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We are concerned with the split common fixed point problem inHilbert spaces.We propose a newmethod for solving this problem
and establish a weak convergence theorem whenever the involved mappings are demicontractive and Lipschitz continuous. As an
application, we also obtain a new method for solving the split equality problem in Hilbert spaces.

1. Introduction

The split common fixed point problem (SCFP) is an inverse
problem that aims to find an element in a fixed point set
such that its image under a linear transformation belongs to
another fixed point set. More specifically, given two Hilbert
spaces𝐻1 and𝐻2, the SCFP consists in finding 𝑥 ∈ 𝐻1 such
that

𝑥 ∈ 𝐹 (𝑈) ,
𝐴𝑥 ∈ 𝐹 (𝑇) , (P1)

where 𝐴 : 𝐻1 → 𝐻2 is a bounded linear mapping and 𝐹(𝑈)
and 𝐹(𝑇) are, respectively, the fixed point sets of nonlinear
mappings 𝑈 : 𝐻1 → 𝐻1 and 𝑇 : 𝐻2 → 𝐻2. Particularly, if 𝑈
and 𝑇 are both metric projections, the SCFP is reduced to the
well-known split feasibility problem (SFP). Actually, the SFP
can be formulated as the problem of finding a point 𝑥 ∈ 𝐻1
such that

𝑥 ∈ 𝐶,
𝐴𝑥 ∈ 𝑄, (1)

where 𝐶 ⊆ 𝐻1 and 𝑄 ⊆ 𝐻2 are nonempty closed convex
sets, and mapping 𝐴 is as above. These two problems have
been extensively investigated since they play an important
role in various areas including signal processing and image
reconstruction [1–5].

We assume throughout the paper that problem (P1) is
consistent, which means that its solution set, denoted by𝑆, is nonempty. Censor and Segal [6] studied the SCFP
when 𝑈 and 𝑇 are firmly quasi-nonexpansive mappings, and
proposed the following method:

𝑥𝑛+1 = 𝑈 [𝑥𝑛 − 𝜏𝑛𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛] , (2)

where 𝜏𝑛 is a properly chosen stepsize. It is shown that if𝜏𝑛 is chosen in (0, 2/‖𝐴‖2), then the sequence generated by
method (2) converges weakly to a solution of problem (P1).
Subsequently, this result was extended to quasi-nonexpansive
operators [7], demicontractive operators [8, 9], two groups
of finitely many firmly quasi-nonexpansive mappings [10, 11],
and the more general common null point problem [12]. Also,
some variants of method (2) have been considered in [13–16].

Since the choice of the stepsize is related to ‖𝐴‖, thus,
to implement method (3), one has to compute (or at least
estimate) the norm ‖𝐴‖, which is generally not easy in
practice. A way to avoid this is to adopt variable stepsize
which ultimately has no relationwith ‖𝐴‖ [8, 10, 17–19].Wang
[18] recently proposed a new method for solving the SCFP:

𝑥𝑛+1 = 𝑥𝑛 − 𝜌𝑛 [(𝐼 − 𝑈) 𝑥𝑛 + 𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛] , (3)

where {𝜌𝑛} ⊂ (0,∞) is chosen such that

𝜌𝑛 =
󵄩󵄩󵄩󵄩(𝐼 − 𝑈) 𝑥𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴𝑥𝑛󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩(𝐼 − 𝑈) 𝑥𝑛 + 𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛󵄩󵄩󵄩󵄩2 . (4)
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Wang proved that if mappings 𝑈 and 𝑇 are firmly quasi-
nonexpansive, then the sequence {𝑥𝑛} generated by (3)-
(4) converges weakly to a solution of problem (P1). Wang
and Xu [19] recently proposed another choice of the step-
size:

𝜌𝑛 = 𝜏𝑛󵄩󵄩󵄩󵄩(𝐼 − 𝑈) 𝑥𝑛 + 𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛󵄩󵄩󵄩󵄩 , (5)

where {𝜏𝑛} ⊂ (0,∞) is chosen such that
∞∑
𝑛=0

𝜏𝑛 = ∞,
∞∑
𝑛=0

𝜏2𝑛 < ∞.
(6)

They proved that if mappings 𝑈 and 𝑇 are nonexpansive,
then the sequence {𝑥𝑛} generated by (3) and (5)-(6) con-
verges weakly to a solution of problem (P1). It is clear
that these choices of the stepsize do not rely on the norm‖𝐴‖.

