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As is well known, the extreme points and strongly extreme points play important roles in Banach spaces. In this paper, the criterion
for strongly extreme points in Orlicz spaces equipped with s-norm is given. We complete solved criterion—Orlicz space that
generated by Orlicz function. And the sufficient and necessary conditions for middle point locally uniformly convex in Orlicz

spaces equipped with s-norm are obtained.

1. Introduction

The extreme point set plays a crucial role in function analysis,
convex analysis, and optimization. In fact, any compact con-
vex set is the convex hull of its extreme point set, and the result
is called Krein-Milman theorem. The notion of a dentable
subset of a Banach space was introduced by Rieffel [1] in
conjunction with a Radon-Nikodym theorem for Banach
space-valued measures. Subsequent work by Maynard [2]
and by Davis and Phelps [3] has shown that those Banach
spaces in which Rieffels Radon-Nikodym theorem is valid
are precisely the ones in which every bounded closed convex
set is dentable. This is a real breakthrough in studying the
nature of Radon-Nikodym as a geometric property. In 1988,
Bor-Luh Lin, Pei-Kee Lin, and S. L. Troyanski [4] described
the characteristic of denting points and obtained the notion
that there is a close relationship between denting points and
strongly extreme points. It is easy to see that every denting
point of K is a strongly extreme point of K and it is known
[Ken Kunen and Haskeil Rosenthal, Martingale proofs of
some geometric results in Banach space theory, Pacific J.
Math. 100 (1982), 153-175] that every strongly extreme point
of K is a weaks-extreme point of K. Orlicz space is a special
kind of Banach space; it was introduced by the famous Polish
mathematician W. Orlicz in 1932. The theory of Orlicz space
[5, 6] has been greatly developed because of its important
theoretical properties and application value. Up to now, the

criterion of an element in the unit sphere of Orlicz spaces
equipped with the Orlicz norm [5, 7], the Luxemburg norm
[5], and p-Amemiya norm [8] has been given. In this paper,
we use a new technique to study the strongly extreme point
in Orlicz spaces generated by Orlicz function and equipped
with a new norm, namely, s-norm. The criterion of strongly
extreme points is given, and the sufficient and necessary
conditions for middle point locally uniformly convex in
Orlicz spaces equipped with s-norm are obtained.

2. Preliminaries

Throughout this paper, X will denote a Banach space and
X" stands for the dual space of X. We denote by (G, 2, u)
the nonatomic X-measure finite space. By B(X) and S(X) we
denote the unit ball and the unit sphere of X, respectively. By
R and N we will denote the sets of real and natural numbers,

respectively.
A mapping ® : R — [0,00) is said to be an Orlicz
function if it is even, continuous, convex, and ®(0) = 0,

lim,_,, ®(u) = co. Moreover, if ® satisfies lim,,_,,(D(u)/
u) = 0 and lim, , (®wm)/u) = o0, ® is called N-
function. Let p, (t) be the right-hand derivative of ®, where
the function ¥ is defined by the formula

WV (u) =sup{lulv-D(v):v=0} 1)
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and called complementary function to @ in the sense of
Young.

We say that an Orlicz function @ satisfies A,-condition
for large u € R (@ € A, for short) if there exist u, > 0 and
K > 2 such that

@ (2u) < KO (u) (2)

whenever |u| > u,.

Let L° denote the set of all measure real functions on
G. For a given Orlicz function ® we define on L° a convex
function I, : L° — [0,00] (called a pseudomodular; see

[61) by
I ()= | oG ()

It is clear that I, (x) = Lupp(x) D (x(t))dt; here supp(x) = {t €
G: |x()| + 0}.

The Orlicz space L4, generated by an Orlicz function @ is
defined by the formula
Ly = {x el’: Iy (Ax) < +00 for some A > 0}, (4)
and its subspace E, is defined by
E(D:{xELO:I(D()tx)<+ooforall)t>0}. (5)

This space is usually equipped with the Luxemburg norm

(5]
x
||x||=inf{k>0:1®(z>sl}, ©)
or with the Orlicz norm (Amemiya norm) [5]
o _. ol
Ixllg = }{r:gk (1+ Iy (kx)). (7)

A function s : [0,00) — [1, 00) will be called an outer
function, if it is convex and

max {L,u} <s(u)<1l+u forallu=>0. (8)

In 2017, M.Wista introduced s-norm.

