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Chaundy and Jolliffe proved that if {c,};, is a nonincreasing real sequence with lim, .. = 0, then the series Y °, ¢, sinkx
converges uniformly if and only if k¢, — 0. The purpose of this paper is to show that kg, — 0 is a necessary and sufficient
condition for the uniform convergence of series Y ;| ¢, sin Vk6in 6 € [0, 7]. However for Yoy G Sin k*@ it is not true in @ € [0, 7].

1. Introduction

Chaundy and Jolliffe [1] proved the following.

Theorem 1. If {g};>, C R, is decreasing to zero, then
Y ey G sin kx converges uniformly in x if and only if kg, — 0
ask — oo.

Theorem 1 has had numerous generalizations.

Leindler [2] verified that in Theorem 1 the monotonicity
assumption ¢, > ¢,,; can be replaced by ¢ € RBVS, i.e., if the
conditions ¢, — 0 and Y ;2 | — ¢, | < K, hold for all n
with constant K = K(c) which depends only upon c.

The next theorem was indicated in [3].

Theorem 2. If {¢.} belongs to the class MVBVS, i.e., if there
exist constants C and A > 2, depending only on the sequence
{c} such that

2 A
Yo = ql < (C/n) ZIE:ﬁ\*an ¢ for alln > A, then
series Y00, ¢ sinkx converges uniformly in x if and only if
limk_)ookck =0.

Moricz [4] proves the following theorem.

Theorem 3. Assume f : R, — [0,00) with property
xf(x) € L}, (R,). If f(x) is nonincreasing on R, then integral
_[(;)O f(x)sintxdx, t € R,, converges uniformly in t if and only
ifxf(x) — 0asx — oo.

A result due to Zak and Sneider [5] holds for dou-
ble sine series. 7%, Y32, ¢ sin jxsinky is regularly con-
vergent in case of a fixed (x, y) if the rectangular sums
Z;il Y cji sin jx sinky converge to a finite number as m
and n independently tend to infinity; moreover the row
and column series Z(;Zl Cjpsin jxsinny, n = 1,2,..., and
Yol Gk Sinmx sinky, m = 1,2,.. ., are convergent.

Theorem 4. If {cjk};’f,’(:l C R, is a monotonically decreasing
double sequence, i.e., sequence of real numbers such that, for
Gk=1,2..,

Cik = Cisrk = 0, Cji = Ciks1 ~ Cjark T
Ciriker = 0 then Y2, 32, cyesin jxsinky is uniformly
regularly convergent in (x, y) if and only if jkcy — 0 as
j+k — oo

= Ciker 2 0, and cj

Theorem 4 was generalized by Kérus [6]. He has defined
new classes of double sequences (SBVDS;) to obtain those
generalizations.

Duzinkiewicz and Szal [7] introduce a new class of double
sequence called DGM («, f3, y, 1), which is a generalization of
the class considered by Korus, and they obtain sufficient and
necessary conditions for uniform convergence of double sine
series.
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was motivation for the generalization of the Theorem 1. Such
series were studied by Paley and Wiener who called them
nonharmonic Fourier series. They proved the following [8].

Theorem 5. If|A, —k| < D < 1/a* for —00 < k < co, then the
sequence (€M} is closed in L* (-, 7r) and possesses a unique
biorthogonal set {h;(0)}, such that the series

Yo o€ 2m) [* f(e™dt — &M [ f(t)h(t)dt)
converges uniformly to zero over interval (—m + 8,7 — §) for
any positive 8§, and over any such interval the summability
properties of

Yoo eMb f_nﬂ f®h(t)dt are uniformly the same as
those of the Fourier series of f(0).

We will consider a special case of the series (1) for A, = Vk
and A, = k%, k > 1, which does not meet the assumptions of
the above theorem.

2. Main Results

Theorem 6. If {¢},2, C R, is nonincreasing, then the series
Y2, ¢ sin VkO converges uniformly in 6 € [0, 7] if and only if
limk_,ookck =0.

