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As is well known, the extreme points and strongly extreme points play important roles in Banach spaces. In this paper, the criterion
for strongly extreme points in Orlicz spaces equipped with s-norm is given. We complete solved criterion−Orlicz space that
generated by Orlicz function. And the sufficient and necessary conditions for middle point locally uniformly convex in Orlicz
spaces equipped with s-norm are obtained.

1. Introduction

The extreme point set plays a crucial role in function analysis,
convex analysis, and optimization. In fact, any compact con-
vex set is the convex hull of its extremepoint set, and the result
is called Krein-Milman theorem. The notion of a dentable
subset of a Banach space was introduced by Rieffel [1] in
conjunction with a Radon-Nikodym theorem for Banach
space-valued measures. Subsequent work by Maynard [2]
and by Davis and Phelps [3] has shown that those Banach
spaces in which Rieffels Radon-Nikodym theorem is valid
are precisely the ones in which every bounded closed convex
set is dentable. This is a real breakthrough in studying the
nature of Radon-Nikodym as a geometric property. In 1988,
Bor-Luh Lin, Pei-Kee Lin, and S. L. Troyanski [4] described
the characteristic of denting points and obtained the notion
that there is a close relationship between denting points and
strongly extreme points. It is easy to see that every denting
point of K is a strongly extreme point of K and it is known
[Ken Kunen and Haskeil Rosenthal, Martingale proofs of
some geometric results in Banach space theory, Pacific J.
Math. 100 (1982), 153-175] that every strongly extreme point
of K is a weak∗-extreme point of K. Orlicz space is a special
kind of Banach space; it was introduced by the famous Polish
mathematician W. Orlicz in 1932. The theory of Orlicz space
[5, 6] has been greatly developed because of its important
theoretical properties and application value. Up to now, the

criterion of an element in the unit sphere of Orlicz spaces
equipped with the Orlicz norm [5, 7], the Luxemburg norm
[5], and p-Amemiya norm [8] has been given. In this paper,
we use a new technique to study the strongly extreme point
in Orlicz spaces generated by Orlicz function and equipped
with a new norm, namely, s-norm. The criterion of strongly
extreme points is given, and the sufficient and necessary
conditions for middle point locally uniformly convex in
Orlicz spaces equipped with s-norm are obtained.

2. Preliminaries

Throughout this paper, 𝑋 will denote a Banach space and𝑋∗ stands for the dual space of 𝑋. We denote by (𝐺, Σ, 𝜇)
the nonatomic Σ-measure finite space. By 𝐵(𝑋) and 𝑆(𝑋) we
denote the unit ball and the unit sphere of𝑋, respectively. By𝑅 and𝑁 we will denote the sets of real and natural numbers,
respectively.

A mapping Φ : 𝑅 󳨀→ [0,∞) is said to be an Orlicz
function if it is even, continuous, convex, and Φ(0) = 0,
lim𝑢󳨀→∞Φ(𝑢) = ∞. Moreover, if Φ satisfies lim𝑢󳨀→0(Φ(𝑢)/𝑢) = 0 and lim𝑢󳨀→∞(Φ(𝑢)/𝑢) = ∞, Φ is called 𝑁-
function. Let 𝑝+(𝑡) be the right-hand derivative of Φ, where
the function Ψ is defined by the formula

Ψ (𝑢) = sup {|𝑢| V − Φ (V) : V ≥ 0} (1)
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and called complementary function to Φ in the sense of
Young.

We say that an Orlicz function Φ satisfies △2-condition
for large 𝑢 ∈ 𝑅 (Φ ∈ △2 for short) if there exist 𝑢0 > 0 and𝐾 > 2 such that

Φ(2𝑢) ≤ 𝐾Φ (𝑢) (2)

whenever |𝑢| > 𝑢0.
Let 𝐿0 denote the set of all measure real functions on𝐺. For a given Orlicz function Φ we define on 𝐿0 a convex

function 𝐼Φ : 𝐿0 󳨀→ [0,∞] (called a pseudomodular; see
[6]) by

𝐼Φ (𝑥) = ∫
𝐺
Φ(𝑥 (𝑡)) 𝑑𝑡. (3)

It is clear that 𝐼Φ(𝑥) = ∫supp(𝑥)Φ(𝑥(𝑡))𝑑𝑡; here supp(𝑥) = {𝑡 ∈
𝐺 : |𝑥(𝑡)| ̸= 0}.

TheOrlicz space 𝐿Φ generated by an Orlicz functionΦ is
defined by the formula

𝐿Φ = {𝑥 ∈ 𝐿0 : 𝐼Φ (𝜆𝑥) < +∞ for some 𝜆 > 0} , (4)

and its subspace 𝐸Φ is defined by

𝐸Φ = {𝑥 ∈ 𝐿0 : 𝐼Φ (𝜆𝑥) < +∞ for all 𝜆 > 0} . (5)

This space is usually equipped with the Luxemburg norm
[5]

‖𝑥‖ = inf {𝑘 > 0 : 𝐼Φ (𝑥𝑘) ≤ 1} , (6)

or with the Orlicz norm (Amemiya norm) [5]

‖𝑥‖oΦ = inf
𝑘>0

1
𝑘 (1 + 𝐼Φ (𝑘𝑥)) . (7)

A function 𝑠 : [0,∞) 󳨀→ [1,∞) will be called an outer
function, if it is convex and

max {1, 𝑢} ≤ 𝑠 (𝑢) ≤ 1 + 𝑢 for all 𝑢 ≥ 0. (8)

In 2017, M.Wisła introduced 𝑠-norm.

Definition 1. Let 𝑠 be an outer function. Denote 𝑠-norm on
Orlicz spaces by the formula

‖𝑥‖Φ,𝑠 = inf
𝑘>0

1
𝑘𝑠 (𝐼Φ (𝑘𝑥)) . (9)

It is easy to get ‖𝑥‖Φ,𝑠 = ‖𝑥‖ if 𝑠(𝑢) = max{1, 𝑢} and‖𝑥‖Φ,𝑠 = ‖𝑥‖𝑜Φ if 𝑠(𝑢) = 1 + 𝑢 ([8]). Then we have ‖𝑥‖ ≤‖𝑥‖Φ,𝑠 ≤ ‖𝑥‖𝑜Φ.
In this paper, by 𝐿Φ,𝑠 we will denote an Orlicz space

equipped with the 𝑠-norm.

Definition 2. Let 𝑠󸀠+(𝑢) be the right-hand derivative of 𝑠. For
all 0 ≤ V ≤ 1, define

𝜔 (V) = ∫V

0
𝑠󸀠+−1 (𝑡) 𝑑𝑡 (10)

Definition 3. Let 𝑠 be an outer function. For all 0 ≤ 𝑢 < ∞
and 0 ≤ V < ∞,

𝛽𝑠 (𝑢, V) = 1 − 𝜔 (𝑠󸀠+ (𝑢)) − V𝑠󸀠+ (𝑢) , (11)

the function 𝛽𝑠(𝑢, V) is nonincreasing. For any 𝑥 ∈ 𝐿Φ,𝑠 \ {0},
define ([9])

𝑘∗ (𝑥)
= inf {𝑘 > 0 : 𝛽𝑠 (𝐼Φ (𝑘𝑥) , 𝐼Ψ (𝑝+ (𝑘 |𝑥|))) ≤ 0} ,

𝑘∗∗ (𝑥)
= inf {𝑘 > 0 : 𝛽𝑠 (𝐼Φ (𝑘𝑥) , 𝐼Ψ (𝑝+ (𝑘 |𝑥|))) ≥ 0} .

