 0 be given. Choose 𝑛0 ∈ N such that ‖𝑇𝐴(𝑓) −∫
𝐴
𝑠𝑛0𝑑𝑚‖𝑌 ≤ 𝜀. Then

󵄩󵄩󵄩󵄩𝑇𝐴 (𝑓)󵄩󵄩󵄩󵄩𝑌 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝐴 (𝑓) − ∫𝐴 𝑠𝑛0𝑑𝑚
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫𝐴 𝑠𝑛0𝑑𝑚
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌

≤ 𝜀 + 𝑚̃𝜑∗ (𝐴) .
(47)

It follows that ‖𝑇𝐴‖𝜑 ≤ 𝑚̃𝜑∗(𝐴), so 𝑚̃𝜑∗(𝐴) = ‖𝑇𝐴‖𝜑. Hence
for 𝑦∗ ∈ 𝑌∗, we easily get

󵄩󵄩󵄩󵄩(𝑦∗ ∘ 𝑇)𝐴󵄩󵄩󵄩󵄩∗𝜑 = 󵄩󵄩󵄩󵄩𝑦∗ ∘ 𝑇𝐴󵄩󵄩󵄩󵄩∗𝜑 = (𝑚𝑦∗)𝜑∗ (𝐴) . (48)

(v) Using (iv) we have

𝑚̃𝜑∗ (𝐴) = 󵄩󵄩󵄩󵄩𝑇𝐴󵄩󵄩󵄩󵄩𝜑
= sup {󵄩󵄩󵄩󵄩𝑇𝐴 (𝑓)󵄩󵄩󵄩󵄩𝑌 : 𝑓 ∈ 𝐿𝜑 (𝑋) , 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜑 ≤ 1}
= sup
𝑦∗∈𝐵𝑌∗

{󵄨󵄨󵄨󵄨(𝑦∗ ∘ 𝑇𝐴) (𝑓)󵄨󵄨󵄨󵄨 : 𝑓 ∈ 𝐿𝜑 (𝑋) , 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜑 ≤ 1}
= sup
𝑦∗∈𝐵𝑌∗

󵄩󵄩󵄩󵄩𝑦∗ ∘ 𝑇𝐴󵄩󵄩󵄩󵄩∗𝜑 = sup
𝑦∗∈𝐵𝑌∗

(𝑚𝑦∗)𝜑∗ (𝐴) .
(49)

(vi) This follows from (ii) and (iv).

For a sequence (𝐴𝑛) in Σ, we will write 𝐴𝑛↘𝜇0 if 𝐴𝑛 ↓
and 𝜇(𝐴𝑛 ∩ 𝐴) → 0 for every 𝐴 ∈ Σ𝑓(𝜇).
Definition 10. A measure 𝑚 : Σ𝑓(𝜇) → L(𝑋, 𝑌) with 𝑚 ≪𝜇 and 𝑚̃𝜑∗(Ω) < ∞ is said to be 𝜑∗-semivariationally 𝜇-
continuous if 𝑚̃𝜑∗(𝐴𝑛) → 0 whenever 𝐴𝑛↘𝜇0, (𝐴𝑛) ⊂ Σ.

Using a standard argument we can show the following.

Proposition 11. Let𝑚 : Σ →L(𝑋, 𝑌) be an additive measure
such that 𝑚 ≪ 𝜇 and 𝑚̃𝜑(Ω) < ∞. Then the following
statements are equivalent:

(i) 𝑚 is 𝜑∗-semivariationally 𝜇-continuous.
(ii) The following two conditions hold simultaneously:

(a) For every 𝜀 > 0 there exists 𝛿 > 0 such that𝑚̃𝜑∗(𝐴) ≤ 𝜀 whenever 𝜇(𝐴) ≤ 𝛿, 𝐴 ∈ Σ.
(b) For every 𝜀 > 0 there exists 𝐴0 ∈ Σ𝑓(𝜇) such that𝑚̃𝜑∗(Ω \ 𝐴0) ≤ 𝜀.

The following theorem characterizes 𝜑∗-semivariation-
ally 𝜇-continuous representing measures.

