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In this article, we establish fixed point results for a pair of multivalued mappings satisfying generalized contraction on a sequence
in dislocated 𝑏-quasi metric spaces and 𝐹𝜌∗𝑠 Khan type contraction on a sequence in 𝑏-quasi metric spaces. An example and an
application have been discussed. Our results modify and generalize many existing results in literature.

1. Introduction and Preliminaries

A point V is said to be a fixed point of a multivalued/self-
mapping 𝐸, if V ∈ 𝐸V/V = 𝐸V. Fixed point theory has a
large number of applications, for example, [1–4]. Czewick [5]
initiated the study of fixed point in b-metric spaces. Many
authors used the concept of b-metric spaces to prove the
existence and the uniqueness of a fixed point for several
contraction mappings [6–9]. Furthermore, dislocated quasi-
metric spaces [10–13] generalized abstract spaces such as
dislocatedmetric spaces [14] and quasi-metric spaces [15–17].
Recently, Klin-eamand Suanoom [18] introduced the concept
of dislocated 𝑏-quasi metric spaces. Fixed point results in
complete dislocated 𝑏-quasi metric spaces can be seen in
[19, 20].

Wardowski [21] generalized many fixed point results in
a beautiful way by introducing 𝐹−contraction (see also [6,
22–30]). Nadler [31] extended Banach’s contraction mapping
principle to a fundamental fixed point theorem for multi-
valued mappings. Since then, an interesting and rich fixed
point theory for such mappings was developed in many
directions; see [32–36].The results of single valued mappings
can be generalized by using multivalued mappings. Results
for multivalued mappings have applications in engineering,
Nash equilibria, and game theory [37–40]. Rasham et al.
[41] obtained fixed point results for a pair of multivalued

𝐹−contractive mappings, which are extensions of some mul-
tivalued fixed point results.

This paper introduces new types of 𝐹−contractions on a
sequence and generalizes many recent results. An example
has been given to show how our results are valid when the
others fail. An application has been given to obtain a solution
of a system of integral equations.

Definition 1 (see [18]). Let 𝑌 be a nonempty set and 𝑠 ≥ 1
a real number. A mapping 𝑑𝑞𝑏 : 𝑌 × 𝑌 󳨀→ [0,∞) is
called a dislocated quasi 𝑏-metric (or simply 𝑑𝑞𝑏-metric), if
the following conditions hold for any 𝑥, 𝑦, 𝑧 ∈ 𝑌 :

(a) If 𝑑𝑞𝑏(𝑥, 𝑦) = 𝑑𝑞𝑏(𝑦, 𝑥) = 0, then 𝑥 = 𝑦;
(b) 𝑑𝑞𝑏(𝑥, 𝑦) ≤ 𝑠[𝑑𝑞𝑏(𝑥, 𝑧) + 𝑑𝑞𝑏(𝑧, 𝑦)].

Thepair (𝑌, 𝑑𝑞𝑏) is called a dislocated quasi 𝑏-metric space (in
short dislocated 𝑏-quasi-metric space).

The following remarks can be observed:
(a) If 𝑠 = 1, then a dislocated 𝑏-quasi-metric space

becomes a dislocated quasi-metric space [12];
(b) if 𝑠 = 1 and 𝑥 = 𝑦 implies 𝑑𝑞𝑏(𝑥, 𝑦) = 𝑑𝑞𝑏(𝑦, 𝑥) = 0,