Definition 1. Let s be an outer function. Denote s-norm on
Orlicz spaces by the formula

o1
Illo,s = inf s (I (k). ©)
It is easy to get ||xllg, = x| if s(u) = max{l,u} and
lxllg, = ||x||‘(’D if s(u) = 1 + u ([8]). Then we have ||x| <

Ixllg,s < x5

In this paper, by L4, we will denote an Orlicz space
equipped with the s-norm.

Definition 2. Let s\, (u) be the right-hand derivative of s. For
all 0 < v < 1, define

w(v) = va’jl (t) dt (10)

0
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Definition 3. Let s be an outer function. For all 0 < u < 0o
and 0 < v < oo,

Bwv)=1-w (sir (u)) —vs, (u), (11)

the function (1, v) is nonincreasing. For any x € Lq, \ {0},
define ([9])

k" (x)

=inf {k > 0: 3, (I (kx), Iy (p, (k|x]))) < 0},
K** (x)

= inf {k > 0: B (Iy (kx), Iy (p, (k|xI))) = 0}.

Let K(x) = [k*(x), k™" (x)]. Then |x|lq s = (1/k)s(Ig(kx))
if and only if K(x) # 0.

12)

Definition 4. A point x € S(X) is said to be an extreme point
of B(X) if forany y, z € B(X) with x = (y+2)/2, then implies
y =2z

The set of all extreme points of the unit ball B(X) will
be denoted by ExtB(X). X is said to be strictly convex if
ExtB(X) = S(X).

Definition 5. A point x € S(X) is said to be a strongly extreme
point of B(X) if for any {x,} < X,{y,} € X with [|x,[| — 1,
Iy, I — 1and (x, + ¥,)/2 = x there holds |x,, — v, — 0
asn — 00.

It is obvious that a strongly extreme point is an extreme
point. X is said a middle point locally uniformly convex
Banach space if and only if each point on S(X) is a strongly
extreme point.

Definition 6. Letu, > 0. If for every v, w € R such that v # w
and (v+w)/2 = u,, we have O(u) < (1/2)D(v) + (1/2)D(w),
then u is called to be a strictly convex point of ®(u). The set
of all strictly convex points of @ (u) will be denoted by Sg,.
For the results concerning strongly extreme points and
convexities in Orlicz spaces which are generated by N-
function and equipped with the Orlicz norm, the Luxemburg
norm, and p-Amemiya norm, we refer a reader to [10-17].

3. Main Theorem

Lemma 7. (1) If lim,_, (®(u)/u) = oo then K(x) + @ for
any x € Lo \ {0}

(2) If lim,_, (®(u)/u) = A < 0o and K(x) = 0 then
Il = Al

Proof. (1) Suppose lim, , (P(u)/u) = oo. We have
lim,_ ., Iy(p,(k|x])) = oco. Since forany 0 < v < 1, w(v) €
[0,1], then

Jdim B (Iy (kx), Iy (p, (k[x]))) = lim (1
~ w(s, (Ip (kx))) = Iy (p, (k|x1)) s, (I (kx)))  (13)
< 0.

So k*(x) < co, whence K(x) # 0.
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(2) By K(x) = 0, we have k*(x) = 00, and then
! o1
Ill,s = inf s (I (kx)) = Tim s (I (kx))

1
< kh_r}nooi (1 + I(D (kx))

(14)
. 1 O (kx (1))
= lim <—+J —|x(t)|dt)
k—oo \ k supp(x) K |x ()]
= Allx]l;
and
.1 o1
Ixlgs = khlnwEs (Ip (kx)) = kgnw%IQ (kx)
@ (kx () =
= lim J VX)) e @) dt = Al -
k=00 Joupp() K [ (£)] !
Therefore ||x|lq; = Allx|; . O

Corollary 8. K(x) = 0 if and only if u(supp(x)) < (1 —
w(1))/¥(A) for any x € Lg \ {0}.

