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Let (Q, %, ) be a complete o-finite measure space, ¢ be a Young function, and X and Y be Banach spaces. Let L(X) denote the
Orlicz-Bochner space, and I g denote the finest Lebesgue topology on L?(X). We study the problem of integral representation of

(T 3, I-lly)-continuous linear operators T : L?(X) — Y with respect to the representing operator-valued measures. The relationships

between (I g, | - ly)-continuous linear operators T : L*(X) — Y and the topological properties of their representing operator

measures are established.

1. Introduction and Preliminaries

Throughout the paper, (X, || - |x) and (Y, ]| - [ly) denote real
Banach spaces and X" and Y* denote their Banach duals,
respectively. By By and By we denote the closed unit ball in
X and in Y*. Let Z(X,Y) stand for the space of all bounded
operators from X and Y, equipped with the uniform operator
norm || - ||.

We assume that (Q, %, ) is a complete o-finite measure
space. Denote by X ;(¢) the §-ring of sets A €  with u(A) <

00. By L°(X) we denote the linear space of y-equivalence
classes of all strongly X-measurable functions f : Q — X,
equipped with the topology I, of convergence in measure
on sets of finite measure.

Now we recall the basic concepts and properties of Orlicz-
Bochner spaces (see [1-6] for more details).

By a Young function we mean here a continuous convex
mapping ¢ : [0,00) — [0,00) that vanishes only at 0 and
o)/t > 0ast — 0and ¢(t)/t > coast — 0. Let " stand
for the complementary Young function of ¢ in the sense of
Young.

Let L?(X) (resp., L?) denote the Orlicz-Bochner space
(resp., Orlicz space) defined by a Young function ¢; that
is,

o= {fer: [ oQlf @lydu
< 00 for some A > 0} = {f e LX) : | Ok W

eL“’}.

Then L?(X), equipped with the topology 7, of the norm

i, =incprso: [ (L) aucal, @

is a Banach space. For a sequence (f,,) in L?(X), "f""‘P — 0if
and only if JQ QA f ()l x)dpu — 0 forall A > 0. Let

Buo) = {f € 17 (0 : | f], < 1}. (3)
Let
E? (X)
(4)
~{rer o[ p0lr@l)du<oovasol.

Then E?(X)isa| - II(P—closed subspace of L?(X).
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Recall that a subset H of L?(X) is said to be solid whenever
I filx < I f2(@lx p-ae and f; € L?(X), f, € H imply
f1 € H. Alinear topology & on L?(X) is said to be locally solid
if it has a local basis at 0 consisting of solid sets (see [4]).

According to [7, Definition 2.2] and [6] we have the
following definition.

Definition 1. A locally solid topology & on L?(X) is said to be

a Lebesgue topology if for a net (f,) in L?(X), Il f,()llx ﬂ) 0
in the Banach lattice L? implies f, — 0in&.

In view of the super Dedekind completeness of L? one
can restrict in the above definition to usual sequences ( f,,) in
L?(X) (see [7, Definition 2.2, p. 173]).

Note that, for a sequence (f,) in L(X), |f,(O)lyx -2
in L? if and only if || f,(w)lx — 0 p-ae. and | f, ()l
u(w) p-a.e. forsome 0 < u € LY.

Fore > 0letUy(e) = {f € LX) : fQ ol f (w)llx)dp
e}. Then the family of all sets of the form:

Ej( nU(p(si)>’ (*)

N ©

IN

where (¢,) is a sequence of positive numbers and is a local
basis at 0 for a linear topology 972 on L?(X) (see [4, 6] for

more details). Using [4, Lemma 1.1] one can show that the
sets of the form (x) are convex and solid, so I is a locally

convex-solid topology. §

We now recall terminology and basic facts concerning the
spaces of weak”-measurable functions g : Q — X" (see
[8, 9]). Given a function g : Q — X" and x € X, let
gx(w) = glw)(x) for w € Q. By LY%(X*, X) we denote the
linear space of the weak”-equivalence classes of all weak”-
measurable functions g : Q — X". In view of the super
Dedekind completeness of L° the set {|g,| : x € By} is order
bounded in L° for each g € L°(X*, X). Thus one can define
the so-called abstract norm9 : L°(X*, X) — L° by

9(g) = sup{|gy|: x € By} inL". (5)
One can easy check that the following properties of 9 hold:
9(g) = 0ifand onlyif g = 0 and g € L°(X", X),
9(Ag) = |Mlg(g) for A € Rand g € L°(X*, X),
(g, + g2) < 9(gy) +9(g,) if g1, g, € L(X, X),
9(1,49) = 1,9(g) for A € Tand g € L°(X*, X).