then (𝑌, 𝑑𝑞𝑏) becomes a quasi-metric space [17];
(c) if 𝑑𝑞𝑏(𝑥, 𝑦) = 𝑑𝑞𝑏(𝑦, 𝑥) and 𝑥 = 𝑦 implies 𝑑𝑞𝑏(𝑥, 𝑦) =0, then (𝑌, 𝑑𝑞𝑏) becomes a 𝑏-metric space [9].
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Example 2 (see [20], let 𝑌 = 𝑅+ and 𝑝 > 1). Define 𝑑𝑞𝑏 :𝑌 × 𝑌 󳨀→ 𝑅+ by 𝑑𝑞𝑏(𝑥, 𝑦) = |𝑥 − 𝑦| + |𝑥| for 𝑥, 𝑦 ∈ 𝑋.
Then (𝑌, 𝑑𝑞𝑏) is a 𝑑𝑞𝑏-metric space with 𝑠 = 2𝑝 > 1. But it is
not a quasi 𝑏-metric space. Also it is not a dislocated 𝑏-metric
space. It is obvious that (𝑌, 𝑑𝑞𝑏) is neither 𝑏-metric space nor
dislocated quasi-metric space.

Definition 3 (see [11]). Let (𝑌, 𝑑𝑞𝑏) be a dislocated 𝑏-quasi-
metric space. Let {𝑦𝑛} be a sequence in (𝑌, 𝑑𝑞𝑏), and then

(a) {𝑦𝑛} is called Cauchy if ∀ 𝜀 > 0, ∃ 𝑛0 ∈ 𝑁 such that∀ 𝑛 > 𝑚 ≥ 𝑛0 (respectively ∀ 𝑚 > 𝑛 ≥ 𝑛0), 𝑑𝑞𝑏(𝑦𝑚, 𝑦𝑛) < 𝜀.
(b) {𝑦𝑛} dislocated quasi 𝑏-converges (for short𝑑𝑞𝑏 -converges) to 𝑦 ∈ 𝑌, if lim𝑛󳨀→∞𝑑𝑞𝑏(𝑦𝑛, 𝑦) =

lim𝑛󳨀→∞𝑑𝑞𝑏(𝑦, 𝑦𝑛) = 0 or for any 𝜀 > 0, there exists𝑛0 ∈ 𝑁, such that for all 𝑛 > 𝑛0, 𝑑𝑞𝑏(𝑦, 𝑦𝑛) < 𝜀 and𝑑𝑞𝑏(𝑦𝑛, 𝑦) < 𝜀. In this case 𝑦 is called a 𝑑𝑞𝑏-limit of {𝑦𝑛}.
(c) (𝑌, 𝑑𝑞𝑏) is called complete if every Cauchy sequence in𝑌 converges to a point 𝑦 ∈ 𝑌.

Definition 4 (see [12]). Let (𝑌, 𝑑𝑞𝑏) be a dislocated 𝑏-quasi
metric space. Let 𝐾 be a nonempty subset of 𝑌 and let 𝑥 ∈ 𝑌.
An element 𝑦0 ∈ 𝐾 is called a best approximation in 𝐾 if

𝑑𝑞𝑏 (𝑥, 𝐾) = 𝑑𝑞𝑏 (𝑥, 𝑦0) ,
where 𝑑𝑞𝑏 (𝑥, 𝐾) = inf

𝑦∈𝐾
𝑑𝑞𝑏 (𝑥, 𝑦)

and 𝑑𝑞𝑏 (𝐾, 𝑥) = 𝑑𝑞𝑏 (𝑦0, 𝑥) ,
where 𝑑𝑞𝑏 (𝐾, 𝑥) = inf

𝑦∈𝐾
𝑑𝑞𝑏 (𝑦, 𝑥) .

(1)

If each 𝑥 ∈ 𝑌 has at least one best approximation in 𝐾, then𝐾 is called a proximinal set.