(12)

Let𝐾(𝑥) = [𝑘∗(𝑥), 𝑘∗∗(𝑥)].Then ‖𝑥‖Φ,𝑠 = (1/𝑘)𝑠(𝐼Φ(𝑘𝑥))
if and only if 𝐾(𝑥) ̸= 0.
Definition 4. A point 𝑥 ∈ 𝑆(𝑋) is said to be an extreme point
of 𝐵(𝑋) if for any 𝑦, 𝑧 ∈ 𝐵(𝑋)with 𝑥 = (𝑦+𝑧)/2, then implies𝑦 = 𝑧.

The set of all extreme points of the unit ball 𝐵(𝑋) will
be denoted by 𝐸𝑥𝑡𝐵(𝑋). 𝑋 is said to be strictly convex if𝐸𝑥𝑡𝐵(𝑋) = 𝑆(𝑋).
Definition 5. Apoint 𝑥 ∈ 𝑆(𝑋) is said to be a strongly extreme
point of 𝐵(𝑋) if for any {𝑥𝑛} ⊆ 𝑋, {𝑦𝑛} ⊆ 𝑋 with ‖𝑥𝑛‖ 󳨀→ 1,‖𝑦𝑛‖ 󳨀→ 1 and (𝑥𝑛 + 𝑦𝑛)/2 = 𝑥 there holds ‖𝑥𝑛 − 𝑦𝑛‖ 󳨀→ 0
as 𝑛 󳨀→ ∞.

It is obvious that a strongly extreme point is an extreme
point. 𝑋 is said a middle point locally uniformly convex
Banach space if and only if each point on 𝑆(𝑋) is a strongly
extreme point.

Definition 6. Let 𝑢0 > 0. If for every V, 𝑤 ∈ 𝑅 such that V ̸= 𝑤
and (V+𝑤)/2 = 𝑢0, we haveΦ(𝑢0) < (1/2)Φ(V) + (1/2)Φ(𝑤),
then 𝑢0 is called to be a strictly convex point ofΦ(𝑢). The set
of all strictly convex points of Φ(𝑢) will be denoted by 𝑆Φ.

For the results concerning strongly extreme points and
convexities in Orlicz spaces which are generated by 𝑁-
function and equipped with the Orlicz norm, the Luxemburg
norm, and p-Amemiya norm, we refer a reader to [10–17].

3. Main Theorem

Lemma 7. (1) If lim𝑢󳨀→∞(Φ(𝑢)/𝑢) = ∞ then 𝐾(𝑥) ̸= 0 for
any 𝑥 ∈ 𝐿Φ,𝑠 \ {0};

(2) If lim𝑢󳨀→∞(Φ(𝑢)/𝑢) = 𝐴 < ∞ and 𝐾(𝑥) = 0 then‖𝑥‖Φ,𝑠 = 𝐴‖𝑥‖1.
Proof. (1) Suppose lim𝑢󳨀→∞(Φ(𝑢)/𝑢) = ∞. We have
lim𝑘󳨀→∞𝐼Ψ(𝑝+(𝑘|𝑥|)) = ∞. Since for any 0 ≤ V ≤ 1, 𝜔(V) ∈[0, 1], then

lim
𝑘󳨀→∞

𝛽𝑠 (𝐼Φ (𝑘𝑥) , 𝐼Ψ (𝑝+ (𝑘 |𝑥|))) = lim
𝑘󳨀→∞

(1
− 𝜔 (𝑠󸀠+ (𝐼Φ (𝑘𝑥))) − 𝐼Ψ (𝑝+ (𝑘 |𝑥|)) 𝑠󸀠+ (𝐼Φ (𝑘𝑥)))
< 0.

(13)

So 𝑘∗(𝑥) < ∞, whence𝐾(𝑥) ̸= 0.
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(2) By 𝐾(𝑥) = 0, we have 𝑘∗(𝑥) = ∞, and then

‖𝑥‖Φ,𝑠 = inf
𝑘>0

1
𝑘𝑠 (𝐼Φ (𝑘𝑥)) = lim

𝑘󳨀→∞

1
𝑘𝑠 (𝐼Φ (𝑘𝑥))

≤ lim
𝑘󳨀→∞

1
𝑘 (1 + 𝐼Φ (𝑘𝑥))

= lim
𝑘󳨀→∞

(1𝑘 + ∫
supp(𝑥)

Φ (𝑘𝑥 (𝑡))
𝑘 |𝑥 (𝑡)| |𝑥 (𝑡)| 𝑑𝑡)

= 𝐴 ‖𝑥‖1 ,

(14)

and

‖𝑥‖Φ,𝑠 = lim
𝑘󳨀→∞

1
𝑘𝑠 (𝐼Φ (𝑘𝑥)) ≥ lim

𝑘󳨀→∞

1
𝑘𝐼Φ (𝑘𝑥)

= lim
𝑘󳨀→∞

∫
supp(𝑥)

Φ (𝑘𝑥 (𝑡))
𝑘 |𝑥 (𝑡)| |𝑥 (𝑡)| 𝑑𝑡 = 𝐴 ‖𝑥‖1 .

(15)

Therefore ‖𝑥‖Φ,𝑠 = 𝐴‖𝑥‖1 .
Corollary 8. 𝐾(𝑥) = 0 if and only if 𝜇(supp(𝑥)) < (1 −𝜔(1))/Ψ(𝐴) for any 𝑥 ∈ 𝐿Φ,𝑠 \ {0}.
Proof. Necessity. We know that 𝐼Φ(𝑘𝑥) 󳨀→ ∞ as 𝑘 󳨀→ ∞.
By 𝐼Φ(𝑘𝑥) ≤ 𝑠(𝐼Φ(𝑘𝑥)) ≤ 1 + 𝐼Φ(𝑘𝑥), we can get 1 ≤
lim𝑘󳨀→∞𝑠󸀠+(𝐼Φ(𝑘𝑥)) ≤ 1. That is, lim𝑘󳨀→∞𝑠󸀠+(𝐼Φ(𝑘𝑥)) = 1. By𝐾(𝑥) = 0, we have 𝑘∗(𝑥) = ∞. Then

𝛽𝑠 (𝐼Φ (𝑘𝑥) , 𝐼Ψ (𝑝+ (𝑘 |𝑥|))) > 0, (16)

for all 𝑘 > 0. Since 𝛽𝑠(𝑢, V) is nonincreasing, we have
lim
𝑘󳨀→∞

𝛽𝑠 (𝐼Φ (𝑘𝑥) , 𝐼Ψ (𝑝+ (𝑘 |𝑥|))) = lim
𝑘󳨀→∞

(1
− 𝜔 (𝑠󸀠+ (𝐼Φ (𝑘𝑥))) − 𝐼Ψ (𝑝+ (𝑘 |𝑥|)) 𝑠󸀠+ (𝐼Φ (𝑘𝑥)))
= 1 − 𝜔 (1) − supp (𝑥) Ψ (𝐴) > 0,

(17)

whence 𝜇(supp(𝑥)) < (1 − 𝜔(1))/Ψ(𝐴).
Here we infer that 𝜔(1) < 1. If 𝜔(1) = 1 we have

lim𝑘󳨀→∞𝛽𝑠(𝐼Φ(𝑘𝑥), 𝐼Ψ(𝑝+(𝑘|𝑥|))) = −supp(𝑥)Ψ(𝐴) < 0, a
contradiction.