In this paper, we first extend the above result for method
(3) from nonexpansive mappings to demicontractive contin-
uous mappings. By using properties of product spaces, we
change the split equality problem into a special split common
fixed point problem. As a result, based on our extension, we
obtain a newmethod for solving the split equality problem in
Hilbert spaces.

2. Preliminaries

Throughout the paper,𝐻𝑖, 𝑖 = 1, 2, 3, are Hilbert spaces, 𝐼 is
the identity operator, “→” stands for strong convergence, and
“⇀” stands for weak convergence. For a mapping𝑊 : 𝐻1 →𝐻1, 𝐹(𝑊) is the set of the fixed points of 𝑊, 𝑊−1(0) = {𝑥 ∈𝐻1 : 𝑊𝑥 = 0}, and𝑊𝑐 fl 𝐼 − 𝑊.

Definition 1. Let𝑊: 𝐻1 → 𝐻1 be a nonlinear mapping.

(i) 𝑊 is called firmly nonexpansive, if

󵄩󵄩󵄩󵄩𝑊𝑥 −𝑊𝑦󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑊𝑐𝑥 −𝑊𝑐𝑦󵄩󵄩󵄩󵄩2 ,
∀𝑥, 𝑦 ∈ 𝐻1.

(7)

(ii) 𝑊 is called nonexpansive, if
󵄩󵄩󵄩󵄩𝑊𝑥 −𝑊𝑦󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻1. (8)

(iii) 𝑊 is called strictly pseudo-contractive, if there exists𝑘 < 1 such that
󵄩󵄩󵄩󵄩𝑊𝑥 −𝑊𝑦󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 + 𝑘 󵄩󵄩󵄩󵄩𝑊𝑐𝑥 −𝑊𝑐𝑦󵄩󵄩󵄩󵄩2 ,

∀𝑥, 𝑦 ∈ 𝐻1.
(9)

(iv) 𝑊 is called𝐿-Lipschitz continuous, if there exists 𝐿 > 0
such that

󵄩󵄩󵄩󵄩𝑊𝑥 −𝑊𝑦󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻1. (10)

Definition 2. Let𝑊: 𝐻1 → 𝐻1 be a nonlinear mapping with𝐹(𝑊) ̸= 0.
(i) 𝑊 is called firmly quasi-nonexpansive, if

‖𝑊𝑥 − 𝑧‖2 ≤ ‖𝑥 − 𝑧‖2 − ‖(𝐼 − 𝑊) 𝑥‖2 ,
∀ (𝑥, 𝑧) ∈ 𝐻1 × 𝐹 (𝑊) . (11)

(ii) 𝑊 is called quasi-nonexpansive, if

‖𝑊𝑥 − 𝑧‖ ≤ ‖𝑥 − 𝑧‖ , ∀ (𝑥, 𝑧) ∈ 𝐻1 × 𝐹 (𝑊) . (12)

(iii) 𝑊 is called k-demicontractive, if there exists 𝑘 < 1
such that

‖𝑊𝑥 − 𝑧‖2 ≤ ‖𝑥 − 𝑧‖2 + 𝑘 ‖(𝐼 − 𝑊) 𝑥‖2 ,
∀ (𝑥, 𝑧) ∈ 𝐻1 × 𝐹 (𝑊) . (13)

Note that the class of strictly pseudo-contractive map-
pings properly includes the class of nonexpansive mappings,
while the class of nonexpansive mappings properly includes
the class of firmly nonexpansive mappings. And the class
of demicontractive mappings properly includes the class
of quasi-nonexpansive mappings, while the class of quasi-
nonexpansive mappings properly includes the class of firmly
quasi-nonexpansive mappings.

Definition 3 (demiclosedness property). Let {𝑥𝑛} be a
sequence in 𝐻1 and 𝑊 : 𝐻1 → 𝐻1 be a mapping. Then𝑊 is said to have demiclosedness property if the following
implication holds:

(𝐼 − 𝑊) 𝑥𝑛 󳨀→ 0
𝑥𝑛 ⇀ 𝑥 ] 󳨐⇒ 𝑥 ∈ 𝐹 (𝑊) . (14)

It is known that strictly pseudo-contractive mappings
possess the demiclosedness property [20]. In particular, both
nonexpansive and firmly nonexpansive mappings possess
such a property.

Lemma 4 (see [20]). Let𝑊: 𝐻1 → 𝐻1 be a 𝑘-strictly pseudo-
contractive mapping. Then𝑊 is demicontractive and Lipschitz
continuous and moreover has the demiclosedness property.