It is known that, for f € LX), g e L%(X*, X), the function

(f,g) : @ — R defined by (f,g)(w) = (f(w),g(w)) is
measurable and

[(f (@), g @) < | f @)]x9(9) @)

Moreover, 9(g) = [|g(-)llx- for g € L°(X*). Let

p-a.e. (6)

1 (X" x)={ge L’ (X" X):9(g) e I} )
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Clearly ¥ (X" ¢ L (X*, X). If, in particular, X* has the
Radon-Nikodym property (i.e., X is an Asplund space; see [10,
p. 213]), then L (X*, X) = L¥ (X*).

Let L?(X)" stand for the Banach dual of L?(X), equipped
with the conjugate norm || - II;.

Recall that a Young function ¢ satisfies the A ,-condition
if p(2t) < de(t) for some d > 1 and all t > 0. We shall say
that a Young function y is completely weaker than another
¢ (in symbols, ¥ < @) if for an arbitrary ¢ > 1 there exists
d > 1 such that y/(ct) < de(t) for all > 0. Note that a Young
function ¢ satisfies the A ,-condition if and only if ¢ < ¢. If
¥ < @, then L? ¢ EY and it follows that L?(X) ¢ E¥(X).

Now we present basic properties of the topology I f; on

L?(X).
Theorem 2. Let ¢ be a Young function. Then the following
statements hold:
(1) P/'g Cc T ,and 9‘2 = T, if g satisfies the A ,-condition.
I A 4
(ii) 57(p is the finest Lebesgue topology on L?(X).
(iii) 972 is generated by the family of norms {|l - Il |ex)
v <ok
(iv) (L*(X), T})" = {E, : g € LY (X", X)}, where for
gel? (X", X),

£ ()= [ (@ g@)du for fer? ),

”Fg"; = sup ”Q I.f (w)IIXS(g) (w)du: f € Bm(x)} (8)

=[9(9)

P

(v) (L*(X), 9‘2) is a closed subset of the Banach space
(L2 - 1lp)-

(vi) If X* has the Radon-Nikodym property, then the space
(L*(X), T 2) is strongly Mackey; hence I 2 coincides

with the Mackey topology T(L?(X), L (X*)).
Proof. (i)-(iii) See [4, Theorems 6.1, 6.3 and 6.5].
(iv) In view of [6, Corollary 4.4 and Theorem 1.2], we get
(LY (X), 972)* = L?(X),, where L?(X), stands for the order

continuous dual of L?(X) (see [7, 8, 11] for more details).
According to [8, Theorem 4.1] L¥(X), = {Fg g €

L7 (X", X)}.
Using [11, Theorem 1.3] for g € L? (X", X) we have

||Fg||¢ = sup {UQ (f (), g (W) d#‘ 1 fe BL¢(X>}

=sup 1| [f @]x9(9) @du: f € Byt @
{l,

=[9 (), -

(v) See [12, § 3, Theorem 2].
(vi) See [6, Theorem 4.5]. O
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Let y,[T > T ] (briefly y,) denote the natural mixed
topology on L?(X); that is, y, is the finest linear topology
that agrees with 7, on || - II(P—bounded sets in L?(X) (see
[5, 13, 14] for more details). Then y, is a locally convex-solid
Hausdorff topology (see [14, Theorem 3.2]) and y,, and T,
have the same bounded sets. This means that (L‘p(X),y(P)
is a generalized DF-space (see [15]) and its follows that
(L*(X), ¥,) is quasinormable (see [15, p. 422]). Moreover, for
a sequence (f,) in L?(X), f, — 0iny, ifand onlyif f, — 0
in 7, and supnllfnll(P < 00 (see [14, Theorem 3.1]).

We say that a Young function ¢ increases essentially more
rapidly than another y (in symbols, ¥ <« ¢) if for arbitrary
c>0,y(ct)/et) —» 0ast — 0and t — 0.

Theorem 3. Let ¢ be a Young function. Then the mixed
topology y, on L?(X) is generated by the family of norms
Myl v < o}

Proof. It is known that the mixed topology y, on L is
generated by the family of norms {|| - IIV,IUP Ty < @} (see [16,
Theorem 2.1]). Since [ fll, = Il fC)lxll, for f € L?(X), by
[14, (54), p. 97], the mixed topology Yy 0N L?(X) is generated
by the family of norms {|| - lylrox 1 ¥ < @} O

Since ¥ < ¢ implies y < @, in view of Theorems 2 and 3,
we get

(10)