Proof. Necessity. We know that Iy (kx) — oo as k — oo0.
By Ip(kx) < s(Ip(kx)) < 1 + Ip(kx), we can get 1 <
limk_msﬁr(l(b(kx)) < 1. That is, limk_msﬁr(l(b(kx)) =1.By
K(x) = 0, we have k" (x) = 0o. Then

B, (I (kx), Iy (p, (k|x]))) > 0, (16)
for all k > 0. Since f5,(u, v) is nonincreasing, we have

lim B (I (kx), Iy (p, (k|xD))) = lim (1

— (s} (Io (kx))) = Iy (p,. (k1xD) s, (I (kx))) - (17)
=1-w(l)—supp(x)¥(A) >0,

whence p(supp(x)) < (1 —w(1))/¥(A).

Here we infer that w(1) < 1. If w(1) = 1 we have
lim_, B, (Ip(kx), Iy(p, (klx]))) = —supp(x)¥(A) < 0, a
contradiction.

Sufficiency. By the definitions of s(u) and w(v), sfr(u) <1
and w(sﬁr(u)) < w(1) for any u > 0. Therefore for all k > 0

B (Lo (kx), Iy (p, (k |x])))
=1- o (s} (Ip (kx)))
— Iy (p, (k|x]) s, (I (kx)) (18)
>1-w(1) - Iy (p, (k|x))
=1-w(1) - u(supp (x)) ¥ (4) > 0,
whence k*(x) = 0o, i.e., K(x) = 0. O

Theorem 9. Suppose that s(u) > 1 when u > 0 and @ is an
Orlicz function. A point x, € S(L, ) is a strongly extreme point
ifand only if ® € A, and kyx,(t) € Sq for k, € K(x,).

Proof. Necessity. As we know that a strongly extreme point is
an extreme point, we only need to prove that x, € ExtB(Lg,)
implies kyx,(t) € Sg for k, € K(x,). Firstly, we will prove
that if x, € ExtB(Lgy), then K(x,) # 0. If K(x,) = 0, we
will have k" (x,) = co which implies that p(supp(x,)) < (1 -
w(1))/'¥(A) holds. There exists a > 0 such that u({t € G :
[xo() > a}) > 0.PutC = {t € G : |x,(t)] > a} and 0 <
u(C) < (1 — w(1))/¥(A). Divide C into two sets C; and C,
with C; N C, = @ and u(C,;) = u(C,). Take ¢ € (0,a) and
define

[x,(t), teG\(C,UGC,)
y(t)=1x () -& teC

xo(t) +e, teC,,

) (19)

x, (1), teG\(C,UG,)
z(t)=91x,(t)+e, teC

(%o (1) —&, t€Cy.

Then x, = (y + 2)/2, y # z. Moreover supp(y) < supp(x,),
supp(z) < supp(x,). We have

o = Al = 4 | Ly @)l

= A(J |x0(t)—£|dt+ J |x0(t) +s|dt
C, C, (20)

+ | ENG] dt) =A L | (1) dt

J’G\(cluc2
= Allxol, = [ofls = 1-

Similarly, we can get ||zllo = 1.

Next we will show that kjx,(t) € Sq.

Suppose that u({t € G : kyxy(t) ¢ Sp}) > 0 for k, €
K(x,). There exists an interval (a,b) such that u({t € G :
alky + € < x4(t) < blky —€}) > 0(e > 0), and D is affine
on (a,b): ®(x) = px + q. Divide {t € G : a/ky + & < x,(t) <
b/k,—e} into two sets E and F with ENF = 0 and u(E) = u(F).
Define

(x, (1), te G\(EUF)
y(#)=1x,(t)—¢, teE

x,(t)+e teF,

‘ (21)

x, (1), teG\(EUF)
z(t)=1x,(t)+e, te€E

[ %o (t)y—e teF.