Theorem 12. Let 𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a (T∧
𝜑, ‖ ⋅ ‖𝑌)-continuous

linear operator and 𝑚 : Σ𝑓(𝜇) → L(𝑋, 𝑌) be its representing
measure. Then the following statements are equivalent:

(i) 𝑚 is 𝜑∗-semivariationally 𝜇-continuous.
(ii) 𝑇 is (𝛾𝜑, ‖ ⋅ ‖𝑌)-continuous.
(iii) ‖𝑇(𝑓𝑛)‖𝑌 → 0 if 𝑓𝑛 → 0 inT0 and sup𝑛‖𝑓𝑛‖𝜑 < ∞.
(iv) ‖𝑇𝐴𝑛‖𝜑 → 0 if 𝐴𝑛↘𝜇0, (𝐴𝑛) ⊂ Σ.

Proof. (i)⇔ (ii)⇔ (iii) See [5, Corollary 2.8 and Proposition
1.1].

(i)⇔ (iv) This follows fromTheorem 9.

Now assume that Ω is a completely regular Hausdorff
space. LetB𝑎 denote the 𝜎-algebra of Baire sets in Ω, which
is the 𝜎-algebra generated by the class Z of all zero sets of
bounded continuous positive functions on𝜔. ByPwedenote
the family of all cozero (=positive) in Ω (see [25, p. 108]).

Let 𝜇 : B𝑎 → [0,∞) be a countably additive measure.
Then 𝜇 is zero-set regular; that is, for every𝐴 ∈B𝑎 and 𝜀 > 0
there exists 𝑍 ∈ Z with 𝑍 ⊂ 𝐴 such that 𝜇(𝐴 \ 𝑍) ≤ 𝜀 (see
[25, p. 118]). It follows that for every 𝐴 ∈ B𝑎 and 𝜀 > 0 there
exist 𝑈 ∈ P, 𝑈 ⊃ 𝐴 such that 𝜇(𝑈 \ 𝐴) ≤ 𝜀.

We can assume that 𝜇 to be complete (if necessary we
can take the completion (Ω,B𝑎, 𝜇) of the measure space(Ω,B𝑎, 𝜇)).
Proposition 13. Assume that Ω is a completely regular Haus-
dorff space and (Ω,B𝑎, 𝜇) is a complete finite measure space.
Let𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a (T∧

𝜑, ‖ ⋅‖𝑌)-continuous linear operator
and𝑚 :B𝑎 →L(𝑋, 𝑌) be its representing measure. Then the
following statements are equivalent:

(i) 𝑚 is 𝜑∗-semivariationally 𝜇-continuous.
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(ii) For every sequence (𝐴𝑛) in B𝑎 such that 𝐴𝑛 ↓ and𝜇(𝐴𝑛) → 0 there exists a sequence (𝑈𝑛) inPwith𝐴𝑛 ⊂𝑈𝑛 ↓ such that 𝑚̃𝜑∗(𝑈𝑛) → 0.
(iii) For every sequence (𝐴𝑛) in B𝑎 such that 𝐴𝑛 ↓ and𝜇(𝐴𝑛) → 0 there exists a sequence (𝑈𝑛) inPwith𝐴𝑛 ⊂𝑈𝑛 ↓ such that
sup {󵄩󵄩󵄩󵄩𝑇 (𝑓)󵄩󵄩󵄩󵄩𝑌 : 𝑓 ∈ 𝐵𝐿𝜑(𝑋), supp𝑓 ⊂ 𝑈𝑛} 󳨀→ 0. (50)

Proof. (i)⇒ (ii) Assume that (i) holds and (𝐴𝑛) is a sequence
in B𝑎 such that 𝐴𝑛 ↓ and 𝜇(𝐴𝑛) → 0. Then there exists a
sequence (𝑈𝑛) inP such that𝐴𝑛 ⊂ 𝑈𝑛 ↓ and𝜇(𝑈𝑛\𝐴𝑛) ≤ 1/𝑛
for 𝑛 ∈ N.