The problem of integral representation of bounded lin-
ear operators on Banach function spaces of vector-valued
functions to Banach spaces in terms of the corresponding
operator-valued measures has been the object of much study
(see [5,17-24]). In particular, Dinculeanu (see [19, § 13, Sect.
3], [20], [21, § 8, Sect. B]) studied the problem of integral
representation of bounded linear operators from L?(X) to a
Banach space Y. It is known that if 1 < p < co, u(Q) < 0o
and an operator measure m : X — Z(X,Y) vanishes on
p-null sets and has the finite g-semivariation n"iq(Q) 1 <
q < 00,1/p + 1/q = 1), then one can define the integral
Jofdm for all f € LP(X). Moreover, if T : L*(X) —» Y
is a bounded linear operator, then the associated operator
measure m : X — Z(X,Y) has the finite g-semivariation
,(Q) and T(f) = [, fdmforall f € LP(X) (see [19, § 13,
Theorem 1 p. 259], [20, Theorem 4]). The relationships of the
g-semivariation 77, to the properties of operators from LP(X)
to Y were studied in [22]. Diestel [23] found the integral
representation of bounded linear operators from an Orlicz-
Bochner space L?(X) to a Banach spaces if 4(Q) < co and a
Young ¢ satisfies the A ,-condition.

The present paper is a continuation of [5], where we
establish integral representation of (o> I - lly)-continuous
linear operators T : L?(X) — Y. We study the problem
of integration of functions in L?(X) with respect to the

representing operator measures of (7 /(;, |l - Ily)-continuous
linear operators T : L?(X) — Y. An integral representation
theorem for (I g, [l - ly)-continuous linear operators T :

L?(X) — Y is established (see Theorem 9 below). We study

the relationships between (I~ g, [ - lly)-continuous operators
T : L?(X) — Y and the properties of their representing

measures 1 : Zf(y) - Z(X,Y).
2. ¢”-Semivariation of Operator Measures

Assume that m : X f([/l) — Z(X,Y) is an additive measure
such that m <« y; that is, m(A) = 0 if u(A) = 0.

Let cS’(Zf(pt), X) denote the space of all X-valued Zf(y)—
simple functions on Q. Then s € oS’(Zf(y), X)ifs = Z(]]A,- ®
x;), where (A;) is a finite pairwise disjoint sequence in X ;(p4)
and x; € X. Fors = 3" (1, ®x;) € S(Z(4), X)and A € 3,

we can define the integmlf , sdmby

j sdm=Ym(4,04)(x). )
A i=1
Note that
J sdm = J Tsdm. (12)
A Q

For y* € Y", we define a measure m,. : X¢(u) — X" by the
equality

m. (A) (x) = y* (m(A) (x)) (13)
13
for AeX;(u), x€X.

Fors = Y (1, ®x;) € S(Zp(u),X) and A € I, we
define the integral J , sdm,. by the equality:

JAsdmy* = an:my* (A;NnA)(x;). (14)
Then
y" (Lsdm) = JAsdmy*. (15)

Following [23], [19, § 13] one can define the ¢*-
semivariationin,» (A)ofmon A € X by

, (16)
Y

Ym(An A (x)

i=1

Mg (A) = sup

where the supremum is taken over all finite pairwise disjoint
sets {A;,...,A,}in Zf([/l) and x; € X fori = 1,...,nsuch
that || Y12, (T4, ® x)ll, < 1.

One can observe that

iy (A)
(17)
= sup {”Lsdmlly iS¢ cS’(Zf (M),X), lsll, < 1}.
Note that
i, (A) < i, (B) if A,BeX with ACB, "
18

iy (AU B) < iy (A) + i, (B) for A,B €.



Let (my* )q,* (A) stand for the ¢" -semivariation of m,. on A €
¥; that is,

(757, @

(19)
=su sdm|:seS(Z X)) s Sl}.
p{|[ sam, (2, (). X). Isl,
The following lemma will be useful.
Lemma 4. Let ¢ be a Young function and m : Z;(u) —

ZL(X,Y) be a measure with m < y and Mg (Q) < 0o, Then
the following statements hold:

(i) If f € E?(X), then there exists a ||- IIq,—Cauchy sequence
(sn) in S(Z¢(u), X) such that ||s,(w) - f(w)lx — 0 u-
a.e.

(ii) If (s,) isa | - II(p-Cauchy sequence in &(Zf(y), X), then
forA eZ, (fA s,dm) is a Cauchy sequence in a Banach
spaceY and forevery y* € Y, (JA s,dm,.) is a Cauchy
sequence in R.