Then x, = (y + 2)/2, y # z. Thus

o (ko) = | @ (kay0)de

+ J O (kyy () dt
G\(EUF)



- | (ko (o @)= + )
+ [ (ol (0 +e) + )

+ O (kox, (1)) dt
G\(EUF)

= j (pkoxo () + q) dt
EUF
+ J O (kox, (1)) dt
G\(EUF)
= J O (kyx, (1)) dt
EUF

N j O (kyxo (1)) dt = T (koxy)
G\(EUF)

(22)

whence [yl < (1/kg)s(g(koy)) = (1/ky)s(g(koxy)) =
[xollps = 1. In the same way, we can prove |zllq, < 1. This
contradicts the fact that x, is an extreme point of B(L ).

In order to complete this proof, we need to prove that if
® ¢ A, there are no strongly extreme points in S(L, ).

Suppose @ ¢ A,. Then lim,,_, . (P(u)/u) = +00.

In fact, if lim,,_, ., (®(u)/u) = A < +00, there exists 1, >
0 such that (A/2)u < ®(u) < (3A/2)u holds for every u > u,.
Then we have ®(2u) < (3/2)AQu) < 6(A/2)u < 6d(u); it
implies ® € A,, a contradiction.

For any x, € S(Lg), there exists k, > 0 such that

1
1= ||xo||q>,s = k_OS(IcD (koxo)) - (23)

Since x, € S(Lg,), we can find d > 0 such that u({t € G :
[xo(t)] < d}) >0.By ® ¢ A,, there exist u, > 0and u,, T co
such that ®(2u,,) > 2"®(u,)(n = 1,2,--+). We may assume
that 1/®(u;) < u({t € G : |x,(t)] < d}). Take {G,} C {t €
G : |xy(t)| < d} with G,, N G,, = 0 for any m # n, satisfying
u(G,) =1/(2"®(u,))(n =1,2,---). Define

(x, (1), teG\G,
) = <
*n (1) xo(t)+%, teG,,
L kO
) (24)
X0 (1), teG\G,
y‘rl(t): <

X, () — Z— teG,.
0

Then x, = (x,, + ¥,)/2, x,(t) = x;(t) + x:l'(t), here x;(t) =

XoXa\G, (1) + (,/Ko) X, (8, x;'(t) = XoXg, (1)
Notice that

"
le

D,s “xOXGn [OX d “XG,, D,s 0

(25)
(n — 00).
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!
We have [|x, [l = ”onG\G,,ch,s 2 [xgllgs — "onG,, llp,» that
. . !
is, lim, _, lx,llos = llxollps = 1. And

- ! :
o = e o (k1)) < s (ko)) =

s <L ® <k0 <x0XG\Gn ) + :—:ch (t))) dt)

= —s (L\Gn @ (kyxoxaa, () dt (26)

X

+ L ) (”nXG,, (t)) dt) < kios (I (ko)

n

+®(10,)4(G,) = 5 (T (o) + 51 ).

0

Consequently, Hﬁwux;u@,s < lxgles = 1. Hence
lim, lx,los = 1. In the same way, we have
lim, | Iy les = 1. But Ip(ky(x, - ¥,)) = J'G" D(ky(2u,(t)/
ky))dt = ©Qu,)u(G,) = 1(n = 1,2,---), which implies
I, = Yullo,s = (ko) 2t X6, N0 = (1/ko) 2,6, | = 1/ko, a
contradiction.

Sufficiency. Let ® € A,, xy € S(Lg) with kox,(t) € Sg
for ky € K(x,). Take any x,,y, € Lg, with ||x,[lo, —
Ly lles — 1and x, + y, = 2x,.