Let 𝜀 > 0 be given. Then in view of Proposition 11 there
exists 𝛿 > 0 such that 𝑚̃𝜑∗(𝐴) ≤ 𝜀/2 if 𝜇(𝐴) ≤ 𝛿with𝐴 ∈B𝑎.
Choose 𝑛1 ∈ N such that 𝜇(𝑈𝑛 \ 𝐴𝑛) ≤ 𝛿 for 𝑛 ≥ 𝑛2. Then𝑚̃𝜑∗(𝑈𝑛 \ 𝐴𝑛) ≤ 𝜀/2 for 𝑛 ≥ 𝑛1. Since 𝑚̃𝜑∗(𝐴𝑛) → 0, we can
choose 𝑛2 ∈ N such that 𝑚̃𝜑∗(𝐴𝑛) ≤ 𝜀/2 for 𝑛 ≥ 𝑛2. Then for𝑛 ≥ 𝑛0 = max(𝑛1, 𝑛2), we get

𝑚̃𝜑∗ (𝑈𝑛) ≤ 𝑚̃𝜑∗ (𝑈𝑛 \ 𝐴𝑛) + 𝑚̃𝜑∗ (𝐴𝑛) ≤ 𝜀; (51)

that is, (ii) holds.
(ii)⇒ (iii) Assume that (ii) holds and (𝐴𝑛) is a sequence

in B𝑜 such that 𝐴𝑛 ↓ and 𝜇(𝐴𝑛) → 0. Then there exists a
sequence (𝑈𝑛) inP with 𝐴𝑛 ⊂ 𝑈𝑛 ↓ such that 𝑚̃𝜑∗(𝑈𝑛) → 0.
Note that, for 𝑓 ∈ 𝐵𝐿𝜑(𝑋) with supp𝑓 ⊂ 𝑈𝑛 for 𝑛 ∈ N, by
Theorem 9 we have

󵄩󵄩󵄩󵄩𝑇 (𝑓)󵄩󵄩󵄩󵄩𝑌 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫Ω 𝑓𝑑𝑚
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫𝑈𝑛 𝑓𝑑𝑚
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑌 ≤ 𝑚̃𝜑∗ (𝑈𝑛) . (52)

It follows that (iii) holds.
(iii)⇒ (i) Assume that (iii) holds and𝐴𝑛 ↓with 𝜇(𝐴𝑛) →0.Then there exists a sequence (𝑈𝑛) inPwith𝐴𝑛 ⊂ 𝑈𝑛 ↓ such

that

sup {󵄩󵄩󵄩󵄩𝑇 (𝑓)󵄩󵄩󵄩󵄩𝑌 : 𝑓 ∈ 𝐵𝐿𝜑(𝑋), supp𝑓 ⊂ 𝑈𝑛} 󳨀→ 0. (53)

Assume on the contrary that (i) fails to hold. Then without
loss of generality we can assume that

𝑚̃𝜑∗ (𝐴𝑛) > 𝜀0 for some 𝜀0 > 0, all 𝑛 ∈ N. (54)

Choose 𝑛0 ∈ N such that

sup {󵄩󵄩󵄩󵄩𝑇 (𝑓)󵄩󵄩󵄩󵄩𝑌 : 𝑓 ∈ 𝐵𝐿𝜑(𝑋), supp𝑓 ⊂ 𝑈𝑛0} < 𝜀02 . (55)

In view of (54) there exists a pairwise disjoint set {𝐵1, . . . , 𝐵𝑘}
in B𝑎, 𝑥𝑖 ∈ 𝑋 for 𝑖 = 1, . . . , 𝑘 and 𝑦∗ ∈ 𝐵𝑌∗ such that‖∑𝑘𝑖=1(1𝐵𝑖 ⊗ 𝑥𝑖)‖𝜑 ≤ 1 and

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦
∗( 𝑘∑

𝑖=1

𝑚(𝐴𝑛0 ∩ 𝐵𝑖) (𝑥𝑖))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≥ 𝜀0. (56)

Let 𝑠0 = ∑𝑘𝑖=1(1𝐴𝑛0∩𝐵𝑖 ⊗ 𝑥𝑖). Then ‖𝑠0‖𝜑 ≤ 1 and supp 𝑠0 ⊂𝐴𝑛0 ⊂ 𝑈𝑛0 . Then by (55) we get ‖𝑇(𝑠0)‖𝑌 < 𝜀0/2.
On the other hand, in view of (56) we have ‖𝑇(𝑠0)‖𝑌 ≥ 𝜀0.

This contradiction establishes that (i) holds.