(iii) If f € E*(X) and (5:,) and (s;') are | - ||<P—Cauchy
sequence in cS’(Zf(pt), X) such that IIS;(w) - flw)lx —

0 y-a.e. and IISL'(w) - f(w)llx — 0 p-a.e., then for
A € X, one has

limj s;dm = limJ s;'dm, (20)
A A

and for every y* € Y*, one has

tim [ S, =lim | dm,.. (21)

Proof. (i) Let f € E®(X). Then there exists a sequence (s,,)
in cS’(Zf(y),X) such that s, (w) — f(w)llx — 0 p-a.e. and
s, ()lx < I f(w)llx p-a.e. for alln € N (see [21, Theorem 6,
p- 4]). Using the Lebesgue dominated convergence theorem,
we obtain that IQ @(A(lls,(w) = f(w)llx)du — 0 forall A > 0,
so ||s,, — fllq, — 0. Hence (s,) isa | - II(P—Cauchy sequence.

(ii) Assume that (s,) is a || - II(p-Cauchy sequence in
S'(Z (), X). Hence for n, k € N, we have

"J s,dm — J sgdm|| = |U (s, — s¢) dm
A A Y A Y (22)

< s, - sk”q) Mgy (A) < IIs, - sk“(p Mgy ().

It follows that (J 4 Sndm) is a Cauchy sequence in Y. Hence in
.Viel]vg of (15), for y* € Y™, (jA sndmy*) is a Cauchy sequence
in R.

(iii) Note that (s,'1 - s,'q') isal - ||¢—Cauchy sequence and
IISL(w) - s:l'(w)IIX — 0 p-a.e. Hence there exists h € E?(X)
such that ||(5:l—5:1/)—h||¢ — 0. Note that 7 | go(x) C P](PIEP(X).
Hence (s:l - s;') —h — 0in 7 and it follows that there exists a
subsequence (s,Ln —s,'c'n) of (s;—s;') such that ||(sl'<n (w)—s,'c;(w))—
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h(w)lx — 0 p-a.e. Then h(w) = 0 p-a.e., so IISL - S;IH(P -0
and for A € X, we get

HJ s dm — J s dm| = HJ (s; - s:[)dm
A A Y A

T (4).

Y (23)
< "s; - s;'

It follows that
lim J s;dm = lim J s;’dm (24)
A A
and hence, in view of (15) for every y* € Y™, we have
limj s;dmy* = limj s:l'dmy*. (25)
A A

O

Following [21, § 13, Definition 1, p. 254], in view of
Lemma 4 we have the following.

Definition 5. Let ¢ be a Young function and m : X,(u) —
Z(X,Y) be an additive measure such that m <« pu and
My (Q) < oo. Then for every f € E?(X)and A € X, we

can define the integralf  Jf dm by the equality

Lfdm = lim JA s, dm (26)

and for y* € Y”, we can define the integralIA fdm,. by the
equality

| ram,. =1 [ s,am,.. @7)

where (s,) is an arbitrary || - [|,-Cauchy sequence in
S(Zf(w), X) such that [ls, (@) ~ f(w)llx — 0 p-ae.

3. Integral Representation of Continuous
Operators on Orlicz-Bochner Spaces

For a bounded linear operator T : L?(X) — Y let

ITly = sup {|T (f)lly : f € Brog} - (28)

Proposition 6. Let T : L?(X) — Y be a bounded linear

operator and
m(A)(x) =T(1,®x) for AeX;(u), x€X. (29)
Then the following statements hold:
(i) For A € Zf(‘u)m(A) € L(X,Y) and |m(A)| < I, -
1140,
(ii) m < .
(iii) lm(A ) — 0if A, | D with A, € Z ().
@iv) m : Zf(y) — Z(X,Y) is countably additive; that is,

m(Une, By) = Yooy m(B,,) if (B,) is a pairwise disjoint
sequence in X ((u) with | ;2| B, € T ().

(v) iy (@) < Tl
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Proof. (i) Let A ¢ Zf(y). Then for x € By, we have |1, ®
X||¢ < IIHAII(p and hence

lm (A) ()lly = |T (14 @x)]y < ITl, - [14 @],

(30)
< ITly [14ll, -
o lm(A) < T, - 114,
(ii) This follows from (i) because ||1]A||(P =0ifu(A) =
(iii) Assume that A, | 0 with A, € X:(u). Then

T4, (@) =21, (w) | 0forw € Q. By the Lebesgue dominated

convergence theorem, we obtain that J (AT A, (w))dyu — 0
for every A > 0. This means that |IﬂAnl| — 0 and by (i),
[m(A,)ll — 0.