Proof  (necessary  condition). Suppose that a series

Yo, 6 sin VkO converges uniformly on [0, 7]. Let 6 = 7/ex.
We consider « = \nforn = 4randr € N = {1,2,3,...}:

Yecesin(Vr/e) = Y gosin(Ven/vm) =
Yo acesin(r — k/nm) < Y 26,1 - VE/vA) =
2(Csya(1=V5/2) + ...+ opyq(1 = 3/2)) < 2(1 = V/5/2)(C5p4 +
-t (:911/4)) < (1 - \/5/2)7169”/4 = 4/9(1 - \/§/2)9r69r
Hence,

Vre N

2 (2)
— > 43 (\/3/2 - 1)9rc9r.

After considering that Y2, ¢, sin VkO converges uniformly
we obtam

| Zk ., G sin \/m?k/4r| < e for sufficiently large r. Thus, in
view of inequality (2), we obtain 4/9(1/5/2 — 1)9r¢,, < € for
sufficiently large r, so

rli_r)noo9rcgr =0. (3)

After considering that the sequence {¢.} is nonincreasing we
have

Iy, <Gy ... S 91y _g < TGy @

=9(r = 1) &gy + 9y
Thus
Vs=0,1,...,8

. €)
Jim 97y, =0
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by (3). In view of (5), we obtain Vs = 0, 1,...,8 lim, (97—

S,y = lim,_, 9r¢,, — lim,_, sc,_, = 0 and
lim,,_, mc,, = 0. O
Proof (sufficient condition). Let 0 = m/a.
Case I:
P> Vn. (6)

After considering Vkja < \P/+/P = 1 and sin(mVk/a) <
n(Vk/«) we obtain

P g
0< ch sin
k=n

vk nd
=Yg Vk
< “];lck

T
[0

(%+...+%>

(7)
1 1
< ;il;}:{kck}<%++ﬁ>

3

<n sup {ke,}

ﬂzﬁ

This follows from (6). Note that the following condition is
fulfilled:

l+i+ +L< ! VP
V2 VP Np+1NpH1-+p (8)

for p> 1.

In view of (8) the following inequality is satisfied for b, =

(1/vP) XE_, (1/Vk):
bpu
bP
1 VP 1
CJp+l (\/ﬁ+ \/p+11+1/\/§+...+1/\/ﬁ) ©)

Thus the sequence b, is increasing with respect to p and

lim, b, = 2.
Vn<p
1 & Z (10)
VPis VE© o VPiz >
This follows from (9). Finally for n < p and & > /P,
p
0< ch sin mvk < 2msup {kg.} . (11)
k=n k>n

This follows from (7), (10).
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To prove the case « < /p we first observe the following.

Lemma 2.2. Let « > 1 and m € N. Let | | denote the floor
function, ie., |x] =z &= ze€ Zand x -1 < z < x. Then

vem 1.2 (m )] -1
(x<2m+ %) <\l m+1)2] -5 (12)
+/| o (m+ 17| +5 <20 (m+1)
vem 1,20 (me )] -1

- < [ocz (m+ I)ZJ -5 (13)

- [(xz(m+1)2J+s§0

Vs = [a2<m+Z)J +2,...,[a2(2m+1)J
-1
oc(2m+3)2\/[oc2(m+1)2J+1—s (14)

+\/[¢x2(m+1)2+20c2J+1+s
>2a(m+1)
Vs = l(x2<m+Z)J +2,...,[oc2(2m+1)J

-1

—2a < \/[ocz(m+l)2J+1—5 (15)

- \/[ocz(m+1)2+2cx2J +1+s
< —o.
The proof of (12).

Note that for s = 0,1,2,...,a*(m + 3/4) the following
condition is fulfilled:

\/ocz(m+ D -s+ \/ocz(m+ 1) +s<2a(m+1), (16)
which follows from the relationship:

ocz(m+1)2—s+ocz(m+1)2+s

+2\at (m+1)* - 52 < 4a’ (m + 1) 17)

and a*(m+ 1) -5 <at(m+1)*.