Sufficiency. By the definitions of 𝑠(𝑢) and 𝜔(V), 𝑠󸀠+(𝑢) ≤ 1
and 𝜔(𝑠󸀠+(𝑢)) ≤ 𝜔(1) for any 𝑢 > 0. Therefore for all 𝑘 > 0

𝛽𝑠 (𝐼Φ (𝑘𝑥) , 𝐼Ψ (𝑝+ (𝑘 |𝑥|)))
= 1 − 𝜔 (𝑠󸀠+ (𝐼Φ (𝑘𝑥)))
− 𝐼Ψ (𝑝+ (𝑘 |𝑥|)) 𝑠󸀠+ (𝐼Φ (𝑘𝑥))

≥ 1 − 𝜔 (1) − 𝐼Ψ (𝑝+ (𝑘 |𝑥|))
= 1 − 𝜔 (1) − 𝜇 (supp (𝑥)) Ψ (𝐴) > 0,

(18)

whence 𝑘∗(𝑥) = ∞, i.e.,𝐾(𝑥) = 0.
Theorem 9. Suppose that 𝑠(𝑢) > 1 when 𝑢 > 0 and Φ is an
Orlicz function. A point𝑥0 ∈ 𝑆(𝐿Φ,𝑠) is a strongly extreme point
if and only ifΦ ∈ △2 and 𝑘0𝑥0(𝑡) ∈ 𝑆Φ for 𝑘0 ∈ 𝐾(𝑥0).

Proof. Necessity. As we know that a strongly extreme point is
an extreme point, we only need to prove that 𝑥0 ∈ 𝐸𝑥𝑡𝐵(𝐿Φ,𝑠)
implies 𝑘0𝑥0(𝑡) ∈ 𝑆Φ for 𝑘0 ∈ 𝐾(𝑥0). Firstly, we will prove
that if 𝑥0 ∈ 𝐸𝑥𝑡𝐵(𝐿Φ,𝑠), then 𝐾(𝑥0) ̸= 0. If 𝐾(𝑥0) = 0, we
will have 𝑘∗(𝑥0) = ∞ which implies that 𝜇(supp(𝑥0)) < (1 −𝜔(1))/Ψ(𝐴) holds. There exists 𝑎 > 0 such that 𝜇({𝑡 ∈ 𝐺 :|𝑥0(𝑡)| > 𝑎}) > 0. Put 𝐶 = {𝑡 ∈ 𝐺 : |𝑥0(𝑡)| > 𝑎} and 0 <𝜇(𝐶) < (1 − 𝜔(1))/Ψ(𝐴). Divide 𝐶 into two sets 𝐶1 and 𝐶2
with 𝐶1 ∩ 𝐶2 = 0 and 𝜇(𝐶1) = 𝜇(𝐶2). Take 𝜀 ∈ (0, 𝑎) and
define

𝑦 (𝑡) =
{{{{{{{{{

𝑥0 (𝑡) , 𝑡 ∈ 𝐺 \ (𝐶1 ∪ 𝐶2)
𝑥0 (𝑡) − 𝜀, 𝑡 ∈ 𝐶1
𝑥0 (𝑡) + 𝜀, 𝑡 ∈ 𝐶2,

𝑧 (𝑡) =
{{{{{{{{{

𝑥0 (𝑡) , 𝑡 ∈ 𝐺 \ (𝐶1 ∪ 𝐶2)
𝑥0 (𝑡) + 𝜀, 𝑡 ∈ 𝐶1
𝑥0 (𝑡) − 𝜀, 𝑡 ∈ 𝐶2.

(19)

Then 𝑥0 = (𝑦 + 𝑧)/2, 𝑦 ̸= 𝑧. Moreover supp(𝑦) ⊆ supp(𝑥0),
supp(𝑧) ⊆ supp(𝑥0). We have

󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩Φ,𝑠 = 𝐴 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩1 = 𝐴∫
𝐺

󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡
= 𝐴(∫

𝐶1

󵄨󵄨󵄨󵄨𝑥0 (𝑡) − 𝜀󵄨󵄨󵄨󵄨 𝑑𝑡 + ∫
𝐶2

󵄨󵄨󵄨󵄨𝑥0 (𝑡) + 𝜀󵄨󵄨󵄨󵄨 𝑑𝑡

+ ∫
𝐺\(𝐶1∪𝐶2)

󵄨󵄨󵄨󵄨𝑥0 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡) = 𝐴∫
𝐺

󵄨󵄨󵄨󵄨𝑥0 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡
= 𝐴 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩1 = 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩Φ,𝑠 = 1.

(20)

Similarly, we can get ‖𝑧‖Φ,𝑠 = 1.
Next we will show that 𝑘0𝑥0(𝑡) ∈ 𝑆Φ.
Suppose that 𝜇({𝑡 ∈ 𝐺 : 𝑘0𝑥0(𝑡) ∉ 𝑆Φ}) > 0 for 𝑘0 ∈𝐾(𝑥0). There exists an interval (𝑎, 𝑏) such that 𝜇({𝑡 ∈ 𝐺 :𝑎/𝑘0 + 𝜀 < 𝑥0(𝑡) < 𝑏/𝑘0 − 𝜀}) > 0(𝜀 > 0), and Φ is affine

on (𝑎, 𝑏): Φ(𝑥) = 𝑝𝑥 + 𝑞. Divide {𝑡 ∈ 𝐺 : 𝑎/𝑘0 + 𝜀 < 𝑥0(𝑡) <𝑏/𝑘0−𝜀} into two sets𝐸 and 𝐹with𝐸∩𝐹 = 0 and 𝜇(𝐸) = 𝜇(𝐹).
Define

𝑦 (𝑡) =
{{{{{{{{{

𝑥0 (𝑡) , 𝑡 ∈ 𝐺 \ (𝐸 ∪ 𝐹)
𝑥0 (𝑡) − 𝜀, 𝑡 ∈ 𝐸
𝑥0 (𝑡) + 𝜀, 𝑡 ∈ 𝐹,

𝑧 (𝑡) =
{{{{{{{{{

𝑥0 (𝑡) , 𝑡 ∈ 𝐺 \ (𝐸 ∪ 𝐹)
𝑥0 (𝑡) + 𝜀, 𝑡 ∈ 𝐸
𝑥0 (𝑡) − 𝜀, 𝑡 ∈ 𝐹.