(iv) Assume that (B,) is a pairwise disjoint sequence in
2p(p) with B = |J;2, B, € Z(u). Let A, = B\ |J_, B; for
neN.Then A, € Zf(/,t) and A, | 0. Hence by (iii) m(B) -
Sy m(B)I = lm(B) - m(UL, B)I = Im(A,)] = 0.

Statement (v) is obvious. O

Definition 7. LetT : L?(X) — Y beabounded linear operator
and

m(A)(x) =T (1,®x) forAer(y), xeX. (31

Then the measure m : Zf(y) — ZL(X,Y) will be called a
representing measure of T.

Proposition 8. Let T : L#(X) — Y be a (,72, I - lIy)-
continuous linear operator and m : Zf(u) - ZL(X,Y) be
its representing measure. Then there exists a Young function y
such that v < ¢ and m,- () < oo.

Proof. According to Theorem 2 there exist a finite set {y; : i =

1,...,n} of Young functions with y; < ¢ fori = 1,...,n and
a > 0 such that
IT(Olly < amax |f],, Vel X). (3

1<i<n

Lety(t) = max,;,;(t) fort > 0. Then y is a Young function
with ¢ < ¢ and

[Ty <alfl, vfel®Co. (33)
Hence
i, (Q)
=sup {IT )y s € 8 (2 (W), X), Isl, <1} (34)
<a<oo.
O
For a linear operator T : L?(X) —» Y and A € %, let
Ta(f)=T(1,f) for feL?(X). (35)

Now we can state our main result that extends the classical
results concerning the integral representation of operators on
Lebesgue-Bochner spaces LP(X) (1 < p < o) (see [19, §
13, Theorem 1, pp. 259-261]) to operators on Orlicz-Bochner
spaces L?(X).

Theorem 9. Let T : LY(X) — Y bea (972, I - lly)-continuous
linear operator and m : 2 ;(u) — Z(X,Y) be its representing
measure. Then for A € X the following statements hold:
(i) Ty : LX) - Yisa(Tpll-
operator.
(ii) For f € L?(X), one has

lly)-continuous linear

Ta(f) = L fdm (36)
and for y* € Y, one has
¥ (T ()= [ fam,. )
(iii) For f € L?(X), the measure my : £ — Y defined by
the equality
my (A) = Lfdm forAcs (38)

is countably additive.
(i) T4, = iy (A)
and for y* € Y7,
(M,)g+ (A).
(v) iy (A) = sup{(m,;),- (A) : y* € By}
(vi) For f € L?(X), one has

ly* o Tall, = Iy o T4l =

|” fan <, @I, (39)
A Y
and for y* € Y, one has

[ ram,| < @), 1, (40)

Proof (i) Assume that (f,) isa netin L?(X) such that f, — 0

in7 Smce 7 " is a locally solid topology on L?(X), we get
T4 fa —-0inJ Hence
ITa (Flly = 1T (1aflly — 0. (41)

(ii) In view of Proposition 8 there exists a Young function
v such that y < ¢ and /,.(Q) < oo. Then L?(X) ¢
E¥(X). Let f € L?(X). Then there exists a sequence (s,,)
in cS’(Z (4), X) such that ||s,(w) — f(w)lx — 0 p-a.e. and
IIs,, (w)IIX I f(w)llx p- a e. for all n € N (see [21, Theorem 6,
p-4]). Thens, — finT " because T o isa Lebesgue topology.

Hence [Is, — fll,, — 0. In view of Lemma 4 we can define the
integral I [ dm by the equality

L fdm = lim JA s, dm. (42)



Since Ty(s,) = _[Asndm and by (i), T, is (93, - ly)-
continuous, we get

T, (f) = lim J s, dm. (43)
A
Hence
Ta(f) = L fdm (44)

and for y* € Y*, we have

¥ (T4 (f)) =lim y” <JA sndm> = lim L sndmy*
(45)

- Lfdmy*.

(iii) Let f € L?(X) and (A,) be a sequence in X such
that A, | 0. Then T, (w) | 0 for @ € Q, and
hence IIHAn(w)f(w)IIX — 0 p-a.e. and IIHAn(w)f(w)IIX <
If(@)lx u-ae. Hence 1, f — 0 in 9'2 because 9”:; is a
Lebesgue topology, and by (i) we get

s 4l =), sam) = (1l —0. o

Y =
(iv) Note that e (A) < ||TA||¢- To show that ||TA||(P <
Mg (A), assume that f € Bpyy). Choose a sequence (s,)
in cS’(Zf(y),X) such that |s,(w) — f(w)llx — 0 u-a.e. and
Is,()lx < lf(w)lx p-a.e. for all n € N. Since 9‘2 is
a Lebesgue topology, we have s, — f in I g and hence
IT4(s,) = Ta(f)lly — 0. Note that T(s,,) = |, s,dm.