It is clear that if 𝑑𝑞𝑏(𝑥, 𝐾) = 𝑑𝑞𝑏(𝐾, 𝑥) = 0, then 𝑥 ∈ 𝐾.
But if 𝑥 ∈ 𝐾, then 𝑑𝑞𝑏(𝑥, 𝐾) or 𝑑𝑞𝑏(𝐾, 𝑥)may not equal zero.
We denote 𝑃(𝑌) by the set of all proximinal subsets of 𝑌.
Definition 5 (see [12]). The function 𝐻𝑑𝑞 : 𝑃(𝑌) × 𝑃(𝑌) 󳨀→
R+, defined by

𝐻𝑑𝑞𝑏 (𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑𝑞 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑𝑞𝑏 (𝐴, 𝑏)} (2)

is called dislocated quasi Hausdorff 𝑏 metric on 𝑃(𝑌). Also(𝑃(𝑌),𝐻𝑑𝑞𝑏) is known as dislocated quasi Hausdorff 𝑏-metric
space, where 𝑃(𝑌) is the proximinal subset of 𝑌.

Ali et al. [6] extended the family of mapping F defined
by [21] to the family F𝑆 of all functions 𝐹 : R+ 󳨀→ R such
that

(F1) 𝐹 is strictly increasing, that is, for all 𝑥, 𝑦 ∈ R+ such
that 𝑥 < 𝑦 implies 𝐹(𝑥) < 𝐹(𝑦);

(F2) for each sequence {𝜗𝑛}∞𝑛=1 of positive numbers,
lim𝑛󳨀→∞𝜗𝑛 = 0 if and only if lim𝑛󳨀→∞𝐹(𝜗𝑛) = −∞;

(F3) there exists 𝑘 ∈ (0, 1) such that lim𝜗󳨀→0+𝜗𝑘𝐹(𝜗) = 0.
(F4) For each sequence {𝜗𝑛} of positive real numbers and

such that 𝜏+𝐹(𝑠𝜗𝑛) ≤ 𝐹(𝜗𝑛−1) for each 𝑛 ∈ N, and some 𝜏 > 0,
we have 𝜏 + 𝐹(𝑠𝑛𝜗𝑛) ≤ 𝐹(𝑠𝑛−1𝜗𝑛−1), for each 𝑛 ∈ N.

Lemma 6. Let (𝑌, 𝑑𝑞𝑏, 𝑠) be a dislocated 𝑏-quasi-metric space.
Let (𝑃(𝑌),𝐻𝑑𝑞𝑏) be the dislocated quasi Hausdorff b-metric
space on 𝑃(𝑌).Then, for all 𝐴, 𝐵 ∈ 𝑃(𝑌) and for each 𝑎 ∈ 𝐴,
there exists 𝑏𝑎 ∈ 𝐵, such that 𝐻𝑑𝑞𝑏(𝐴, 𝐵) ≥ 𝑑𝑞𝑏(𝑎, 𝑏𝑎) and𝐻𝑑𝑞(𝐵, 𝐴) ≥ 𝑑𝑞𝑏(𝑏𝑎, 𝑎), where 𝑑𝑞𝑏(𝑎, 𝐵) = 𝑑𝑞𝑏(𝑎, 𝑏𝑎) and𝑑𝑞𝑏(𝐵, 𝑎) = 𝑑𝑞𝑏(𝑏𝑎, 𝑎).
Lemma 7 (see [6]). Let (𝑌, 𝑑𝑏, 𝑠) be a b-metric space and let{𝑦𝑛} be any sequence in 𝑌 for which there exist 𝜏 > 0 and 𝐹 ∈
F𝑆 such that 𝜏 + 𝐹(𝑠𝑑𝑞𝑏(𝑦𝑛, 𝑦𝑛+1)) ≤ 𝐹(𝑑𝑞𝑏(𝑦𝑛−1, 𝑦𝑛)), 𝑛 ∈ N.
Then {𝑦𝑛} is a Cauchy sequence in 𝑌.
Lemma 8. Let (𝑋, 𝑑𝑞𝑏, 𝑠) be a dislocated 𝑏-quasi metric space,
and let {𝑥𝑛} be any sequence in 𝑋 for which there exist 𝜏 > 0
and 𝐹 ∈ F𝑆 such that