Take sequences {k,} and {h,} of positive numbers such
that

1 1
Pl 2 s (o (65,) - 2.
In 1 @7)
"yn"(l),s > h_ns(Id) (hnyn)) - ;
Define
x, _ .xn + xo
" 2
+ X, (28)
andy:lz—ynz 0

! ! T ! T !
then x, + y, = 2x, and lim,_, lIx,llos < 1,1im, |y, /o
<1
Now we will prove that lim, . lIxllo, = 1 and
lim, y:lll(p)S = 1. Otherwise, we can assume that
limn_)oollxilll(p)S < 1; there exist § > 0 and n, € N such that,
for every n > n,

!

an))ssl—&
2
0o s (29)
y”’(l),s_ +5‘
Then
! !
x, + 1 )
L= o, = [F 2 s—<1—8+1+—)
* 2 o 2 2 (30)
<1,

a contradiction.
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Since ”x; - yyll”d),s — 0 if and only if |lx, — yn”(b,s -
0(n — ©0), we will consider the sequences {x;} and { y,'l},
where {x;} and { yr'l} in place of {x,} and {y,}.

Put k; =2k, k,/(k, + k) and h; = 2h,ky/(h, + k). Then
{k;} and {h;} are bounded. Since ||x:l||q,,s — 1(n — 00), we
have

!

Le— |x)q. < k—l,s(Iq, (k;x;)
k, + k, k, ko )
= 1,
ok, e (k,, Tk on %)
(31)
1/1 1
< 3 (e o (hoso) + 5 (0 (k1)
1 1
< 3 (oo blo. 1) =1 (1 — o),
n
whence it follows that
1
k_'s (ch (k;x;)) —1 (n— 00). (32)
Analogously,
1
WS(Icp (Hy,) — 1 (n— o0). (33)

n

Putd = supn{k;, h;} < 00. Assume that k; — kand
h!, — hasn — co. Now we prove k,h > 1. Since

1 —

ki,s (I(D (k;x;)) (n — ), (34)

n

then

s(I (Kx)) — k  (n— 00), (35)
and if k < 1, consequently, s(Iq,(k;x:,)) <lasn — 00,a
contradiction. Thus k > 1. Similarly, & > 1. Then we have

k/(k+h),h/(k+h) e [1/(1+d),d/(1+d)].

Step 1. We will show that k, = 2kh/(k + h). In fact

1 K +Hh,

1= xgllg, = k_os (Io (koxo)) < 2K R
2k K +h
S\l n™ ) )< 2w

kK +h,
2kyh,, (36)

K
(1o g (0 0)) ) <

whence 2k;h;/(k; + h;) — 2kh/(k + h) = k, € K(x,) as

n — 00.

Step 2. We will show that k! x! — kox, 5 0(n — 00).
Firstly, we will prove that kx| — hy/ 5 0(n — o00).
Otherwise, there exist 0, &, > 0 such that u({t € G : |kx;(t) -
hy:l(t)l > 0,}) = g. Let D = (D_l(3/80) and D, = 2kD. Let
G, = {t € G: |kx/(t)| < Dy, |y (t)| < Dy, |kx!(t) = hy! (t)] =
0,}. It can be easy to calculate that 4(G,,) > ¢,/3. In fact, since
limn_)oollxilll(p)S =1, {x;} is bounded in norm. Without loss

of generality, we may assume that 2 > IIxLIIQ),S > ||x:,||; then

x! X (t)
>1,( 22 Vg
1>1®<2)>Lter|x;<t)/z|>D}(D( 2 ) '
>®(D)y<{teG: >D}) (37)
2o o).

whence u({t € G : |x;(t)/2| > D}) < gy/3. We have u({t € G :
|kx;(t)| > D,}) < g,/3. Hence

u(G,) 2z u({t e G:|kx), (®) - hy, (0] 2 0o})

—u(ftec: 'kx; (t)| >D,})

(38)
- pt({t €G: 'h)’r,, (t)| > Dl})
e _f_ %
3 3 3
We know that Sy, is a close set. Let
F= {(x,y) x| < Dl,lyl < D1,|x—y)|
(39)

Zoo,ix+Ly€S®}.
k+h k+h

F is a bounded close set. For every (x, y) € F, the continuous
function is

@ ((h/ (k +h) x + (k/ (k + h) )

<l (40)
(h/ (k +h) @ (x) + (k/ (k + ) @ (y)