Let ¢ > 0 be given. Choose n, € N such that ||T,(f) -
JA sy, dmlly < e Then

T4 (Hly < llTA (f) - L Sy A1 v " |UA S Y (47)

< e+, (A).

It follows that ||TA||¢ < My (A), so Mgy (A) = ||TA||¢. Hence
for y* € Y, we easily get

167 2D ally = Iy e Tally, = (757),,. (4. (48)
(v) Using (iv) we have

iy (A) = T4,
= sup{|T, (Fly : £ € L* (X, |f], <1}
= sup {7 o T (N fe 20| f], <1} (4

Y™ €By+

= sup y" o Tyl = sup (7). (A).
*€eB. Y €Byx

y" €Byx

(vi) This follows from (ii) and (iv). O
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For a sequence (A,) in %, we will write A, 0 if A, |
and p(A, N A) — 0 for every A € Z;(p).

Definition 10. A measure m : Zf([/l) — Z(X,Y) with m <«

u and 7. (Q) < oo is said to be ¢"-semivariationally y-
continuous ifﬁq,* (A,) — 0 whenever A0, (A,) CX.

Using a standard argument we can show the following.

Proposition1l. Letm : £ — L (X,Y) be an additive measure
such that m <y and m,(Q) < oo. Then the following
statements are equivalent:

(i) m is ¢ -semivariationally py-continuous.

(ii) The following two conditions hold simultaneously:

(a) For every € > 0 there exists § > 0 such that
My (A) <€ whenever u(A) <6, A € 2.

(b) For every & > 0 there exists Ao € X (u) such that
e (Q\Ay) <e.

The following theorem characterizes ¢*-semivariation-
ally p-continuous representing measures.

Theorem 12. Let T : L?(X) — Y bea (92, | - lly)-continuous

linear operator and m : X f([/l) — Z(X,Y) be its representing
measure. Then the following statements are equivalent:

(i) m is ¢* -semivariationally u-continuous.

(ii) T is (y(p, | - Ily)-continuous.
(ii)) IT(f)lly — 0if f, = 0in T, and supnllfn||¢ < 00.
() ITa I, = 0 if A, N0 (4,) € E.

Proof. (i) & (ii)  (iii) See [5, Corollary 2.8 and Proposition
11].
(i) © (iv) This follows from Theorem 9. O

Now assume that Q is a completely regular Hausdorff
space. Let Ba denote the o-algebra of Baire sets in (), which
is the o-algebra generated by the class Z of all zero sets of
bounded continuous positive functions on w. By & we denote
the family of all cozero (=positive) in Q (see [25, p. 108]).

Let 4 : Ba — [0,00) be a countably additive measure.
Then p is zero-set regular; that is, for every A € Baande > 0
there exists Z € Z with Z ¢ A such that u(A \ Z) < € (see
[25, p. 118]). It follows that for every A € %Ba and & > 0 there
existU € P, U > Asuch that (U \ A) <e.

We can assume that p to be complete (if necessary we

can take the completion (Q, %Ba,u) of the measure space
(Q, Ba, u)).

Proposition 13. Assume that Q) is a completely regqular Haus-
dorff space and (Q, Ba, p) is a complete finite measure space.
LetT : L?(X) —» Y bea (F/‘g, - Ily)-continuous linear operator
andm : Ba — L (X,Y) be its representing measure. Then the
following statements are equivalent:

(i) m is ¢ -semivariationally py-continuous.
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(ii) For every sequence (A,) in %Ba such that A, | and
u(A,) — 0thereexists a sequence (U,) in PP with A,, C
U, | such that m. (U,) — 0.

(iii) For every sequence (A,) in PBa such that A, | and
u(A,) — 0 there exists a sequence (U,) in P with A, C
U,, | such that

sup {|T (f)lly : f € Brogxysupp f U} — 0. (50)

Proof. (i) = (ii) Assume that (i) holds and (A,,) is a sequence
in %Ba such that A, | and p(A,) — 0. Then there exists a
sequence (U,) in Psuchthat A, c U, |and u(U \A,) < 1/n
forn e N.

Let € > 0 be given. Then in view of Proposition 11 there
exists § > 0 such that e (A) < e/2if u(A) < Swith A € RBa.
Choose n; € N such that u(U, \ A,) < & for n > n,. Then
e (U,\ A,) < ¢/2forn > n,. Since Mgy (A,) — 0, we can
choose n, € N such that #7i,. (A,)) < &/2 for n > n,. Then for
n > ny = max(n,, n,), we get

M- U, < M (U,\A,)+ My (A,) <& (51)

that is, (ii) holds.