3
Fors=1,2,...,|a*(m+3/4)] -1,

\/[ocz(m+ 1)2J -5+ \/[ocz(m+ 1)2J +s
S\/ocz(m+1)2—s+\/oc2(m+1)2+s (18)
<2a(m+1).

This follows from (16).
The proof of (14).

Note that for s = a®(m+3/4), ..., a*(2m+1) the following
condition is fulfilled:

\/az(m+ 1> —s+ \/ocz(m+ D> +2a% +s

(19)
>2a(m+1),

which follows from the relationship:

20% + 20 (m+ 1)2

+2\/oc4 (m+1)* = s2 = 2a2s + 2ot (m + 1)° (20)
> 4o’ (m +1)°

and o* (m + 1)* = §* — sa’s + 2a* (m + 1)°

(21)
2064(m+1)4—20c4(m+1)2+¢x4
for s € [0,02(2m + 1)].
Fors = |a*(m+3/4)| +2,...,*Cm+1)] - 1,
\/[ocz(m+1)2J +1-s
+\/[oc2(m+1)2+20¢2J+1+s (22)

> \/ocz(m+1)2—s+\/ocz(m+1)2+2a2+s
>2a(m+1).

This follows from (19). The proof of the rest of Lemma 2.2 is
obvious.

Case 2:
1<a<Vn<q/p. (23)
Case 2
P (24)
n
Therefore,
P
k
ch sin mvk <(p-n+1)c, < 49nc,
Io4
k=n

(25)
< 49 sup {kg} .

k>n



Case 2”:
\/ £>7. (26)

In view of (23), for all « there are

an odd number m; (o) > 1 that:

i_ o @

m;(oc)—2< o <m, (a),

an even number m;' () > 2 that:

(28)
m;'(oc)—Z < ﬁ Sm:l'(oc).
a
Note that
Lo?m, ()] 71\/— Lo?m, (@)
G sin —| < G
k=n o k=n
< ((xzm () —n+ 1)
((xz m () — + 4oczm; (a) — 40 —n+ 1) C, (29)
(n+40c (m (oc)—l) n+ 1)
( (m () — 2)+4oc + 1)
< (4oc\/ﬁ+ 40 + l)cn < 9nc, < 9sup {ke},
k>n
which follows from (23) and (27). The proof of
L“zm”z(“)J T[
¢ [sin ——| < 9 sup {k¢} (30)
k=n o k=n

is similar. This follows from (23) and (28). Moreover for all «
there are

an odd number m; () > 1 that:

(31)
m;((x) < \/—? < m;((x)+2,
Io
an even number m;,' (o) = 2 that:
(32)
m;,'(oc) < @ < mg((x)+2.
o
Note that
’ il
sin
k= |_oc2m’2 oc)J+1
2 1
< (p - [(x m, ((x)J)cLazm?(“)JH
(33)

2 1
< (p - mP ((X) + 1) CLoczm;,z(oc)J+l
2. 12
p-am; (@) +1

C|e2m2 (@) +1 ([(xzm? (@)]+1) Qomp(@]+1
p
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Let us observe that v/p/a — vn/a = (\/nja)(\/p/n—1) > 6.
This follows from (23) and (26). Hence,

VB,

4> 42 (34)
04 04

Therefore,

>@—42\/—ﬁ+2>m;(a). (35)
[0 04

(@) -
This follows from (27), (31), and (34). The proof of
m;’ (@) =2 >m (a) (36)

is similar. This follows from (28), (32), and (34).
Furthermore [oczm‘f(oc)J + 1 > n. This follows from (27),
(35). Thus,