The metric projection 𝑃𝐶 from 𝐻1 onto a nonempty
closed convex subset 𝐶 ⊆ 𝐻1 is defined by

𝑃𝐶𝑥 fl argmin
𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , (15)

which is characterized by

⟨𝑥 − 𝑃𝐶𝑥, 𝑧 − 𝑃𝐶𝑥⟩ ≤ 0, ∀𝑧 ∈ 𝐶. (16)

It is well known that the metric projection is firmly nonex-
pansive.

Definition 5. Let 𝐶 be a nonempty closed convex subset in𝐻1.
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(i) A sequence {𝑥𝑛} in𝐻1 is Fejér-monotone with respect
to 𝐶 if
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 0, ∀𝑧 ∈ 𝐶. (17)

(ii) A sequence {𝑥𝑛} in 𝐻1 is quasi Fejér-monotone with
respect to 𝐶 if

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧󵄩󵄩󵄩󵄩2 + 𝜀𝑛, ∀𝑛 ≥ 0, ∀𝑧 ∈ 𝐶, (18)

where {𝜀𝑛} ⊆ (0, +∞) satisfies ∑∞𝑛=1 𝜀𝑛 < ∞.
Lemma 6 (see [21]). A quasi Fejér-monotone sequence {𝑥𝑛}
(with respect to 𝐶) is weakly convergent to 𝑧 ∈ 𝐶 if and only if
every weak cluster point of {𝑥𝑛} belongs to 𝐶.
Lemma 7 (see [22]). Let {𝜀𝑛} and {𝑠𝑛} be positive real
sequences such that ∑∞𝑛=0 𝜀𝑛 < ∞. If 𝑠𝑛+1 ≤ (1 + 𝜀𝑛)𝑠𝑛, or𝑠𝑛+1 ≤ 𝑠𝑛 + 𝜀𝑛, then the limit of the sequence {𝑠𝑛} exists.
3. The Case for Demicontractive
Continuous Mappings

In this section, we consider the SCFP (P1) for demicon-
tractive continuous mappings. Under this situation, we shall
prove that the sequence {𝑥𝑛} generated by (3) and (5)-(6) still
converges weakly to a solution of problem (P1).
Lemma 8. Let 𝑘1, 𝑘2 ∈ (−∞, 1), 𝐿1, 𝐿2 ∈ (0, +∞), and𝑊 = (𝐼 − 𝑈) + 𝐴∗(𝐼 − 𝑇)𝐴, where 𝑈, 𝑇, and 𝐴 are mappings
defined in (P1). Assume that 𝑈 is 𝑘1-demicontractive and 𝐿1-
Lipschitz continuous, 𝑇 is 𝑘2-demicontractive and 𝐿2-Lipschitz
continuous, and 𝐼 − 𝑈 and 𝐼 − 𝑇 are demiclosed at the origin.
For any (𝑥, 𝑧) ∈ 𝐻1 × 𝑆, we have the following:

(i) 𝑆 = 𝑊−1(0).
(ii) 2⟨𝑊𝑥, 𝑥−𝑧⟩ ≥ min((1−𝑘1)/2, (1−𝑘2)/2‖𝐴‖2)‖𝑊𝑥‖2.
(iii) 𝑊 is 𝐿-Lipschitz continuous with 𝐿 = max((𝐿1 +1), (𝐿2 + 1)‖𝐴‖2).
(iv) If ‖𝑊𝑥𝑛‖ → 0 and 𝑥𝑛 ⇀ 𝑥 as 𝑛 → ∞, then 𝑥 ∈ 𝑆.

Proof. (i) It is readily seen that 𝑆 ⊆ 𝑊−1(0). To see the
converse, let 𝑥 ∈ 𝑊−1(0) and fix any 𝑧 ∈ 𝑆. Since 𝑈 and 𝑇
are demicontractive, we have

1 − 𝑘12 ‖(𝐼 − 𝑈) 𝑥‖2 ≤ ⟨(𝐼 − 𝑈) 𝑥, 𝑥 − 𝑧⟩ ,
1 − 𝑘22 ‖(𝐼 − 𝑇)𝐴𝑥‖2 ≤ ⟨(𝐼 − 𝑇)𝐴𝑥, 𝐴𝑥 − 𝐴𝑧⟩ .

(19)

Adding up these two inequalities, we have

⟨𝑊𝑥, 𝑥 − 𝑧⟩ ≥ 1 − 𝑘12 ‖(𝐼 − 𝑈) 𝑥‖2

+ 1 − 𝑘22 ‖(𝐼 − 𝑇)𝐴𝑥‖2 ,
(20)

which yields ‖(𝐼−𝑈)𝑥‖ = ‖(𝐼−𝑇)𝐴𝑥‖ = 0, that is, 𝑥 ∈ 𝑆.This
implies 𝑆 ⊇ 𝑊−1(0).