(ii) = (iii) Assume that (ii) holds and (A,,) is a sequence
in 0 such that A,, | and u(A,) — 0. Then there exists a
sequence (U,) in  with A, c U, | such that m,. (U,) — 0.
Note that, for f € Bye(x) with supp f ¢ U, forn € N, by
Theorem 9 we have

<y (U,). (52)
Y

(Pl =[], £am] =], £am

It follows that (iii) holds.

(iii) = (i) Assume that (iii) holdsand A, | with u(A,) —
0. Then there exists a sequence (U,) in P with A, c U,, | such
that

sup {|T(f)|ly : f € Broxyosupp f cU,} — 0. (53)

Assume on the contrary that (i) fails to hold. Then without
loss of generality we can assume that

iy (A,) > g for some g >0, all neN. (54)

Choose 1, € N such that

&,
sup {IT ()l : f € Buspsupp £ Uy b < . (59)

In view of (54) there exists a pairwise disjoint set {B,, ..., B}
in Ba, x; € Xfori = 1,...,kand y* € By such that

I35, (15 ®x)l, < 1and

y (im (4,,1B) <xi)>

i=1

> & (56)

Let s, = Zf:l(ﬂAngﬂBf ® x;). Then |Isll, < 1 and supps,
A, CU,. Then by (55) we get [T(so)lly < &/2.

On the other hand, in view of (56) we have ||T(sy)lly > €.
This contradiction establishes that (i) holds. O

Corollary 14. Assume that Q is a completely regular Haus-
dorffspace and (Q), Ba, ) is complete finite measure space. Let
T:L%(X) > Ybea (Yg» - lly)-continuous linear operator and
m: Ba — ZL(X,Y) be its representing measure. Then i, is
regular; that is, for every A € Ba and € > 0 there exist Z €
andU € P with Z c A C U such thatﬁq,*(U\Z) <e

Proof. In view of Theorem 12 m is ¢"-semivariationally y-
continuous. Let A € PBa and ¢ > 0 be given. Then by
Proposition 11 there exists § > 0 such that My (B) < ¢
whenever B € %Ba and u(B) < J. By the regularity of i one
can choose Z € Z and U € & with Z ¢ A c U such that
u(U \ Z) < 6. Hence Mgy (U \ Z) < &, as desired. O

4. Compact Operators
on Orlicz-Bochner Spaces

The following theorem presents necessary conditions for a
(92, | - lly)-continuous operator T : L?(X) — Y to be
compact.

Theorem 15. Assume that a Young function ¢ such that ¢*
satisfies the A ,-condition. Let T : LY(X) — Y bea (F]g, I 1ly)-
continuous linear operator and m Zf(y) - Z(X)Y)
be its representing measure. If T is compact, then m is ¢*-
semivariationally y-continuous.

Proof. Assume that T is compact and m fails to be ¢"-
semivariationally g-continuous. Then there exist ¢ > 0 and a

sequence (A,) in T with A, \, 0 such that | T, || = ;nz(An) >
eforn € N (see Theorem 9). Hence one can choose a sequence
(y,) in By such that

"y; ° TAn"; >e VneN. (57)

By Schauder’s theorem the conjugate mapping T* : Y* —
L?(X)" is compact. Note that T*(y.) = y, o T € L?(X);, for
alln € N, where L?(X),, is a closed subspace of the Banach
space (L¥(X)", || - II;) (see Theorem 2). Then for every n € N

there exists g, € L? (X", X) such that

O = D) = | (F @19, @) du
for f e LY (X),

Iy = Tl (58)

sup{[ 1 @19 (a) @dns f € B}

19 (gl -

Hence we obtain that, for eachn € N,

||y:; oTA,, ; = |'ﬂAn9(gn) @ = ||‘9(]]Angn) (59)

0



Since T*(By-) is a relatively sequentially compact subset of
(LX), Il - II;), there exist a subsequence (gj ) of (g,,) and

ge L (X*, X) such that
[£,, - B, = [9(gx, - 9)l,. — 0 (60

Choose n, € N such that [9(g, - g)||¢*
Hence for n > n,,

< g/2forn > n,.

l”‘g(“%g ‘ “‘9 Ta, 9| .
[o(1a, (9, -9))],. = 14,90, ~9)] . (@
Jo(ar, - 9)l, <5
Using (57) and (61), for n > n,, we get
€= |Ly ° Ty, ||(p = 9(1a,,9) ” -
< 3 + ||9(1]Akng)||¢*
and hence
[14,90)] . =[0(1,9)],. 2 5 (63)

On the other hand, since ¢™ is supposed to satisfy the A ,-
condition, we have that ||1]Ak 9(9)"(,,* — 0 (see [26, Theorem
3, pp- 58-59]). This contradiction establishes that m is ¢*-
semivariationally y-continuous. O

Corollary 16. Assume that ¢ is a Young function such that ¢*
satisfies the A ,-condition. Let T : L?(X) — Y bea (92, I-ly)-
continuous linear operator. Then the following statements are
equivalent:

(i) T is compact.