(21)

Then 𝑥0 = (𝑦 + 𝑧)/2, 𝑦 ̸= 𝑧. Thus

𝐼Φ (𝑘0𝑦) = ∫
𝐸∪𝐹

Φ(𝑘0𝑦 (𝑡)) 𝑑𝑡
+ ∫
𝐺\(𝐸∪𝐹)

Φ (𝑘0𝑦 (𝑡)) 𝑑𝑡
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= ∫
𝐸
(𝑝 (𝑘0 (𝑥0 (𝑡) − 𝜀)) + 𝑞) 𝑑𝑡

+ ∫
𝐹
(𝑝 (𝑘0 (𝑥0 (𝑡) + 𝜀)) + 𝑞) 𝑑𝑡

+ ∫
𝐺\(𝐸∪𝐹)

Φ(𝑘0𝑥0 (𝑡)) 𝑑𝑡
= ∫
𝐸∪𝐹

(𝑝𝑘0𝑥0 (𝑡) + 𝑞) 𝑑𝑡
+ ∫
𝐺\(𝐸∪𝐹)

Φ(𝑘0𝑥0 (𝑡)) 𝑑𝑡
= ∫
𝐸∪𝐹

Φ (𝑘0𝑥0 (𝑡)) 𝑑𝑡
+ ∫
𝐺\(𝐸∪𝐹)

Φ(𝑘0𝑥0 (𝑡)) 𝑑𝑡 = 𝐼Φ (𝑘0𝑥0) ,
(22)

whence ‖𝑦‖Φ,𝑠 ≤ (1/𝑘0)𝑠(𝐼Φ(𝑘0𝑦)) = (1/𝑘0)𝑠(𝐼Φ(𝑘0𝑥0)) =‖𝑥0‖Φ,𝑠 = 1. In the same way, we can prove ‖𝑧‖Φ,𝑠 ≤ 1. This
contradicts the fact that 𝑥0 is an extreme point of 𝐵(𝐿Φ,𝑠).

In order to complete this proof, we need to prove that ifΦ ∉ △2 there are no strongly extreme points in 𝑆(𝐿Φ,𝑠).
SupposeΦ ∉ △2. Then lim𝑢󳨀→∞(Φ(𝑢)/𝑢) = +∞.
In fact, if lim𝑢󳨀→∞(Φ(𝑢)/𝑢) = 𝐴 < +∞, there exists 𝑢0 >0 such that (𝐴/2)𝑢 < Φ(𝑢) < (3𝐴/2)𝑢 holds for every 𝑢 > 𝑢0.

Then we have Φ(2𝑢) < (3/2)𝐴(2𝑢) < 6(𝐴/2)𝑢 ≤ 6Φ(𝑢); it
implies Φ ∈ △2, a contradiction.

For any 𝑥0 ∈ 𝑆(𝐿Φ,𝑠), there exists 𝑘0 > 0 such that

1 = 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩Φ,𝑠 = 1
𝑘0 𝑠 (𝐼Φ (𝑘0𝑥0)) . (23)

Since 𝑥0 ∈ 𝑆(𝐿Φ,𝑠), we can find 𝑑 > 0 such that 𝜇({𝑡 ∈ 𝐺 :|𝑥0(𝑡)| ≤ 𝑑}) > 0. By Φ ∉ △2, there exist 𝑢𝑛 > 0 and 𝑢𝑛 ↑ ∞
such that Φ(2𝑢𝑛) > 2𝑛Φ(𝑢𝑛)(𝑛 = 1, 2, ⋅ ⋅ ⋅ ). We may assume
that 1/Φ(𝑢1) < 𝜇({𝑡 ∈ 𝐺 : |𝑥0(𝑡)| ≤ 𝑑}). Take {𝐺𝑛} ⊂ {𝑡 ∈𝐺 : |𝑥0(𝑡)| ≤ 𝑑} with 𝐺𝑚 ∩ 𝐺𝑛 = 0 for any 𝑚 ̸= 𝑛, satisfying𝜇(𝐺𝑛) = 1/(2𝑛Φ(𝑢𝑛))(𝑛 = 1, 2, ⋅ ⋅ ⋅ ). Define

𝑥𝑛 (𝑡) =
{{{{{
𝑥0 (𝑡) , 𝑡 ∈ 𝐺 \ 𝐺𝑛
𝑥0 (𝑡) + 𝑢𝑛𝑘0 , 𝑡 ∈ 𝐺𝑛,

𝑦𝑛 (𝑡) =
{{{{{
𝑥0 (𝑡) , 𝑡 ∈ 𝐺 \ 𝐺𝑛
𝑥0 (𝑡) − 𝑢𝑛𝑘0 , 𝑡 ∈ 𝐺𝑛.

(24)

Then 𝑥0 = (𝑥𝑛 + 𝑦𝑛)/2, 𝑥𝑛(𝑡) = 𝑥󸀠𝑛(𝑡) + 𝑥󸀠󸀠𝑛 (𝑡), here 𝑥󸀠𝑛(𝑡) =𝑥0𝜒𝐺\𝐺𝑛 (𝑡) + (𝑢𝑛/𝑘0)𝜒𝐺𝑛(𝑡), 𝑥󸀠󸀠𝑛 (𝑡) = 𝑥0𝜒𝐺𝑛(𝑡).
Notice that
󵄩󵄩󵄩󵄩󵄩𝑥󸀠󸀠𝑛 󵄩󵄩󵄩󵄩󵄩Φ,𝑠 = 󵄩󵄩󵄩󵄩󵄩𝑥0𝜒𝐺𝑛󵄩󵄩󵄩󵄩󵄩Φ,𝑠 ≤ 𝑑 󵄩󵄩󵄩󵄩󵄩𝜒𝐺𝑛󵄩󵄩󵄩󵄩󵄩Φ,𝑠 󳨀→ 0

(𝑛 󳨀→ ∞) . (25)

We have ‖𝑥󸀠𝑛‖Φ,𝑠 ≥ ‖𝑥0𝜒𝐺\𝐺𝑛‖Φ,𝑠 ≥ ‖𝑥0‖Φ,𝑠 − ‖𝑥0𝜒𝐺𝑛‖Φ,𝑠, that
is, lim𝑛󳨀→∞‖𝑥󸀠𝑛‖Φ,𝑠 ≥ ‖𝑥0‖Φ,𝑠 = 1. And
󵄩󵄩󵄩󵄩󵄩𝑥󸀠𝑛󵄩󵄩󵄩󵄩󵄩Φ,𝑠 = inf

𝑘>0

1
𝑘𝑠 (𝐼Φ (𝑘𝑥󸀠𝑛)) ≤

1
𝑘0 𝑠 (𝐼Φ (𝑘0𝑥

󸀠
𝑛)) = 1

𝑘0
⋅ 𝑠 (∫
𝐺
Φ(𝑘0 (𝑥0𝜒𝐺\𝐺𝑛 (𝑡) + 𝑢𝑛𝑘0 𝜒𝐺𝑛 (𝑡)))𝑑𝑡)

= 1
𝑘0 𝑠 (∫𝐺\𝐺𝑛 Φ(𝑘0𝑥0𝜒𝐺\𝐺𝑛 (𝑡)) 𝑑𝑡

+ ∫
𝐺𝑛

Φ(𝑢𝑛𝜒𝐺𝑛 (𝑡)) 𝑑𝑡) ≤ 1
𝑘0 𝑠 (𝐼Φ (𝑘0𝑥0)

+ Φ (𝑢𝑛) 𝜇 (𝐺𝑛)) = 1
𝑘0 𝑠 (𝐼Φ (𝑘0𝑥0) +

1
2𝑛 ) .