(ii) Let (𝑥, 𝑧) ∈ 𝐻1 × 𝑆. It follows from (20) that

⟨𝑊𝑥, 𝑥 − 𝑧⟩ ≥ 1 − 𝑘12 ‖(𝐼 − 𝑈) 𝑥‖2 + 1 − 𝑘22 ‖(𝐼 − 𝑇)

⋅ 𝐴𝑥‖2 = 1 − 𝑘12 ‖(𝐼 − 𝑈) 𝑥‖2 + 1 − 𝑘22 ‖𝐴‖2
󵄩󵄩󵄩󵄩𝐴∗󵄩󵄩󵄩󵄩2

⋅ ‖(𝐼 − 𝑇)𝐴𝑥‖2 ≥ 1 − 𝑘12 ‖(𝐼 − 𝑈) 𝑥‖2

+ 1 − 𝑘22 ‖𝐴‖2
󵄩󵄩󵄩󵄩𝐴∗ (𝐼 − 𝑇)𝐴𝑥󵄩󵄩󵄩󵄩2

≥ min(1 − 𝑘12 , 1 − 𝑘22 ‖𝐴‖2)
⋅ (‖(𝐼 − 𝑈) 𝑥‖2 + 󵄩󵄩󵄩󵄩𝐴∗ (𝐼 − 𝑇)𝐴𝑥󵄩󵄩󵄩󵄩2)
≥ min(1 − 𝑘14 , 1 − 𝑘24 ‖𝐴‖2)
⋅ 󵄩󵄩󵄩󵄩((𝐼 − 𝑈) + 𝐴∗ (𝐼 − 𝑇)𝐴) 𝑥󵄩󵄩󵄩󵄩2 ,

(21)

which yields the desired inequality.
(iii) Let 𝑥, 𝑦 ∈ 𝐻1.We have
󵄩󵄩󵄩󵄩𝑊𝑥 −𝑊𝑦󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩(𝐼 − 𝑈) (𝑥 − 𝑦)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐴∗ (𝐼 − 𝑇)𝐴 (𝑥 − 𝑦)󵄩󵄩󵄩󵄩
≤ (𝐿1 + 1) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + ‖𝐴‖ 󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴 (𝑥 − 𝑦)󵄩󵄩󵄩󵄩
≤ (𝐿1 + 1) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + (𝐿2 + 1) ‖𝐴‖2 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩
≤ max ((𝐿1 + 1) , (𝐿2 + 1) ‖𝐴‖2) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 .

(22)

(iv)Wenote that {𝑥𝑛} is bounded by its weak convergence.
By inequality (20), we have

1 − 𝑘12 󵄩󵄩󵄩󵄩(𝐼 − 𝑈) 𝑥𝑛󵄩󵄩󵄩󵄩2 + 1 − 𝑘22 󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴𝑥𝑛󵄩󵄩󵄩󵄩2

≤ ⟨𝑊𝑥𝑛, 𝑥𝑛 − 𝑧⟩ ≤ 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧󵄩󵄩󵄩󵄩 󳨀→
0,

(23)

which implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(𝐼 − 𝑈) 𝑥𝑛󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴𝑥𝑛󵄩󵄩󵄩󵄩 = 0. (24)

Since 𝑥𝑛 ⇀ 𝑥, this by the demiclosedness property implies𝑥 ∈ 𝐹(𝑈). On the other hand, for any 𝑦 ∈ 𝐻2, we have
lim
𝑛→∞

⟨𝐴𝑥𝑛, 𝑦⟩ = lim
𝑛→∞

⟨𝑥𝑛, 𝐴∗𝑦⟩ = ⟨𝑥, 𝐴∗𝑦⟩
= ⟨𝐴𝑥, 𝑦⟩ . (25)