(i) T is (yp Il - lly)-compact; that is, there exists a y,-
neighborhood V of 0 in L?(X) such that T(V) is a
relatively norm compact set in'Y.

(iii) There exists a Young function v with v < ¢ such that
{_[Qfdm : f e LX), ||f||v, < 1} is a relatively norm
compact setin'Y.

Proof. (i) = (ii) Assume that (i) holds. Then by Theorems 12
and 15 T'is (y(p, [l Iy)-continuous. Since the space (L?(X), yq,)
is quasinormable, by GrothendiecK’s classical result (see [15,
p- 429]), we obtain that T is (yq,, [l - Ily)-compact.

(ii) = (i) The implication is obvious.

(ii) © (iii) This follows from Theorem 3. ]

5. Topology Associated with
the ¢*-Semivariation of
a Representing Measure

Assume that T : L?(X) — Y bea (9'3, | - ly)-continuous
linear operator. Letm : f([/l) — Z(X,Y) be its representing

measure. Let us put

P (") = (717) . (@) for y" €Y. (64)
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Note that p,,, isa seminorm on Y. Following [22, 27] let §,,, ,-
stand for the topology on By defined by the seminorm p,),
restricted to By-.

The following theorem characterizes (I g, - ly)-
L?(X) — Y in terms of
(P,.) (see [22,

continuous compact operators T :
the topological properties of the space (By+,9,,
Theorem 3]).

Theorem 17. Let T : L9(X) — Y bea (9‘2, | - lly)-continuous

linear operator and m : 2 ¢(u) — Z(X,Y) be its representing
measure. Then the following statements are equivalent:

(i) The space (By+, 6, ) is compact.

(ii) T is compact.

Proof. (i) = (ii) Assume that (By-,0,, (p*) is compact. Let
(¥,) be a sequence in By.. Without loss of generality we can
assume that y; — y; in 6, ,- for some y* € By.. Then using
Theorem 9 for f € L?(X), we have

(7" () =T (56)) (N = 1 = 30) (T ()]

B ”Qfdmy:—ya‘ < (m, —ya‘)q,* @11, -

It follows that [|T*(y,) — T*(y(’;)II; < (m, Y )p+ (), where
Pm(Vy — Vo) = (my;,yg)q,* Q) — 0. This means that T™ is
compact and hence T' is compact.

(ii) = (i) Assume that T is compact and (y, ) is a net in
By-.Since By isa(Y ", Y)-compact, without loss of generality
we can assume that y, — y; ino(Y",Y) for some yj € By-.

65)

In view of the compactness of the conjugate operator T*
Y* — L?(X)", there exists a subset (yg) of (y,) and @, €
L?(X)" such that IIT*(yﬁ) ) || —> 0. On the other hand,

since T* is (o(Y",Y),o(L?(X)* L¢(X)))—continuous, we get
T*(y;) ? T*(yy) ino(L?(X)", L(X)). Hence ®y = T™ (¥, );

that s, 17" (y) = " Gl — 0.

Let € > 0 be given. Then there exist a pairwise disjoint set
{A,...,A,}in Zf(y) and x; € X fori = 1,...,n such that
I Z?:l(ﬂAi ® x;)ll, < 1and

(775, (@ <

Hence

M:

()’/3 yo)(m( i) (%))

+e  (66)

Il
—

i

+ &

> (55 - %) (1 (14,2 )

< o3 -0y ( 310 0m) )

+ &

(myf;—ys )(,,* (@) <

M=

Il
—_

i
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IN
=
—~
=
|
;<*
~—

IS (14, @)

i=1 @

+te< "T* (y;)—T(yg)";+s.

(67)

Hence pm(y; - ¥) =
that the space (By-,d,,,,-) is compact. O

(myE-yo* )g () ? 0, and this means

As a consequence of Theorems 17 and 15, we have the
following.

Corollary 18. Assume that @ is a Young function such that ¢
satisfies the A ,-condition. Let T : LY(X) — Y bea (972, I-1Iy)-
continuous linear operator and m : Zf(y) — ZL(X,Y) be its
representing measure. If the space (By-, 9, ) is compact, then
m is ¢” -semivariationally p-continuous.
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