([o@ms (OC)J +1) Qaem2(@+1 < skup ket @37
>n

Note that
p—azm?((x)+1 § p ~ 2
[oczm? (oc)J +1  o’my(a) a?my (et)
< p 7+ 1
(oc (m; () + 2) - 20¢)
< #2 +1
(\/ﬁ - 2“) (38)
1
= +1
(1-2a/+/P)
<L

(1-2va/\p)’
S+ 1

(1-2/7)
which follows from the relationship oc(m;,(oc) +2) > \p =

7+vn > 7o, > 1 and 2o < 2+/n < (2/7)+/p (this follows
from (23), (26), and (31)).
Therefore, for \/p/n > 7,

p

>

vk
sin ——
o

G
k:[azmg(a)JH

<3 iup {ke.}. (39)

This follows from (33), (37), and (38). In analogy with (33),
(37), and (38) we have

p

vk
sin —
[0

Gk

k= [azm;'z () ]+1

p- oczmg2 () +1 (40)

[oczml’v’2 (oc)J +1

(e @] +1)

“QaPmiP)+15

(LaZmZZ (OC)J + 1) C[azmgz(zx)J+l < iup {ka} , (41)
2n



Journal of Function Spaces 5

this follows from (28) and (36); oc(m;'(oc) +2) > \p=7\n>7a,a>1and 2 < 2+/n <
(2/7)+/p (this follows from (23), (26), and (32)). Therefore,

for \/p/n =7,

2

2
p-am, (oc)+1<3 » p vk
[azmuz (“)J 1 ’ (42) Z ¢ [sin ——| < 3sup {kg.} . (43)
P k=la?ml)2 (@) ] +1 kzn
This follows from (40), (41), and (42). Denote by S the sum
which follows from the relationship Zi:n ¢ sin(mVk/a). Let us observe that
Lo?m,} ()] p
. \/E . ﬂ\/E ’
S= Z ¢ sin + Z ¢ sin +S,
k=n k:[oczm?(oc)J
) (44)
mp(o)=2 Lo (m+1/2)°] Lo (m+1)°] lo® (m+3/2)°] Lo (m+2)°] N
where S’ = Z + Z + Z + Z ¢, sin
m=m (ct) z=la?m? |+1 z=la?(m+1/2)?]+1  z=[a?(m+1)2]+1  z=[a?(m+3/2)*]+1
me0dd numbers
Then, On the other hand, for any odd number m and V& > 1, we
have
2 2
Lo (@) i vk c < : (mfm J sin mz
. . la2(m+1)?] T
S< Z G |sin e + Z G |sin — et 41 «
k=n k:[azm;,z(oc)J (45)
Lo® (m+2)*]
+8' < 12sup {kg} +S'. + Z sinﬂ—\/z
kzn z=|a?(m+3/2)%|+1
(48)
Lo (m+3/2) ] N
This follows from (29) and (39). Note that for any odd number > Z ¢, sin TNZ
m and Vo > 1 we have 2=l (1) 41 «
Lo (m+2)°]
2 2 . 7'[\/2
CCnIDIp— + > ¢ sin —=,
Qe (m+172] Z S —— z=|0?(m+3/2)* |+1
z=la?m?|+1 o
which follows from the relationship
Lo (m+1)*]
2
+ Z sinﬂ—\/z> o7 [ocz(m+1)J+1
z=lo?(m+1/2)*]+1 sin o
(46) (49)
2 2
la”(m+1/2)] . 7'[\/2 o [(Xz (m+ Z)ZJ
> Z czsmT >0,...,sin —— = >0
z=la?*m? |+1 [04
la?(m+1)°) Thus
o (m+
+ Z c, sin M, , my(@)-2 e’
m=m(c) z=lo?m?|+1
meO0dd numbers
which follows from the relationship This follows from (46) and (48). Note that Vm € N we have
Lu‘mi/m—x {Sm n\/m
m|e?m?] + 1 b1 [(xz (m + 1)2J F s
sin—-——— <o, sin— 1 anie T (5)
o a (47)
g [ n(\/{al(mn)zj—ﬁ\/{al(mﬂ)zju) n(\]{az(mu)zj—s—\/[aZ(mH)ZJH)
<0. =2 ; sin o cos o .