Hence 𝐴𝑥𝑛 ⇀ 𝐴𝑥, which yields 𝐴𝑥 ∈ 𝐹(𝑇). Altogether, 𝑥 ∈𝑆.
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Theorem 9. Let 𝑘1, 𝑘2 ∈ (−∞, 1), 𝐿1, 𝐿2 ∈ (0, +∞). Assume
that𝑈 is 𝑘1-demicontractive and 𝐿1-Lipschitz continuous, 𝑇 is𝑘2-demicontractive and 𝐿2-Lipschitz continuous, and 𝐼−𝑈 and𝐼 − 𝑇 are demiclosed at the origin. If condition (6) holds, then
the sequence {𝑥𝑛}, generated by (3) and (5), converges weakly
to a solution of problem (P1).
Proof. Let 𝑧 ∈ 𝑆, 𝜏 = min((1 − 𝑘1)/2, (1 − 𝑘2)/2‖𝐴‖2), and𝐿 = max((𝐿1+1), (𝐿2+1)‖𝐴‖2). It then follows fromLemma 8
that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧󵄩󵄩󵄩󵄩2 − 2𝜌𝑛 ⟨𝑊𝑥𝑛, 𝑥𝑛 − 𝑧⟩
+ 𝜌2𝑛 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧󵄩󵄩󵄩󵄩2 − 𝜏𝜌𝑛 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩2 + 𝜌2𝑛 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩2 .
(26)

By (5), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧󵄩󵄩󵄩󵄩2 − 𝜏𝜏𝑛 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩 + 𝜏2𝑛 ; (27)

in particular,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧󵄩󵄩󵄩󵄩2 + 𝜏2𝑛 . (28)

By our hypothesis (6), this implies that {𝑥𝑛} is quasi Fejér-
monotone with respect to 𝑆.

Next, we deduce from (27) and the boundedness of {𝑥𝑛}
(guaranteed by the quasi-Fejér-monotonicity) that

𝜏𝑛 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩 ≤ 1
𝜏 (󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧󵄩󵄩󵄩󵄩2 + 𝜏2𝑛) . (29)

Thus, we have
∞∑
𝑛=0

𝜏𝑛 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩 < ∞. (30)

In view of (6), this implies

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩 = 0. (31)

On the other hand, since
󵄩󵄩󵄩󵄩𝑊𝑥𝑛+1 −𝑊𝑥𝑛󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1󵄩󵄩󵄩󵄩 = 𝐿𝜌𝑛 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩 , (32)

then we have
󵄩󵄩󵄩󵄩𝑊𝑥𝑛+1󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑊𝑥𝑛+1 −𝑊𝑥𝑛󵄩󵄩󵄩󵄩2

+ 2 ⟨𝑊𝑥𝑛,𝑊𝑥𝑛+1 −𝑊𝑥𝑛⟩
≤ 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑊𝑥𝑛+1 −𝑊𝑥𝑛󵄩󵄩󵄩󵄩2

+ 2 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑊𝑥𝑛+1 −𝑊𝑥𝑛󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩2 + 𝐿2𝜌2𝑛 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩2 + 2𝐿𝜌𝑛 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩2
= 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩2 + 𝐿2𝜏2𝑛 + 2𝐿𝜏𝑛 󵄩󵄩󵄩󵄩𝑊𝑥𝑛󵄩󵄩󵄩󵄩 .

(33)

In light of (30) and (6), we have ∑𝑛(𝐿2𝜏2𝑛 + 2𝐿𝜏𝑛‖𝑊𝑥𝑛‖) <∞. By Lemma 7, lim𝑛‖𝑊𝑥𝑛‖ exists, and further we have
lim𝑛‖𝑊𝑥𝑛‖ = 0 by (31). Hence, by Lemma 8, we conclude that
every weak cluster point of {𝑥𝑛} belongs to 𝑆.

Finally, we deduce from Lemma 6 that {𝑥𝑛} converges
weakly to a solution of problem (P1).
Corollary 10. Assume that 𝑈 and 𝑇 are both strictly pseudo-
contractive mappings. If condition (6) holds, then the sequence{𝑥𝑛}, generated by (3) and (5), converges weakly to a solution
of problem (P1).
Proof. It follows from Lemma 4 andTheorem 9.

Remark 11. It is readily seen that the above result holds
true for nonexpansive and firmly nonexpansive mappings.
As a result, it extends the results in [19] from nonexpansive
mappings to demicontractive continuous mappings.

4. New Methods for the Split Equality Problem

The split equality problem (SEP) is an inverse problem that
requests finding

(𝑥, 𝑦) ∈ 𝐹 (𝑈1) × 𝐹 (𝑈2) s.t. 𝐴1𝑥 = 𝐴2𝑦, (P2)
where 𝐴1 : 𝐻1 → 𝐻3 and 𝐴2 : 𝐻2 → 𝐻3 are two bounded
linear mappings, while 𝑈1 : 𝐻1 → 𝐻1 and 𝑈2 : 𝐻2 → 𝐻2
are two nonlinear mappings. The SEP was first introduced
by Moudafi and Al-Shemas [23], and they proposed the
following iterative method:

𝑥𝑛+1 = 𝑈1 [𝑥𝑛 − 𝜏𝑛𝐴∗ (𝐴𝑥𝑛 − 𝐵𝑦𝑛)] ,
𝑦𝑛+1 = 𝑈2 [𝑦𝑛 + 𝜏𝑛𝐵∗ (𝐴𝑥𝑛 − 𝐵𝑦𝑛)] .