Corollary 14. Assume that Ω is a completely regular Haus-
dorff space and (Ω,B𝑎, 𝜇) is complete finitemeasure space. Let𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a (𝛾𝜑, ‖ ⋅ ‖𝑌)-continuous linear operator and𝑚 : B𝑎 → L(𝑋, 𝑌) be its representing measure. Then 𝑚̃𝜑∗ is
regular; that is, for every 𝐴 ∈B𝑎 and 𝜀 > 0 there exist 𝑍 ∈Z
and 𝑈 ∈ P with 𝑍 ⊂ 𝐴 ⊂ 𝑈 such that 𝑚̃𝜑∗(𝑈 \ 𝑍) ≤ 𝜀.
Proof. In view of Theorem 12 𝑚 is 𝜑∗-semivariationally 𝜇-
continuous. Let 𝐴 ∈ B𝑎 and 𝜀 > 0 be given. Then by
Proposition 11 there exists 𝛿 > 0 such that 𝑚̃𝜑∗(𝐵) ≤ 𝜀
whenever 𝐵 ∈ B𝑎 and 𝜇(𝐵) ≤ 𝛿. By the regularity of 𝜇 one
can choose 𝑍 ∈ Z and 𝑈 ∈ P with 𝑍 ⊂ 𝐴 ⊂ 𝑈 such that𝜇(𝑈 \ 𝑍) ≤ 𝛿. Hence 𝑚̃𝜑∗(𝑈 \ 𝑍) ≤ 𝜀, as desired.
4. Compact Operators
on Orlicz-Bochner Spaces

The following theorem presents necessary conditions for a(T∧
𝜑, ‖ ⋅ ‖𝑌)-continuous operator 𝑇 : 𝐿𝜑(𝑋) → 𝑌 to be

compact.

Theorem 15. Assume that a Young function 𝜑 such that 𝜑∗
satisfies theΔ 2-condition. Let𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a (T∧

𝜑, ‖ ⋅ ‖𝑌)-
continuous linear operator and 𝑚 : Σ𝑓(𝜇) → L(𝑋, 𝑌)
be its representing measure. If 𝑇 is compact, then 𝑚 is 𝜑∗-
semivariationally 𝜇-continuous.
Proof. Assume that 𝑇 is compact and 𝑚 fails to be 𝜑∗-
semivariationally 𝜇-continuous. Then there exist 𝜀 > 0 and a
sequence (𝐴𝑛) in Σwith𝐴𝑛↘𝜇0 such that ‖𝑇𝐴𝑛‖ = 𝑚∗𝜑(𝐴𝑛) >𝜀 for 𝑛 ∈ N (seeTheorem9).Hence one can choose a sequence(𝑦∗𝑛 ) in 𝐵𝑌∗ such that

󵄩󵄩󵄩󵄩󵄩𝑦∗𝑛 ∘ 𝑇𝐴𝑛󵄩󵄩󵄩󵄩󵄩∗𝜑 ≥ 𝜀 ∀𝑛 ∈ N. (57)

By Schauder’s theorem the conjugatemapping𝑇∗ : 𝑌∗ →𝐿𝜑(𝑋)∗ is compact. Note that 𝑇∗(𝑦∗𝑛 ) = 𝑦∗𝑛 ∘ 𝑇 ∈ 𝐿𝜑(𝑋)∼𝑛 for
all 𝑛 ∈ N, where 𝐿𝜑(𝑋)∼𝑛 is a closed subspace of the Banach
space (𝐿𝜑(𝑋)∗, ‖ ⋅ ‖∗𝜑) (see Theorem 2). Then for every 𝑛 ∈ N

there exists 𝑔𝑛 ∈ 𝐿𝜑∗(𝑋∗, 𝑋) such that

(𝑦∗𝑛 ∘ 𝑇) (𝑓) = ∫
Ω
⟨𝑓 (𝜔) , 𝑔𝑛 (𝜔)⟩ 𝑑𝜇

for 𝑓 ∈ 𝐿𝜑 (𝑋) ,
󵄩󵄩󵄩󵄩𝑦∗𝑛 ∘ 𝑇󵄩󵄩󵄩󵄩∗𝜑
= sup {∫

Ω

󵄩󵄩󵄩󵄩𝑓 (𝜔)󵄩󵄩󵄩󵄩𝑋 𝜗 (𝑔𝑛) (𝜔) 𝑑𝜇 : 𝑓 ∈ 𝐵𝐿𝜑(𝑋)}
= 󵄩󵄩󵄩󵄩𝜗 (𝑔𝑛)󵄩󵄩󵄩󵄩𝜑∗ .