(26)

Consequently, lim𝑛󳨀→∞‖𝑥󸀠𝑛‖Φ,𝑠 ≤ ‖𝑥0‖Φ,𝑠 = 1. Hence
lim𝑛󳨀→∞‖𝑥𝑛‖Φ,𝑠 = 1. In the same way, we have
lim𝑛󳨀→∞‖𝑦𝑛‖Φ,𝑠 = 1. But 𝐼Φ(𝑘0(𝑥𝑛 − 𝑦𝑛)) = ∫

𝐺𝑛
Φ(𝑘0(2𝑢𝑛(𝑡)/𝑘0))𝑑𝑡 = Φ(2𝑢𝑛)𝜇(𝐺𝑛) ≥ 1(𝑛 = 1, 2, ⋅ ⋅ ⋅ ), which implies‖𝑥𝑛 − 𝑦𝑛‖Φ,𝑠 = (1/𝑘0)‖2𝑢𝑛𝜒𝐺𝑛‖Φ,𝑠 ≥ (1/𝑘0)‖2𝑢𝑛𝜒𝐺𝑛‖ ≥ 1/𝑘0, a

contradiction.
Sufficiency. Let Φ ∈ △2, 𝑥0 ∈ 𝑆(𝐿Φ,𝑠) with 𝑘0𝑥0(𝑡) ∈ 𝑆Φ

for 𝑘0 ∈ 𝐾(𝑥0). Take any 𝑥𝑛, 𝑦𝑛 ∈ 𝐿Φ,𝑠 with ‖𝑥𝑛‖Φ,𝑠 󳨀→1, ‖𝑦𝑛‖Φ,𝑠 󳨀→ 1 and 𝑥𝑛 + 𝑦𝑛 = 2𝑥0.
Take sequences {𝑘𝑛} and {ℎ𝑛} of positive numbers such

that
󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩Φ,𝑠 ≥ 1

𝑘𝑛 𝑠 (𝐼Φ (𝑘𝑛𝑥𝑛)) −
1
𝑛 ,

󵄩󵄩󵄩󵄩𝑦𝑛󵄩󵄩󵄩󵄩Φ,𝑠 ≥ 1
ℎ𝑛 𝑠 (𝐼Φ (ℎ𝑛𝑦𝑛)) −

1
𝑛 .

(27)

Define

𝑥󸀠𝑛 = 𝑥𝑛 + 𝑥02
𝑎𝑛𝑑 𝑦󸀠𝑛 = 𝑦𝑛 + 𝑥02 ,

(28)

then 𝑥󸀠𝑛 + 𝑦󸀠𝑛 = 2𝑥0 and lim𝑛󳨀→∞‖𝑥󸀠𝑛‖Φ,𝑠 ≤ 1, lim𝑛󳨀→∞‖𝑦󸀠𝑛‖Φ,𝑠≤ 1.
Now we will prove that lim𝑛󳨀→∞‖𝑥󸀠𝑛‖Φ,𝑠 = 1 and

lim𝑛󳨀→∞‖𝑦󸀠𝑛‖Φ,𝑠 = 1. Otherwise, we can assume that
lim𝑛󳨀→∞‖𝑥󸀠𝑛‖Φ,𝑠 < 1; there exist 𝛿 > 0 and 𝑛0 ∈ 𝑁 such that,
for every 𝑛 ≥ 𝑛0, 󵄩󵄩󵄩󵄩󵄩𝑥󸀠𝑛󵄩󵄩󵄩󵄩󵄩Φ,𝑠 ≤ 1 − 𝛿,

󵄩󵄩󵄩󵄩󵄩𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩Φ,𝑠 ≤ 1 + 𝛿
2 .

(29)

Then

1 = 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩Φ,s =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥󸀠𝑛 + 𝑦󸀠𝑛2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑠 ≤
1
2 (1 − 𝛿 + 1 +

𝛿
2)

< 1,
(30)

a contradiction.
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Since ‖𝑥󸀠𝑛 − 𝑦󸀠𝑛‖Φ,𝑠 󳨀→ 0 if and only if ‖𝑥𝑛 − 𝑦𝑛‖Φ,𝑠 󳨀→0(𝑛 󳨀→ ∞), we will consider the sequences {𝑥󸀠𝑛} and {𝑦󸀠𝑛},
where {𝑥󸀠𝑛} and {𝑦󸀠𝑛} in place of {𝑥𝑛} and {𝑦𝑛}.

Put 𝑘󸀠𝑛 = 2𝑘𝑛𝑘0/(𝑘𝑛 + 𝑘0) and ℎ󸀠𝑛 = 2ℎ𝑛𝑘0/(ℎ𝑛 + 𝑘0). Then
{𝑘󸀠𝑛} and {ℎ󸀠𝑛} are bounded. Since ‖𝑥󸀠𝑛‖Φ,𝑠 󳨀→ 1(𝑛 󳨀→ ∞), we
have

1 ←󳨀 󵄩󵄩󵄩󵄩󵄩𝑥󸀠𝑛󵄩󵄩󵄩󵄩󵄩Φ,𝑠 ≤ 1
𝑘󸀠𝑛 𝑠(𝐼Φ (𝑘

󸀠
𝑛𝑥󸀠𝑛)

= 𝑘𝑛 + 𝑘02𝑘𝑛𝑘0 𝑠(𝐼Φ (
𝑘𝑛𝑘0𝑘𝑛 + 𝑘0 (𝑥𝑛 + 𝑥0))

≤ 1
2 (

1
𝑘0 𝑠 (𝐼Φ (𝑘0𝑥0)) +

1
𝑘𝑛 𝑠 (𝐼Φ (𝑘𝑛𝑥𝑛)))

≤ 1
2 (󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩Φ,𝑠 + 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩Φ,𝑠 +

1
𝑛) 󳨀→ 1 (𝑛 󳨀→ ∞) ,

(31)

whence it follows that
1
𝑘󸀠𝑛 𝑠 (𝐼Φ (𝑘

󸀠
𝑛𝑥󸀠𝑛)) 󳨀→ 1 (𝑛 󳨀→ ∞) . (32)