(34)

Under some certain conditions, they proved the weak con-
vergence of the iterative sequence generated by method
(34).

Our method is actually motivated by (3), since problem(P2) can be regarded as a special SCFP: find x = (𝑥1, 𝑥2) ∈𝐻1 × 𝐻2 such that

x ∈ 𝐹 (U) ,
Ax ∈ 𝐹 (T) , (35)

where Ux = (𝑈1𝑥1, 𝑈2𝑥2), Ax = 𝐴1𝑥1 − 𝐴2𝑥2, and T is the
projection onto the set {0}.Motivated by (3), we now propose
a new method for solving problem (P2). For an arbitrary
initial guess (𝑥0, 𝑦0), define (𝑥𝑛, 𝑦𝑛) recursively by

𝑥𝑛+1 = 𝑥𝑛 − 𝜌𝑛 [(𝐼 − 𝑈1) 𝑥𝑛 + 𝐴∗1 (𝐴1𝑥𝑛 − 𝐴2𝑦𝑛)] ,
𝑦𝑛+1 = 𝑦𝑛 − 𝜌𝑛 [(𝐼 − 𝑈2) 𝑦𝑛 − 𝐴∗2 (𝐴1𝑥𝑛 − 𝐴2𝑦𝑛)] ,

(36)

where {𝜌𝑛} is chosen as
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𝜌𝑛 = 𝜏𝑛
(󵄩󵄩󵄩󵄩(𝐼 − 𝑈1) 𝑥𝑛 + 𝐴∗1 (𝐴1𝑥𝑛 − 𝐴2𝑦𝑛)󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩(𝐼 − 𝑈2) 𝑦𝑛 − 𝐴∗2 (𝐴1𝑥𝑛 − 𝐴2𝑦𝑛)󵄩󵄩󵄩󵄩2)1/2

. (37)

Inwhat follows, wewill show the SEP amounts to problem
(35). Now consider the product space𝐻1 × 𝐻2, in which the
inner product and the norm are, respectively, defined by

⟨x, y⟩ = ⟨𝑥1, 𝑦1⟩ + ⟨𝑥2, 𝑦2⟩ ,
‖x‖ = (󵄩󵄩󵄩󵄩𝑥1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑥2󵄩󵄩󵄩󵄩2)1/2 ,

(38)

where x = (𝑥1, 𝑥2), y = (𝑦1, 𝑦2)with 𝑥1, 𝑦1 ∈ 𝐻1, 𝑥2, 𝑦2 ∈ 𝐻2.
Lemma 12. Let 𝑥1 ∈ 𝐻1, 𝑥2 ∈ 𝐻2, and 𝐴1 : 𝐻1 → 𝐻3 and𝐴2 : 𝐻2 → 𝐻3 be as in problem (P2). Define a mapping A :𝐻1 × 𝐻2 → 𝐻3 by

Ax = A (𝑥1, 𝑥2) = 𝐴1𝑥1 − 𝐴2𝑥2. (39)

Then we have the following:
(i) A is a bounded linear mapping.
(ii) A∗Ax = (𝐴∗1(𝐴1𝑥1 − 𝐴2𝑥2), −𝐴∗2(𝐴1𝑥1 − 𝐴2𝑥2)).

Proof. (i) Let 𝛼, 𝛽 ∈ R. Since 𝐴1 and 𝐴2 are both linear, we
have
A (𝛼x + 𝛽y) = A (𝛼 (𝑥1, 𝑥2) + 𝛽 (𝑦1, 𝑦2))

= A ((𝛼𝑥1 + 𝛽𝑦1) , (𝛼𝑥2 + 𝛽𝑦2))
= 𝐴1 (𝛼𝑥1 + 𝛽𝑦1) − 𝐴2 (𝛼𝑥2 + 𝛽𝑦2)
= 𝛼 (𝐴1𝑥1 − 𝐴2𝑥2) + 𝛽 (𝐴1𝑦1 − 𝐴2𝑦2)
= 𝛼A (𝑥1, 𝑥2) + 𝛽A (𝑦1, 𝑦2)
= 𝛼Ax + 𝛽Ay;