WeseethatVs = 1,2,..., [a*(m+3/4)]-1,m € Nand« > 1,
(m+3)
m+— |
4

< %(\/[az(m+ 1)2J -s+ \/[(xz(m+1)2J +s) (52)

<(m+1)m.

This follows from (12). Thus Vs = 1,2, ..., [a*(m + 3/4)] — 1,
a > 1, and for any odd number m we have

-1

7r<\/loc2 (m+ 1)2J -5+ \/lcxz (m + 1)2J +s) (53)
2a

< sin

<0.

Moreover Vs = 1,2,..., la*(m+3/4)]—1,me Nand a > 1,
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This follows from (13). Thus Vs = 1,2, ..., l&*(m + 3/4)| - 1,
a > 1, and for any odd number m we have

0
71(\/[0@ (m + I)ZJ —-s- \/[042 (m+ 1)2J +s) (55)
< cos
20
<1

In view of (51), (53), and (55), for any odd number m, the
following inequality is satisfied:

Lo? (m+3/4)|-1 |0 (m+ 1] = s

[04

sin

s=1

we get (56)
P Ui locz(m+1)2J+s
- E + sin <0.
o
i 2 2 2 2 54
S£<\/|_(x (m+1)J—s—\Aoc (m+1)J+s) (54)
<0. Note that Vim € N
lo* @m+1) )1 n\/[ocz m+17|+1-5s n\/{(xz (m+ 17 +2a%|+1+s
sin + sin
s=la2(mr3/4)]+2 o o
le2(2m+1)]-1 T (\/ltxz (m + 1)2J +1-s+ \/[(xz (m+ 1)+ 20¢2J +1+ s) (57)
=2 sin

s=|a?(m+3/4)|+2

2«

- Cos
20

We see that Vs = [o?(m + 3/4)] +2,...,[a*Cm + 1)]| - 1,
me Nanda > 1,

(m+1)n£%<\/{oc2(m+l)zj+l—s

(58)

+\/[oc2(m+1)2+20¢2J+1+s)S(m+§>ﬂ.

This follows from (14). Thus Vs = |a’(m + 3/4)| +
2., @m+1)] -1, a > 1, and for any odd number m
we have

H\A(xz(m+ 1)2J +1-s
2a

0 < sin

(59)

n\/LaZ(m+ 1)2+2(x2J +1+s
+
2a

<1

7T<\/[0¢2(m+1)2J+1—s—\/l(xz(m+l)2+20¢2J+l+s>

We see that Vs = |o?(m + 3/4)| + 2,...,o*Cm + 1] - 1,
me Nanda > 1,

—n§%<\“(x2(m+l)zj+l—s

—\/locz(m+1)2+20¢2J+l+s>§—§.

(60)

This follows from (15). Thus Vs = |a’(m + 3/4)| +
2,000 Loc2(2m +1)] - 1, « > 1, and for any odd number m
we have

71\“042 (m+ 1)2J +1-s
2c

—1<cos

(61)

n\/[ocz(m+ 1)2+20¢2J +1+s

- <0.
20
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In view of (57), (59), and (61), for any odd number m, the
following inequality is satisfied:

le?(2m+1)]-1 71’\/[0(2 (m+ 1)2J +1-s

o

sin
s=|a®(m+3/4)|+2

(62)

n\/Locz(m+1)2+2a2J+1+s

[04

+ sin

Now we see that VYm € N

ml|e?m?] + 1
sin —8M8M8M  +
o

la?(m+3/4)]-1
= Z sin

s=1

...+sin

m/[(xz (m+ 2)2J
«

Ui [oc2 (m+ I)ZJ -

[04

s l(xz (m + 1)2J +s

+ sin
o

la?(2m+1)]-1
+ Z sin
s=|a®(m+3/4)]+2

n\/[(xz(m+1)2J +1-s

o

n\/[ocz (m+1)2 +2(x2J +1+s
+ sin

o

. (63)
+ sin

+ sin

| a?m?| + 1
m|a?m? ] + 2

n\/[(xz (m + 1)2J — a2 (m+3/4)]

04
m/[(xz (m+ 1)2J

+sin —mM8M8M8M8m8m
(04

o (m o+ 1]+ [0 (m o+ 3/4)]
+ S1n o +...