Analogously,

1
ℎ󸀠𝑛 𝑠 (𝐼Φ (ℎ

󸀠
𝑛𝑦󸀠𝑛)) 󳨀→ 1 (𝑛 󳨀→ ∞) . (33)

Put 𝑑 = sup𝑛{𝑘󸀠𝑛, ℎ󸀠𝑛} < ∞. Assume that 𝑘󸀠𝑛 󳨀→ 𝑘 and
ℎ󸀠𝑛 󳨀→ ℎ as 𝑛 󳨀→ ∞. Now we prove 𝑘, ℎ ≥ 1. Since

1 ←󳨀 1
𝑘󸀠𝑛 𝑠 (𝐼Φ (𝑘

󸀠
𝑛𝑥󸀠𝑛)) (𝑛 󳨀→ ∞) , (34)

then

𝑠 (𝐼Φ (𝑘󸀠𝑛𝑥󸀠𝑛)) 󳨀→ 𝑘 (𝑛 󳨀→ ∞) , (35)

and if 𝑘 < 1, consequently, 𝑠(𝐼Φ(𝑘󸀠𝑛𝑥󸀠𝑛)) < 1 as 𝑛 󳨀→ ∞, a
contradiction. Thus 𝑘 ≥ 1. Similarly, ℎ ≥ 1. Then we have𝑘/(𝑘 + ℎ), ℎ/(𝑘 + ℎ) ∈ [1/(1 + 𝑑), 𝑑/(1 + 𝑑)].
Step 1.We will show that 𝑘0 = 2𝑘ℎ/(𝑘 + ℎ). In fact

1 = 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩Φ,𝑠 = 1
𝑘0 𝑠 (𝐼Φ (𝑘0𝑥0)) ≤

𝑘󸀠𝑛 + ℎ󸀠𝑛2𝑘󸀠𝑛ℎ󸀠𝑛
⋅ 𝑠 (𝐼Φ ( 2𝑘󸀠𝑛ℎ󸀠𝑛𝑘󸀠𝑛 + ℎ󸀠𝑛𝑥0)) ≤ 𝑘󸀠𝑛 + ℎ󸀠𝑛2𝑘󸀠𝑛ℎ󸀠𝑛
⋅ 𝑠 (𝐼Φ ( 𝑘󸀠𝑛ℎ󸀠𝑛𝑘󸀠𝑛 + ℎ󸀠𝑛 (𝑥

󸀠
𝑛 + 𝑦󸀠𝑛))) ≤ 𝑘󸀠𝑛 + ℎ󸀠𝑛2𝑘󸀠𝑛ℎ󸀠𝑛

⋅ 𝑠 (𝐼Φ ( ℎ󸀠𝑛𝑘󸀠𝑛 + ℎ󸀠𝑛 𝑘
󸀠
𝑛𝑥󸀠𝑛) + 𝐼Φ ( 𝑘󸀠𝑛𝑘󸀠𝑛 + ℎ󸀠𝑛 ℎ

󸀠
𝑛𝑦󸀠𝑛))

≤ 1
2 (

1
𝑘󸀠𝑛 𝑠 (𝐼Φ (𝑘

󸀠
𝑛𝑥󸀠𝑛)) + 1

ℎ󸀠𝑛 𝑠 (𝐼Φ (ℎ
󸀠
𝑛𝑦󸀠𝑛))) 󳨀→ 1

(𝑛 󳨀→ ∞) ,

(36)

whence 2𝑘󸀠𝑛ℎ󸀠𝑛/(𝑘󸀠𝑛 + ℎ󸀠𝑛) 󳨀→ 2𝑘ℎ/(𝑘 + ℎ) = 𝑘0 ∈ 𝐾(𝑥0) as𝑛 󳨀→ ∞.

Step 2.We will show that 𝑘󸀠𝑛𝑥󸀠𝑛 − 𝑘0𝑥0 𝜇󳨀→ 0(𝑛 󳨀→ ∞).
Firstly, we will prove that 𝑘𝑥󸀠𝑛 − ℎ𝑦󸀠𝑛 𝜇󳨀→ 0(𝑛 󳨀→ ∞).

Otherwise, there exist 𝜎0, 𝜀0 > 0 such that 𝜇({𝑡 ∈ 𝐺 : |𝑘𝑥󸀠𝑛(𝑡)−ℎ𝑦󸀠𝑛(𝑡)| ≥ 𝜎0}) ≥ 𝜀0. Let 𝐷 = Φ−1(3/𝜀0) and 𝐷1 = 2𝑘𝐷. Let
𝐺𝑛 = {𝑡 ∈ 𝐺 : |𝑘𝑥󸀠𝑛(𝑡)| ≤ 𝐷1, |ℎ𝑦󸀠𝑛(𝑡)| ≤ 𝐷1, |𝑘𝑥󸀠𝑛(𝑡) − ℎ𝑦󸀠𝑛(𝑡)| ≥𝜎0}. It can be easy to calculate that 𝜇(𝐺𝑛) > 𝜀0/3. In fact, since
lim𝑛󳨀→∞‖𝑥󸀠𝑛‖Φ,𝑠 = 1, {𝑥󸀠𝑛} is bounded in norm. Without loss
of generality, we may assume that 2 ≥ ‖𝑥󸀠𝑛‖Φ,𝑠 ≥ ‖𝑥󸀠𝑛‖; then

1 ≥ 1Φ (𝑥
󸀠
𝑛2 ) > ∫

{𝑡∈𝐺:|𝑥󸀠
𝑛
(𝑡)/2|>𝐷}

Φ(𝑥󸀠𝑛 (𝑡)2 ) 𝑑𝑡

> Φ (𝐷) 𝜇({𝑡 ∈ 𝐺 : 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥󸀠𝑛 (𝑡)2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > 𝐷})

= 3
𝜀0𝜇({𝑡 ∈ 𝐺 : 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥󸀠𝑛 (𝑡)2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > 𝐷}) ,

(37)

whence 𝜇({𝑡 ∈ 𝐺 : |𝑥󸀠𝑛(𝑡)/2| > 𝐷}) < 𝜀0/3. We have 𝜇({𝑡 ∈ 𝐺 :
|𝑘𝑥󸀠𝑛(𝑡)| > 𝐷1}) < 𝜀0/3. Hence

𝜇 (𝐺𝑛) ≥ 𝜇 ({𝑡 ∈ 𝐺 : 󵄨󵄨󵄨󵄨󵄨𝑘𝑥󸀠𝑛 (𝑡) − ℎ𝑦󸀠𝑛 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≥ 𝜎0})
− 𝜇 ({𝑡 ∈ 𝐺 : 󵄨󵄨󵄨󵄨󵄨𝑘𝑥󸀠𝑛 (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝐷1})
− 𝜇 ({𝑡 ∈ 𝐺 : 󵄨󵄨󵄨󵄨󵄨ℎ𝑦󸀠𝑛 (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝐷1})

> 𝜀0 − 𝜀03 − 𝜀03 = 𝜀03 .