(58)

Hence we obtain that, for each 𝑛 ∈ N,

󵄩󵄩󵄩󵄩󵄩𝑦∗𝑛 ∘ 𝑇𝐴𝑛󵄩󵄩󵄩󵄩󵄩∗𝜑 = 󵄩󵄩󵄩󵄩󵄩1𝐴𝑛𝜗 (𝑔𝑛)󵄩󵄩󵄩󵄩󵄩𝜑∗ = 󵄩󵄩󵄩󵄩󵄩𝜗 (1𝐴𝑛𝑔𝑛)󵄩󵄩󵄩󵄩󵄩𝜑∗ . (59)
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Since 𝑇∗(𝐵𝑌∗) is a relatively sequentially compact subset of((𝐿𝜑(𝑋)∼𝑛 , ‖ ⋅ ‖∗𝜑), there exist a subsequence (𝑔𝑘𝑛) of (𝑔𝑛) and𝑔 ∈ 𝐿𝜑∗(𝑋∗, 𝑋) such that󵄩󵄩󵄩󵄩󵄩𝐹𝑔𝑛 − 𝐹𝑔󵄩󵄩󵄩󵄩󵄩∗𝜑 = 󵄩󵄩󵄩󵄩󵄩𝜗 (𝑔𝑘𝑛 − 𝑔)󵄩󵄩󵄩󵄩󵄩𝜑∗ 󳨀→ 0. (60)

Choose 𝑛𝜀 ∈ N such that ‖𝜗(𝑔𝑘𝑛 − 𝑔)‖𝜑∗ ≤ 𝜀/2 for 𝑛 ≥ 𝑛𝜀.
Hence for 𝑛 ≥ 𝑛𝜀,󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩𝜗 (1𝐴𝑘𝑛𝑔)󵄩󵄩󵄩󵄩󵄩󵄩𝜑∗ − 󵄩󵄩󵄩󵄩󵄩󵄩𝜗 (1𝐴𝑘𝑛𝑔𝑘𝑛)󵄩󵄩󵄩󵄩󵄩󵄩𝜑∗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄩󵄩󵄩󵄩󵄩󵄩𝜗 (1𝐴𝑘𝑛 (𝑔𝑘𝑛 − 𝑔))󵄩󵄩󵄩󵄩󵄩󵄩𝜑∗ = 󵄩󵄩󵄩󵄩󵄩󵄩1𝐴𝑘𝑛𝜗 (𝑔𝑘𝑛 − 𝑔)󵄩󵄩󵄩󵄩󵄩󵄩𝜑∗
≤ 󵄩󵄩󵄩󵄩󵄩𝜗 (𝑔𝑘𝑛 − 𝑔)󵄩󵄩󵄩󵄩󵄩𝜑∗ ≤ 𝜀2 .

(61)

Using (57) and (61), for 𝑛 ≥ 𝑛𝜀, we get
𝜀 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩𝑦∗ ∘ 𝑇𝐴𝑘𝑛 󵄩󵄩󵄩󵄩󵄩󵄩

∗

𝜑
= 󵄩󵄩󵄩󵄩󵄩󵄩𝜗 (1𝐴𝑘𝑛𝑔𝑘𝑛)󵄩󵄩󵄩󵄩󵄩󵄩𝜑∗

≤ 𝜀2 +
󵄩󵄩󵄩󵄩󵄩󵄩𝜗 (1𝐴𝑘𝑛𝑔)󵄩󵄩󵄩󵄩󵄩󵄩𝜑∗

(62)

and hence 󵄩󵄩󵄩󵄩󵄩󵄩1𝐴𝑘𝑛𝜗 (𝑔)󵄩󵄩󵄩󵄩󵄩󵄩𝜑∗ = 󵄩󵄩󵄩󵄩󵄩󵄩𝜗 (1𝐴𝑘𝑛𝑔)󵄩󵄩󵄩󵄩󵄩󵄩𝜑∗ ≥ 𝜀2 . (63)

On the other hand, since 𝜑∗ is supposed to satisfy theΔ 2-
condition, we have that ‖1𝐴𝑘𝑛𝜗(𝑔)‖𝜑∗ → 0 (see [26, Theorem
3, pp. 58-59]). This contradiction establishes that 𝑚 is 𝜑∗-
semivariationally 𝜇-continuous.
Corollary 16. Assume that 𝜑 is a Young function such that 𝜑∗
satisfies theΔ 2-condition. Let𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a (T∧

𝜑, ‖ ⋅‖𝑌)-
continuous linear operator. Then the following statements are
equivalent:

(i) 𝑇 is compact.
(ii) 𝑇 is (𝛾𝜑, ‖ ⋅ ‖𝑌)-compact; that is, there exists a 𝛾𝜑-

neighborhood 𝑉 of 0 in 𝐿𝜑(𝑋) such that 𝑇(𝑉) is a
relatively norm compact set in 𝑌.