+ sin

7'[\/|_(x2 (m+1)*+ 2(x2J +a? (m+3/4)] +2

+ sin
o

oo l(x2 (m + 2)2J
+sin —————,
a

7
which follows from the relationship
|0 (m+1)*| - |&® @m+1)|+2
<o (m*+2m+1-2m-1)+3=a’m’+3
<|o&’m’| +4,
|o? m+1)?| - |’ Cm+D)|+2>m’+1  (64)

> Loczmzj +1,
and [oc2 (m+ 2)2J - [oc2 (m+1)*+ 20ch
—|e?@m+1)|-1+1<1.

Note that, for some numbers m or «, some components will
cease to exist in formula (63). As an example, let « = m =

(m+3/4)]-1 ?2m+1)]-1
1. Then there are not Zi:l("” Mty '}’ZZL;;(”;+)3J/4)J+2{' s

sin(m/|a2m?] + 2/«), sin(m\/|a®(m +2)*]/«) in formula
(63). However, an estimation of the number of components

of (63) shall be sufficient for further consideration. Denote
by X the set

{[ocszJ +1, [ocszJ + 2, [ocz (m+ 1)2J

- _ocz (m + %) , [oc2 (m+ I)ZJ , [(x2 (m+ I)ZJ
(65)

2 3) 2 2 2
+la |m+—)],...,|la" (m+1) + 2«
L ( 4/ ] l ( ) J

+ _ocz <m+ 3) +2, [cxz (m+2)2”.

We calculate

Vm e N

3
208 +1< locz(m+1)2+2oc2J+[cx2<m+—)J+2

- [ocz(m+1)2J - [oc2 <m+ Z)J +1

(66)

<20’ +5
and thus
1X] < 20 + 10. (67)
Note that Vo > 1 and Vm € Odd numbers

myl|a?m?] + 1 7 [ocz (m+ 2)2J
sin7+...+sin7 (68)

<2a% +10 < 122

This follows from (56), (62), (63), and (67).



8
Note that
my (@) -2
S’ < 12“2 Z Qo2(m+1)?)
m:m;(a)
me{Odd numbers}
2
< 12« {CLaZ(m;(“)+1)2J + CLaZ(m;(a)_'_:,’)zJ
T Qa2im (@es2) T oot CLocZ(mg,(oc)—l)ZJ}
2 o0
< 12a ch(am;(a)+(2t—1)a)2 ]
t=1
) o] ) 00 (69)
<1267 ) G asarnar) = 1267 ) (s
t=1 t=1
2
[(\/ﬁ+ 2t-1a) J
|(Vr+ @t - D)’
< 127 sup {CL(\ﬂ(zt Day? [(\/—+ 2t-1Da) J}
»
t:ll_ \/_+(2t— 1)a) J
2 112
e T Y . T \/E "
§= G SID —— + G sin—— +S",
ken ¥ kelam@)
iy (@)-2 L (m+1/2)*]
where 8" = Z +
m=m, (c) z=|a?m? |+1
meéeEven numbers
We see that
2112
La"m,“(a) ] . TL’\/E . 7-[\/_
§2- G |S1n - sin
k= * 1 el o (74)

"

+8" > -12sup {ke )} + S

k>n

This follows from (30) and (43). Note that for any even
number m and Vo > 1

lo? (m+1)?] lo? (m+1)]

m\z

sin — <

. Tz
Qo (m+1)? | ¢, sin ——  (75)

z=la?m? |+1 z=la?m? |+1

which follows from the relationship

oy [e?m? ] + 1 o [ocz(m+1)2J
sin —— >0,...,sin——— (76)