(38)

We know that 𝑆Φ is a close set. Let
𝐹 = {(𝑥, 𝑦) : |𝑥| ≤ 𝐷1, 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 ≤ 𝐷1, 󵄨󵄨󵄨󵄨𝑥 − 𝑦)󵄨󵄨󵄨󵄨

≥ 𝜎0, ℎ
𝑘 + ℎ𝑥 +

𝑘
𝑘 + ℎ𝑦 ∈ 𝑆Φ} .

(39)

𝐹 is a bounded close set. For every (𝑥, 𝑦) ∈ 𝐹, the continuous
function is

Φ((ℎ/ (𝑘 + ℎ)) 𝑥 + (𝑘/ (𝑘 + ℎ)) 𝑦)
(ℎ/ (𝑘 + ℎ)) Φ (𝑥) + (𝑘/ (𝑘 + ℎ))Φ (𝑦) < 1. (40)

Setmaximumvalue equal to 1−𝛿(𝛿 > 0). For every (𝑥, 𝑦) ∈ 𝐹,
we have

Φ( ℎ
𝑘 + ℎ𝑥 +

𝑘
𝑘 + ℎ𝑦)

≤ (1 − 𝛿) ( ℎ
𝑘 + ℎΦ (𝑥) + 𝑘

𝑘 + ℎΦ (𝑦)) .
(41)

Since 𝑘0𝑥0(𝑡) ∈ 𝑆Φ, we have
ℎ

𝑘 + ℎ𝑘𝑥󸀠𝑛 (𝑡) +
𝑘

𝑘 + ℎℎ𝑦󸀠𝑛 (𝑡) =
2𝑘ℎ
𝑘 + ℎ𝑥0 (𝑡) = 𝑘0𝑥0

∈ 𝑆Φ,
(42)
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for 𝑡 ∈ 𝐺. Therefore, (𝑘𝑥󸀠𝑛(𝑡), ℎ𝑦󸀠𝑛(𝑡)) ∈ 𝐹, i.e., for 𝑡 ∈ 𝐺𝑛, and
Φ( ℎ

𝑘 + ℎ𝑘𝑥󸀠𝑛 (𝑡) +
𝑘

𝑘 + ℎℎ𝑦󸀠𝑛 (𝑡))

≤ (1 − 𝛿) ( ℎ
𝑘 + ℎΦ (𝑘𝑥󸀠𝑛 (𝑡)) + 𝑘

𝑘 + ℎΦ (ℎ𝑦󸀠𝑛 (𝑡))) .
(43)

Hence

󵄩󵄩󵄩󵄩󵄩𝑥󸀠𝑛 + 𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩Φ,𝑠 ≤ 𝑘 + ℎ
𝑘ℎ 𝑠 (𝐼Φ ( 𝑘ℎ

𝑘 + ℎ (𝑥󸀠𝑛 + 𝑦󸀠𝑛)))

≤ 𝑘 + ℎ
𝑘ℎ 𝑠 (∫

𝐺
Φ( 𝑘ℎ

𝑘 + ℎ (𝑥󸀠𝑛 (𝑡) + 𝑦󸀠𝑛 (𝑡))) 𝑑𝑡)

≤ 𝑘 + ℎ
𝑘ℎ 𝑠 ((1 − 𝛿) ∫

𝐺𝑛

[ ℎ
𝑘 + ℎΦ (𝑘𝑥󸀠𝑛 (𝑡)) + 𝑘

𝑘 + ℎ
⋅ Φ (ℎ𝑦󸀠𝑛 (𝑡))] 𝑑𝑡 + ∫

𝐺\𝐺𝑛

[ ℎ
𝑘 + ℎΦ (𝑘𝑥󸀠𝑛 (𝑡))

+ 𝑘
𝑘 + ℎΦ (ℎ𝑦󸀠𝑛 (𝑡))] 𝑑𝑡) = 𝑘 + ℎ

𝑘ℎ
⋅ 𝑠 (∫
𝐺
[ ℎ
𝑘 + ℎΦ(𝑘𝑥󸀠𝑛 (𝑡)) + 𝑘

𝑘 + ℎΦ(ℎ𝑦󸀠𝑛 (𝑡))] 𝑑𝑡

− 𝛿∫
𝐺𝑛

[ ℎ
𝑘 + ℎΦ(𝑘𝑥󸀠𝑛 (𝑡)) + 𝑘

𝑘 + ℎ
⋅ Φ (ℎ𝑦󸀠𝑛 (𝑡))] 𝑑𝑡) ≤ 1

𝑘𝑠 (𝐼Φ (𝑘𝑥󸀠𝑛)) +
1
ℎ

⋅ 𝑠 (𝐼Φ (ℎ𝑦󸀠𝑛)) − 𝑘 + ℎ
𝑘ℎ (𝑠 (𝛿∫

𝐺𝑛

[ ℎ
𝑘 + ℎ

⋅ Φ (𝑘𝑥󸀠𝑛 (𝑡)) + 𝑘
𝑘 + ℎΦ(ℎ𝑦󸀠𝑛 (𝑡))] 𝑑𝑡) − 1) .

(44)

Notice that

𝐼Φ ((𝑘 − 𝑘󸀠𝑛) 𝑥󸀠𝑛) ≤ 󵄨󵄨󵄨󵄨󵄨𝑘 − 𝑘󸀠𝑛󵄨󵄨󵄨󵄨󵄨 𝐼Φ (𝑥󸀠𝑛) 󳨀→ 0
(𝑛 󳨀→ ∞) . (45)

SinceΦ ∈ △2, there holds
𝐼Φ (𝑘𝑥󸀠𝑛) − 𝐼Φ (𝑘󸀠𝑛𝑥󸀠𝑛)

= 𝐼Φ (𝑘󸀠𝑛𝑥󸀠𝑛 + (𝑘 − 𝑘󸀠𝑛) 𝑥󸀠𝑛) − 𝐼Φ (𝑘󸀠𝑛𝑥󸀠𝑛) 󳨀→ 0
(𝑛 󳨀→ ∞) .

(46)

Thus

0 ≤ 1
𝑘𝑠 (𝐼Φ (𝑘𝑥󸀠𝑛)) −

󵄩󵄩󵄩󵄩󵄩𝑥󸀠𝑛󵄩󵄩󵄩󵄩󵄩Φ,𝑠
≤ 1
𝑘𝑠 (𝐼Φ (𝑘𝑥󸀠𝑛)) −

1
𝑘󸀠𝑛 𝑠 (𝐼Φ (𝑘

󸀠
𝑛𝑥󸀠𝑛)) + 1

𝑛 󳨀→ 0
(𝑛 󳨀→ ∞) .