(iii) There exists a Young function 𝜓 with 𝜓 ≪ 𝜑 such that{∫
Ω
𝑓𝑑𝑚 : 𝑓 ∈ 𝐿𝜑(𝑋), ‖𝑓‖𝜓 ≤ 1} is a relatively norm

compact set in 𝑌.
Proof. (i)⇒ (ii) Assume that (i) holds. Then by Theorems 12
and 15 𝑇 is (𝛾𝜑, ‖ ⋅ ‖𝑌)-continuous. Since the space (𝐿𝜑(𝑋), 𝛾𝜑)
is quasinormable, by Grothendieck’s classical result (see [15,
p. 429]), we obtain that 𝑇 is (𝛾𝜑, ‖ ⋅ ‖𝑌)-compact.

(ii)⇒ (i) The implication is obvious.
(ii)⇔ (iii) This follows fromTheorem 3.

5. Topology Associated with
the 𝜑∗-Semivariation of
a Representing Measure

Assume that 𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a (T∧
𝜑, ‖ ⋅ ‖𝑌)-continuous

linear operator. Let𝑚 : Σ𝑓(𝜇) →L(𝑋, 𝑌) be its representing
measure. Let us put

𝑝𝑚 (𝑦∗) fl (𝑚𝑦∗)𝜑∗ (Ω) for 𝑦∗ ∈ 𝑌∗. (64)

Note that𝑝𝑚 is a seminormon𝑌∗. Following [22, 27] let 𝛿𝑚,𝜑∗
stand for the topology on 𝐵𝑌∗ defined by the seminorm 𝑝𝑚
restricted to 𝐵𝑌∗ .

The following theorem characterizes (T∧
𝜑, ‖ ⋅ ‖𝑌)-

continuous compact operators 𝑇 : 𝐿𝜑(𝑋) → 𝑌 in terms of
the topological properties of the space (𝐵𝑌∗ , 𝛿𝑚,𝜑∗) (see [22,
Theorem 3]).

Theorem 17. Let 𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a (T∧
𝜑, ‖ ⋅ ‖𝑌)-continuous

linear operator and 𝑚 : Σ𝑓(𝜇) → L(𝑋, 𝑌) be its representing
measure. Then the following statements are equivalent:

(i) The space (𝐵𝑌∗ , 𝛿𝑚,𝜑∗) is compact.

(ii) 𝑇 is compact.

Proof. (i) ⇒ (ii) Assume that (𝐵𝑌∗ , 𝛿𝑚,𝜑∗) is compact. Let(𝑦∗𝑛 ) be a sequence in 𝐵𝑌∗ . Without loss of generality we can
assume that 𝑦∗𝑛 → 𝑦∗0 in 𝛿𝑚,𝜑∗ for some 𝑦∗ ∈ 𝐵𝑌∗ . Then using
Theorem 9 for 𝑓 ∈ 𝐿𝜑(𝑋), we have

󵄨󵄨󵄨󵄨(𝑇∗ (𝑦∗𝑛 ) − 𝑇∗ (𝑦∗0 )) (𝑓)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨(𝑦∗𝑛 − 𝑦∗0 ) (𝑇 (𝑓))󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω 𝑓𝑑𝑚𝑦∗𝑛 −𝑦∗0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (𝑚𝑦∗𝑛 −𝑦∗0 )𝜑∗ (Ω) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜑 .
(65)

It follows that ‖𝑇∗(𝑦∗𝑛 ) − 𝑇∗(𝑦∗0 )‖∗𝜑 ≤ (𝑚𝑦∗𝑛 −𝑦∗0 )𝜑∗(Ω), where𝑝𝑚(𝑦∗𝑛 − 𝑦∗0 ) = (𝑚𝑦∗𝑛 −𝑦∗0 )𝜑∗(Ω) →𝑛 0. This means that 𝑇∗ is
compact and hence 𝑇 is compact.