(40)

on the other hand, we have
‖Ax‖ = 󵄩󵄩󵄩󵄩𝐴1𝑥1 − 𝐴2𝑥2󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝐴1󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐴2󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥2󵄩󵄩󵄩󵄩

≤ max (󵄩󵄩󵄩󵄩𝐴1󵄩󵄩󵄩󵄩 , 󵄩󵄩󵄩󵄩𝐴2󵄩󵄩󵄩󵄩) (󵄩󵄩󵄩󵄩𝑥1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥2󵄩󵄩󵄩󵄩)
≤ √2max (󵄩󵄩󵄩󵄩𝐴1󵄩󵄩󵄩󵄩 , 󵄩󵄩󵄩󵄩𝐴2󵄩󵄩󵄩󵄩)√󵄩󵄩󵄩󵄩𝑥1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑥2󵄩󵄩󵄩󵄩2
= √2max (󵄩󵄩󵄩󵄩𝐴1󵄩󵄩󵄩󵄩 , 󵄩󵄩󵄩󵄩𝐴2󵄩󵄩󵄩󵄩) ‖x‖ ,

(41)

which implies ‖A‖ ≤ √2max(‖𝐴1‖, ‖𝐴2‖). Thus A is linear
and bounded.

(ii) For 𝑤 ∈ 𝐻3, we have
⟨Ax, 𝑤⟩ = ⟨A (𝑥1, 𝑥2) , 𝑤⟩ = ⟨𝐴1𝑥1 − 𝐴2𝑥2, 𝑤⟩

= ⟨𝑥1, 𝐴∗1𝑤⟩ + ⟨𝑥2, −𝐴∗2𝑤⟩
= ⟨(𝑥1, 𝑥2) , (𝐴∗1𝑤, −𝐴∗2𝑤)⟩
= ⟨x, (𝐴∗1𝑤, −𝐴∗2𝑤)⟩ .

(42)

This gives A∗𝑤 = (𝐴∗1𝑤, −𝐴∗2𝑤), which implies that

A∗Ax = A∗ (𝐴1𝑥1 − 𝐴2𝑥2)
= (𝐴∗1 (𝐴1𝑥1 − 𝐴2𝑥2) , −𝐴∗2 (𝐴1𝑥1 − 𝐴2𝑥2)) .

(43)

Hence the lemma is proved.

Lemma 13. Assume that𝑈1 : 𝐻1 → 𝐻1 is 𝑘1-demicontractive
and 𝐿1-Lipschitz continuous, 𝑈2 : 𝐻2 → 𝐻2 is 𝑘2-
demicontractive and 𝐿2-Lipschitz continuous, and 𝐼 − 𝑈1 and𝐼 − 𝑈2 are demiclosed at the origin. Define a mapping U :𝐻1 × 𝐻2 → 𝐻1 × 𝐻2 by

Ux = (𝑈1𝑥1, 𝑈2𝑥2) , (44)
where x = (𝑥1, 𝑥2) is in𝐻1 ×𝐻2 with 𝑥1 ∈ 𝐻1, 𝑥2 ∈ 𝐻2.Then

(i) 𝐹(U) = 𝐹(𝑈1) × 𝐹(𝑈2);
(ii) U is demicontractive and Lipschitz continuous;
(iii) I − U is demiclosed at the origin.

Proof. It is easy to check (i). For (ii), fix 𝑧 = (𝑧1, 𝑧2) ∈ 𝐹(U).
It follows that

‖Ux − z‖2 = 󵄩󵄩󵄩󵄩𝑈1𝑥1 − 𝑧1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑈2𝑥2 − 𝑧2󵄩󵄩󵄩󵄩2
= 󵄩󵄩󵄩󵄩𝑥1 − 𝑧1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑧2󵄩󵄩󵄩󵄩2 + 𝑘1 󵄩󵄩󵄩󵄩𝑈1𝑥1 − 𝑥1󵄩󵄩󵄩󵄩2

+ 𝑘2 󵄩󵄩󵄩󵄩𝑈2𝑥2 − 𝑥2󵄩󵄩󵄩󵄩2
≤ 󵄩󵄩󵄩󵄩𝑥1 − 𝑧1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑧2󵄩󵄩󵄩󵄩2

+max (𝑘1, 𝑘2) (󵄩󵄩󵄩󵄩𝑈1𝑥1 − 𝑥1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑈2𝑥2 − 𝑥2󵄩󵄩󵄩󵄩2)
= 󵄩󵄩󵄩󵄩(𝑥1, 𝑥2) − (𝑧1, 𝑧2)󵄩󵄩󵄩󵄩2