Set maximum value equal to 1-8(8 > 0). Forevery (x, y) € F,

we have
h k
0]
(k+hx+k+hy)
(41)
h k
Since kyx,(t) € Sg, we have
h i k ' 2kh
—kx, () + —hy, (t) = ——x,(t) =k
i O+ o (0= 7% (0 = koxo (42)

€S>



for t € G. Therefore, (kx;(t),hy,'l(t)) € F,ie,fort € G,, and
h k

(43)
| o (i}, 0))

i (o (55 (2 0))

_k]:hh (J q>< h (x, (t)+yn(t))> )

k+h
sk]:hhs<(1— )J [ch(kx;(t))Jr K

<@ —6)( kx,, (1)) +

Hence

st 3o, =

(44)
@ (hy; (t))] dt

@ (kx), (t)) +

By

Notice that

lo((k-k,)x,) <

Since ® € A,, there holds
Iy (ka) - Iy (k;x;)
= Iy (Kx, + (k= k) x,) -

I (kyx,) — 0 (46)

(n — 00).
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Similarly, we can get (1/h)5(1¢(hy,'l)) - IIy,'lllq,,S — 0(n —
00). Then ||xil + y,'lllq,,S < 2 - ((k + h)/kh)(s((26/(1 +
d))®(0y/2)(gy/3)) — 1) asn — 00. By s(u) > 1 when u > 0,
we have lim,_, [lx] + yr'l||¢,s < 2. The contradiction shows
that kx! — hy/ 5o.

Since s-norm is equivalent with the Luxemburg norm,
their weak topology and weak star topology areall equlvalent
Then Lq,s is w" compact. Take {x"} C {x 1 {y }c {yn} such

that x!/ =% and y,/ w—>y We can get x' + y' = 2x,. By

Ilo, =sup {[ x®y@dr:yeB(Ly,)}.  w@s)

where B(Lg, ) represents the unit ball of the dual space of Eq ,
we have y € Ly and

1llg.s = sup {Lx(t) YO dt:ye B(E;S)} . (49)

For any & > 0, there exists y € B(Lg, ) such that

Ilo, e < | x(®)y . (50)
G
Put
®, ly®)<n
=1’ ly ® 1)
0, |y(t)|>n.

Then y,(t) € B(Eg, ) and

J x(t) y(t)dt = lim J x(t) y, (t)dt. (52)
G o0 Jg

By the definition of “lim”, for any & > 0, there exists n, € N
such that

J xt)yt)dt—e< J x(t) y, (t)dt, (53)
G G

whenever n > n,.
Thus

g, — 26 < L"(” 3, (0) . (54)

By arbitrariness of ¢ and combining with the above proof, we
can obtain

I¢llgs = sup ch ) y(B)dt: yeB (E;,,S)} . (55)

Therefore

2= "2x0"<1),s =
< lim + lim “y’ =2 0
s Dys 5 17D

1y llg,s = 1.
As we know 2x, = x| + y.; then k(2x, — y!) — hy! Lot

This shows ||x’||¢,s =

implies that k(2x,—y,)~hy,, Zso. Combining with the proof
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above y,'l w—> y' and ||y' o = 1, we have y' = (2k/(k+h))x,.

Asaresult, 2k = k+ h.So k = h.Wehavex;—y:l L 0 as
n — 0o. Namely,

Z(x;—xo)zx;—yr’lio (n— ). (57)
By the proof above, we get 1 < k, = k; thus

I “
k,x, —koxy — 0

(n — 00). (58)

Step 3. We will show that Iq)(k;x;) — Iy (kyx,). In fact

s (Ip (koXo)) = ko,

(59)
s (I(D (k;x;)) —k (n— 00),
SO s(Iq,(k;x;)) — s(Ip(kyxy))(n — ©0). By the fact that
s(u) > 1and s(u) — 1 > 0, now s(u) is strictly monotonous on
[u, +00). Hence, we have

Iy (k;x;) — Iy (koxo) (n— 00). (60)
O

Corollary 10. Let s(u) > 1 withu > 0 and ® be an Orlicz
Sfunction. Lg, ; is middle point locally uniformly convex if and
only if © € A, and L, ; is strictly convex.
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