(ii)⇒ (i) Assume that 𝑇 is compact and (𝑦∗𝛼 ) is a net in𝐵𝑌∗ . Since𝐵𝑌∗ is 𝜎(𝑌∗, 𝑌)-compact, without loss of generality
we can assume that 𝑦∗𝛼 →𝛼 𝑦∗0 in 𝜎(𝑌∗, 𝑌) for some 𝑦∗0 ∈ 𝐵𝑌∗ .
In view of the compactness of the conjugate operator 𝑇∗ :𝑌∗ → 𝐿𝜑(𝑋)∗, there exists a subset (𝑦∗𝛽 ) of (𝑦∗𝛼 ) and Φ0 ∈𝐿𝜑(𝑋)∗ such that ‖𝑇∗(𝑦∗𝛽 ) − Φ0‖∗𝜑 →

𝛽
0. On the other hand,

since 𝑇∗ is (𝜎(𝑌∗, 𝑌), 𝜎(𝐿𝜑(𝑋)∗, 𝐿𝜑(𝑋)))-continuous, we get𝑇∗(𝑦∗𝛽 ) →
𝛽
𝑇∗(𝑦∗0 ) in 𝜎(𝐿𝜑(𝑋)∗, 𝐿𝜑(𝑋)). HenceΦ0 = 𝑇∗(𝑦∗0 );

that is, ‖𝑇∗(𝑦∗𝛽 ) − 𝑇∗(𝑦∗0 )‖∗𝜑 →
𝛽
0.

Let 𝜀 > 0 be given.Then there exist a pairwise disjoint set{𝐴1, . . . , 𝐴𝑛} in Σ𝑓(𝜇) and 𝑥𝑖 ∈ 𝑋 for 𝑖 = 1, . . . , 𝑛 such that‖∑𝑛𝑖=1(1𝐴𝑖 ⊗ 𝑥𝑖)‖𝜑 ≤ 1 and

(𝑚𝑦∗
𝛽
−𝑦∗0
)
𝜑∗
(Ω) ≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛∑
𝑖=1

(𝑦∗𝛽 − 𝑦∗0 ) (𝑚 (𝐴 𝑖) (𝑥𝑖))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝜀. (66)

Hence

(𝑚𝑦∗
𝛽
−𝑦∗0
)
𝜑∗
(Ω) ≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛∑
𝑖=1

(𝑦∗𝛽 − 𝑦∗0 ) (𝑇 (1𝐴𝑖 ⊗ 𝑥𝑖))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝜀

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑦
∗
𝛽 − 𝑦∗0 ) 𝑇(

𝑛∑
𝑖=1

(1𝐴𝑖 ⊗ 𝑥𝑖))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝜀
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= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇
∗ (𝑦∗𝛽 − 𝑦∗0 )(

𝑛∑
𝑖=1

(1𝐴𝑖 ⊗ 𝑥𝑖))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝜀
≤ 󵄩󵄩󵄩󵄩󵄩𝑇∗ (𝑦∗𝛽 − 𝑦∗0 )󵄩󵄩󵄩󵄩󵄩∗𝜑

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑛∑
𝑖=1

(1𝐴𝑖 ⊗ 𝑥𝑖)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜑

+ 𝜀 ≤ 󵄩󵄩󵄩󵄩󵄩𝑇∗ (𝑦∗𝛽) − 𝑇 (𝑦∗0 )󵄩󵄩󵄩󵄩󵄩∗𝜑 + 𝜀.
(67)

Hence 𝑝𝑚(𝑦∗𝛽 − 𝑦∗0 ) = (𝑚𝑦∗
𝛽
−𝑦∗0
)𝜑∗(Ω) →

𝛽
0, and this means

that the space (𝐵𝑌∗ , 𝛿𝑚,𝜑∗) is compact.

As a consequence of Theorems 17 and 15, we have the
following.

Corollary 18. Assume that 𝜑 is a Young function such that 𝜑∗
satisfies theΔ 2-condition. Let𝑇 : 𝐿𝜑(𝑋) → 𝑌 be a (T∧

𝜑, ‖ ⋅‖𝑌)-
continuous linear operator and 𝑚 : Σ𝑓(𝜇) → L(𝑋, 𝑌) be its
representing measure. If the space (𝐵𝑌∗ , 𝛿𝑚,𝜑∗) is compact, then𝑚 is 𝜑∗-semivariationally 𝜇-continuous.
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