+max (𝑘1, 𝑘2) 󵄩󵄩󵄩󵄩(I − U) (𝑥1, 𝑥2)󵄩󵄩󵄩󵄩2
= ‖x − z‖2 +max (𝑘1, 𝑘2) ‖(I − U) x‖2 ,

(45)

which implies that U is demicontractive. On the other hand,
we have󵄩󵄩󵄩󵄩Ux − Uy󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩(𝑈1𝑥1 − 𝑈1𝑦1, 𝑈2𝑥2 − 𝑈2𝑦2)󵄩󵄩󵄩󵄩

= (󵄩󵄩󵄩󵄩𝑈1𝑥1 − 𝑈1𝑦1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑈2𝑥2 − 𝑈2𝑦2󵄩󵄩󵄩󵄩2)1/2

≤ (𝐿21 󵄩󵄩󵄩󵄩𝑥1 − 𝑦1󵄩󵄩󵄩󵄩2 + 𝐿22 󵄩󵄩󵄩󵄩𝑥2 − 𝑦2󵄩󵄩󵄩󵄩2)1/2

≤ max (𝐿1, 𝐿2) (󵄩󵄩󵄩󵄩𝑥1 − 𝑦1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑦2󵄩󵄩󵄩󵄩2)1/2
= max (𝐿1, 𝐿2) 󵄩󵄩󵄩󵄩(𝑥1, 𝑦1) − (𝑥2, 𝑦1)󵄩󵄩󵄩󵄩
= max (𝐿1, 𝐿2) 󵄩󵄩󵄩󵄩x − y󵄩󵄩󵄩󵄩 ,

(46)
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where y = (𝑦1, 𝑦2) is in𝐻1 × 𝐻2 with 𝑦1 ∈ 𝐻1, 𝑦2 ∈ 𝐻2.This
implies that U is Lipschitz continuous.

To show (iii), let {(𝑥𝑛, 𝑦𝑛)} be a sequence such that it
converges weakly to {(𝑥, 𝑦)} and (I − U)(𝑥𝑛, 𝑦𝑛) converges
strongly to 0. This implies that 𝑥𝑛 ⇀ 𝑥 and (𝐼 − 𝑈1)𝑥𝑛 → 0,
which, by the demiclosedness of 𝐼 − 𝑈1, gives 𝑥 ∈ 𝐹(𝑈1).
Similarly, we have 𝑦 ∈ 𝐹(𝑈2), so that (𝑥, 𝑦) ∈ 𝐹(𝑈1)×𝐹(𝑈2) =𝐹(U). So the lemma is proved.

Theorem 14. Assume that 𝑈1 : 𝐻1 → 𝐻1 and 𝑈2 : 𝐻2 → 𝐻2
are two demicontractive and Lipschitz continuous mappings
such that 𝐼 − 𝑈1 and 𝐼 − 𝑈2 are demiclosed at the origin. If
condition (6) is fulfilled, then the sequence {(𝑥𝑛, 𝑦𝑛)} generated
by (36), (37), and (48) converges weakly to a solution of
problem (P2).
Proof. Let z𝑛 = (𝑥𝑛, 𝑦𝑛), U, A be defined as in the previous
lemmas, and T be the projection onto the set {0}. Then
method (36) can be rewritten as

z𝑛+1 = z𝑛 − 𝜌𝑛 [(I − U) z𝑛 + A∗ (I − T)Az𝑛] , (47)

where

𝜌𝑛 = 𝜏𝑛󵄩󵄩󵄩󵄩(I − U) z𝑛 + A∗ (I − T)Az𝑛󵄩󵄩󵄩󵄩 . (48)

Note that T is firmly nonexpansive. By Lemma 13, all
assumptions in Theorem 9 are fulfilled. Hence, by applying
Theorem 9, we conclude that {z𝑛} converges weakly to some
z = (𝑥, 𝑦) such that z ∈ 𝐹(U) = 𝐹(𝑈1) × 𝐹(𝑈2) and Az ∈𝐹(T) = {0}, which clearly yields 𝑥 ∈ 𝐹(𝑈1), 𝑦 ∈ 𝐹(𝑈2), and𝐴1𝑥 = 𝐴2𝑦. Hence the theorem is proved.

5. Conclusions

We studied the split common fixed point problem in Hilbert
spaces. We proposed a new method for solving such a prob-
lem and established a weak convergence theorem whenever
the involved mappings are demicontractive and continuous.
We also obtained a new method for solving the split equality
problem in Hilbert spaces.
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