(47)

Similarly, we can get (1/ℎ)𝑠(𝐼Φ(ℎ𝑦󸀠𝑛)) − ‖𝑦󸀠𝑛‖Φ,𝑠 󳨀→ 0(𝑛 󳨀→
∞). Then ‖𝑥󸀠𝑛 + 𝑦󸀠𝑛‖Φ,𝑠 ≤ 2 − ((𝑘 + ℎ)/𝑘ℎ)(𝑠((2𝛿/(1 +𝑑))Φ(𝜎0/2)(𝜀0/3)) − 1) as 𝑛 󳨀→ ∞. By 𝑠(𝑢) > 1 when 𝑢 > 0,
we have lim𝑛󳨀→∞‖𝑥󸀠𝑛 + 𝑦󸀠𝑛‖Φ,𝑠 < 2. The contradiction shows
that 𝑘𝑥󸀠𝑛 − ℎ𝑦󸀠𝑛 𝜇󳨀→ 0.

Since s-norm is equivalent with the Luxemburg norm,
their weak topology andweak star topology are all equivalent.
Then 𝐿Φ,𝑠 is 𝑤∗ compact. Take {𝑥󸀠󸀠𝑛 } ⊂ {𝑥󸀠𝑛}, {𝑦󸀠󸀠𝑛 } ⊂ {𝑦󸀠𝑛} such
that 𝑥󸀠󸀠𝑛 𝑤

∗󳨀󳨀→ 𝑥󸀠 and 𝑦󸀠󸀠𝑛 𝑤
∗󳨀󳨀→ 𝑦󸀠. We can get 𝑥󸀠 + 𝑦󸀠 = 2𝑥0. By

‖𝑥‖Φ,𝑠 = sup {∫
𝐺
𝑥 (𝑡) 𝑦 (𝑡) 𝑑𝑡 : 𝑦 ∈ 𝐵 (𝐿∗Φ,𝑠)} , (48)

where𝐵(𝐿∗Φ,𝑠) represents the unit ball of the dual space of𝐸Φ,𝑠 ,
we have 𝑦 ∈ 𝐿Ψ and

‖𝑥‖Φ,𝑠 ≥ sup{∫
𝐺
𝑥 (𝑡) 𝑦 (𝑡) 𝑑𝑡 : 𝑦 ∈ 𝐵 (𝐸∗Φ,𝑠)} . (49)

For any 𝜀 > 0, there exists 𝑦 ∈ 𝐵(𝐿∗Φ,𝑠) such that

‖𝑥‖Φ,𝑠 − 𝜀 ≤ ∫
𝐺
𝑥 (𝑡) 𝑦 (𝑡) 𝑑𝑡. (50)

Put

𝑦𝑛 (𝑡) = {{{
𝑦 (𝑡) , 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑛
0, 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 > 𝑛. (51)

Then 𝑦𝑛(𝑡) ∈ 𝐵(𝐸∗Φ,𝑠) and
∫
𝐺
𝑥 (𝑡) 𝑦 (𝑡) 𝑑𝑡 = lim

𝑛󳨀→∞
∫
𝐺
𝑥 (𝑡) 𝑦𝑛 (𝑡) 𝑑𝑡. (52)

By the definition of “lim”, for any 𝜀 > 0, there exists 𝑛0 ∈ 𝑁
such that

∫
𝐺
𝑥 (𝑡) 𝑦 (𝑡) 𝑑𝑡 − 𝜀 ≤ ∫

𝐺
𝑥 (𝑡) 𝑦𝑛 (𝑡) 𝑑𝑡, (53)

whenever 𝑛 ≥ 𝑛0.
Thus

‖𝑥‖Φ,𝑠 − 2𝜀 ≤ ∫
𝐺
𝑥 (𝑡) 𝑦𝑛 (𝑡) 𝑑𝑡. (54)

By arbitrariness of 𝜀 and combining with the above proof, we
can obtain

‖𝑥‖Φ,𝑠 = sup {∫
𝐺
𝑥 (𝑡) 𝑦 (𝑡) 𝑑𝑡 : 𝑦 ∈ 𝐵 (𝐸∗Φ,𝑠)} . (55)

Therefore

2 = 󵄩󵄩󵄩󵄩2𝑥0󵄩󵄩󵄩󵄩Φ,𝑠 ≤ 󵄩󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩󵄩Φ,𝑠 + 󵄩󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩󵄩Φ,𝑠
≤ lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩𝑥󸀠𝑛󵄩󵄩󵄩󵄩󵄩Φ,𝑠 + lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩Φ,𝑠 = 2. (56)

This shows ‖𝑥󸀠‖Φ,𝑠 = ‖𝑦󸀠‖Φ,𝑠 = 1.
As we know 2𝑥0 = 𝑥󸀠𝑛 +𝑦󸀠𝑛; then 𝑘(2𝑥0 −𝑦󸀠𝑛) − ℎ𝑦󸀠𝑛 𝜇󳨀→ 0. It

implies that 𝑘(2𝑥0−𝑦󸀠𝑛)−ℎ𝑦󸀠𝑛 𝑤
∗󳨀󳨀→ 0. Combiningwith the proof
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above 𝑦󸀠𝑛 𝑤
∗󳨀󳨀→ 𝑦󸀠 and ‖𝑦󸀠‖Φ,𝑠 = 1, we have 𝑦󸀠 = (2𝑘/(𝑘+ℎ))𝑥0.

As a result, 2𝑘 = 𝑘 + ℎ. So 𝑘 = ℎ. We have 𝑥󸀠𝑛 − 𝑦󸀠𝑛 𝜇󳨀→ 0 as𝑛 󳨀→ ∞. Namely,

2 (𝑥󸀠𝑛 − 𝑥0) = 𝑥󸀠𝑛 − 𝑦󸀠𝑛 𝜇󳨀→ 0 (𝑛 󳨀→ ∞) . (57)

By the proof above, we get 1 < 𝑘0 = 𝑘; thus
𝑘󸀠𝑛𝑥󸀠𝑛 − 𝑘0𝑥0 𝜇󳨀→ 0 (𝑛 󳨀→ ∞) . (58)

Step 3.We will show that 𝐼Φ(𝑘󸀠𝑛𝑥󸀠𝑛) 󳨀→ 𝐼Φ(𝑘0𝑥0). In fact

𝑠 (𝐼Φ (𝑘0𝑥0)) = 𝑘0,
𝑠 (𝐼Φ (𝑘󸀠𝑛𝑥󸀠𝑛)) 󳨀→ 𝑘 (𝑛 󳨀→ ∞) , (59)

so 𝑠(𝐼Φ(𝑘󸀠𝑛𝑥󸀠𝑛)) 󳨀→ 𝑠(𝐼Φ(𝑘0𝑥0))(𝑛 󳨀→ ∞). By the fact that𝑠(𝑢) > 1 and 𝑠(𝑢) − 1 > 0, now 𝑠(𝑢) is strictly monotonous on[𝑢, +∞). Hence, we have
𝐼Φ (𝑘󸀠𝑛𝑥󸀠𝑛) 󳨀→ 𝐼Φ (𝑘0𝑥0) (𝑛 󳨀→ ∞) . (60)

Corollary 10. Let 𝑠(𝑢) > 1 with 𝑢 > 0 and Φ be an Orlicz
function. 𝐿Φ,𝑠 is middle point locally uniformly convex if and
only ifΦ ∈ △2 and 𝐿Φ,𝑠 is strictly convex.
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