[04 (04

> 0.

z=la?(m+1/2)% |+1
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This follows from (27), (35), (50), and (68). After considering
that
vt > 1(v/n + (2t — Da)?| > 1 we obtain

sup {CL(\H(Zt Day? [(\/_+ @t-Dea) J}

(70)
< sup {ke}
k>n
Thus
o 1
s < 12sup {ke,} o

kon theid ;(W+(2t— Da) -1

(71)

< 12 sup {ke } Z

k>n

< 27’ sup {ke,} .
-1 k=n

This follows from (23). In view of (45) and (71) the following
inequality is satisfied:

S < 32sup {kg} .

k>n

(72)

On the other hand

(73)

La?(m+1)?] lo?(m+3/2)*] la?(m+2)?] TV

+ + c, Sll’l—

z=la?(m+1)2]+1  z=|a?(m+3/2)%]+1

On the other hand, V& > 1 and for any even number m and,
we have

Lo (m+2)* Tz
C|_062(m+1)2J sin 7
z=la?(m+1)?]+1
(77)

p) 2
Lo (m+2)7] vz
¢, sin ——,

4

<

z=la?(m+1)?]+1

which follows from the relationship

s [(xz (m+ I)ZJ +1

(04

sin
(78)
s [(xz (m+ Z)ZJ

<0,... <0

,sin
o
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Thus

lo?(m+2)* ]

sin ”—\/E (79)

1"
S > C[az(m+1)2J o

z=la?*m?|+1

This follows from (75), (77). Note that fors = 1,2, ..., & (m+
3/4)] — 1 and for any even number m

0

71(\/[042 (m+ l)ZJ —s+ \/locz (m + 1)2J +s) (80)
200

< sin

<1

71(\/[062 (m+ 1)2J -s- \/[0(2 (m + 1)2J +s) (81)
20

< cos

<1

This follows from (52) and (54). Hence if m1 is an even number,
then

Lo (m+3/4)]-1

L [ocz(m+1)2J—s
sin

s=1 «

(82)
i [062 (m+ 1)2J +s

+ sin > 0.
o

This follows from (51), (80), and (81). Note that for s =
la?(m+3/4)|+2,. .., a*(2m+1)]-1and for any even number
m

ﬂ(\/[ocz (m+ 1)2J +1-s+ \/locz (m+1)* +20¢2J +1 +s) (83)
2«

sin

and

n(\/laz(m+l)2J+1—s—\/laz(m+l)z+2¢x2J+1+s) (84)

20

Ccos

belong to [—1, 0]. This follows from (58) and (60). In view of
(57), (83), and (84) and for any even number m, the following
inequality is satisfied:

le?(2m+1)]-1

ﬂ\/ltxz (m+ 1)2J +1-s

sin
s=|a?(m+3/4)|+2 o
(85)
n\/[ocz (m+1)>° +2oc2J +1+s
+ sin > 0.
fo4
Hence, if m is an even number, then
La®(m+2)°]
m\z
sin vz > —2a° - 10 > -12a°. (86)
14

la?m? |+1

9
This follows from (63), (67), (82), and (85). Thus
m;'(oc)—Z
S” > —12062 Z Cla2(m+1)2] (87)

m:m;' ()
mée{Even numbers}

This follows from (79) and (86). In analogy with (69) and (71)
we have

m;,’(tx)—Z

12a° Z

m:m;' ()
mée{Even numbers}

2
Cla2(m+1)2] <2m sup {ka} . (88)
k>n

This follows from (23), (28), and (36). In view of (87) and (88),
the following inequality is satisfied:

8" > —2n’sup [k} . (89)
k>n
Hence
S > -32sup ke }.
o) o0

This follows from (74) and (89). Thus

For \/E >7
n
(91
Lk
T
we have : ¢, sin < 32sup tke t.
k; k o sz{ e}

This follows from (72) and (90). In view of (25) and (91) the
following inequality is satisfied:

Vp=n
Ya € [1, Vn]
(92)
p
ch sin vk < 49 sup {kc;}
k=n (49 k>n
Case 3:
Vn<a<q/p. (93)

In view of (24) and (25) there is one case to consider, namely,

\p/n=7.Then
EIreNthatr>nand\/ZSr—ISchSrSp. (94)

Note that

p r=1 p
k k k
ch sin i = ch sin i + ch sin i (95)
k=n o k=n o k=r o
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We now give an estimate for ZZ;L ¢ sin(rr Vk/a). Note that

0 < m(Vk/a) < mand 0 < sin(mVk/a) < n(Vk/a) for k =
n,...,r — 1. This follows from (94). Hence

o vk Sk

0< ch sin —— < chn—
- (24 - (04
k=n k=n

<m sup {ke,} (96)

wplked 3= lha) 3 s

< 27 sup fkei}

k>n

This follows from (9) and (94).
We now give an estimate for 25:7 G sin(mVk/«). There
are two cases to consider:

Case 3: +/p/r < 7.

Then, by (94) and (96), we have

P oavkl 2 vk & nvk
ch sin —| < ch sin —— + ch sin ——
k=n « k=n « k=r

< (27 + 49) sup {ke.} .

k>n

97)

Case 3”: \/p/r = 7.

Note that the replacement of n with r in (23) and (26) gives
us

. T
Sin

k < 32 sup {ke } (98)
k>n

and thus in case 3 we proved that Vn, p, where n < p, and

Yo € [vn, +/P]

k < 56 sup {kc;} . (99)

k>n

This follows from (96), (97), and (98). In view of cases 1, 2,
and 3 we obtain

Ya>1Vn,p

L avk
ZCk Sin

k=n

where n < p:

1 (100)
< max {27, 49, 56} sup {k¢,} .
k>n

This follows from (11), (92), and (99). If lim,__,
Ve >0 IM VYn > M sup,.,{ke} < €, so

nc, = 0, then

Vn, p

Lo mvk
chsm

k=n

where n < p: < 56¢ (101)

forall a > 1

provided that n > M. This finishes the proof of the sufficient
condition. This completes the proof of Theorem 6. O

Journal of Function Spaces

Remark 7. If {q}2, <
Yoo, G sink’0 converges uniformly in 6 € [0,
only if Y72, ¢ is convergent.

R, is nonincreasing, then

nr] if and

Proof. Proof of the sufficient condition is obvious.
Proof of the necessary condition. Let
0 o k2
G sin — (102)
k=1 8

be a convergent series. Note that for any even number m we
have

4 2)-1

(m+2) ) T[k2
G S1In ——
k=4m 8

1
= Cymit sin71(2m2 +m+ g>

4
+ Cypin sin71<2m2 +2m + §)

+ Cmi3 sinr[(Zm +3m+ — >
+ Cyppys SINTT <2m2 +5m+ — ) (103)
+ Chpiq SINTT <2m2 +6m + —)
+ Cypy7 SINTT <2m +7m+ —)
. . 9
> Cyes | SIN 3 + sin ry
. A4m . 257 1
+ Cynes Sln? +sm? > EC4m+5.
Thus
(o) 2 4m+7 2
. k°m k'm
G sin — = G sin —
dasin®; > et
= meEven >nélmbers k=4m
"= (104)
N Z Cam+5
meEven numbers
m=2
This follows from (103). After considering that

Yios G sin(k*m/8) is convergent, we obtain the convergent
series ¢j3 + 61 + Gg + - . . + Cgpy5 + - . .. This follows from (104).
After considering that {¢};, is nonincreasing, we have that

Vs = 0,1,...,7 Y00, Cye54 is convergent and Y o, ¢, is
convergent.
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