𝜏 + 𝐹 (𝑠max {𝑑𝑞𝑏 (𝑦𝑛, 𝑦𝑛+1) , 𝑑𝑞𝑏 (𝑦𝑛+1, 𝑦𝑛)})
≤ 𝐹 (max {𝑑𝑞𝑏 (𝑦𝑛−1, 𝑦𝑛) , 𝑑𝑞𝑏 (𝑦𝑛, 𝑦𝑛−1)}) (3)

for each 𝑛 ∈ N.Then {𝑦𝑛} is a Cauchy sequence in𝑋.
Proof. Let 𝜗𝑛 = max{𝑑𝑞𝑏(𝑦𝑛, 𝑦𝑛+1), 𝑑𝑞𝑏(𝑦𝑛+1, 𝑦𝑛)}, for each 𝑛 ∈
N. Thus, by (3) and property (F4), we get

𝜏 + 𝐹 (𝑠𝑛𝜗𝑛) ≤ 𝐹 (𝑠𝑛−1𝜗𝑛−1) , 𝑛 ∈ N. (4)

Following similar arguments as given in [6], we obtain {𝑦𝑛} is
a Cauchy sequence in𝑋.
2. Main Result

Let (𝑌, 𝑑𝑞𝑏) be a dislocated 𝑏-quasi metric space, 𝑦0 ∈ 𝑌 and𝑆, 𝑇 : 𝑌 󳨀→ 𝑃(𝑌) be multifunctions on 𝑌. Let 𝑦1 ∈ 𝑆𝑦0 be an
element such that 𝑑𝑞𝑏(𝑦0, 𝑆𝑦0) = 𝑑𝑞𝑏(𝑦0, 𝑦1), 𝑑𝑞𝑏(𝑆𝑦0, 𝑦0) =𝑑𝑞𝑏(𝑦1, 𝑦0). Let 𝑦2 ∈ 𝑇𝑦1 be such that 𝑑𝑞𝑏(𝑦1, 𝑇𝑦1) =𝑑𝑞𝑏(𝑦1, 𝑦2), 𝑑𝑞𝑏(𝑇𝑦1, 𝑦1) = 𝑑𝑞𝑏(𝑦2, 𝑦1). Let 𝑦3 ∈ 𝑆𝑦2 be such
that 𝑑𝑞𝑏(𝑦2, 𝑆𝑦2) = 𝑑𝑞𝑏(𝑦2, 𝑦3) and so on.Thus, we construct a
sequence 𝑦𝑛 of points in 𝑌 such that 𝑦2𝑛+1 ∈ 𝑆𝑦2𝑛 and 𝑦2𝑛+2 ∈𝑇𝑦2𝑛+1, with 𝑑𝑞𝑏(𝑦2𝑛, 𝑆𝑦2𝑛) = 𝑑𝑞𝑏(𝑦2𝑛, 𝑦2𝑛+1), 𝑑𝑞𝑏(𝑆𝑦2𝑛, 𝑦2𝑛) =𝑑𝑞𝑏(𝑦2𝑛+1, 𝑦2𝑛), and 𝑑𝑞𝑏(𝑦2𝑛+1, 𝑇𝑦2𝑛+1) = 𝑑𝑞𝑏(𝑦2𝑛+1, 𝑦2𝑛+2),𝑑𝑞𝑏(𝑇𝑦2𝑛+1, 𝑦2𝑛+1) = 𝑑𝑞𝑏(𝑦2𝑛+2, 𝑦2𝑛+1), where 𝑛 = 0, 1, 2, ⋅ ⋅ ⋅ .
We denote this iterative sequence by {𝑇𝑆(𝑦𝑛)}. We say that{𝑇𝑆(𝑦𝑛)} is a sequence in 𝑌 generated by 𝑦0. If 𝑇 = 𝑆, then we
say that {𝑋𝑇(𝑦𝑛)} is a sequence in 𝑌 generated by 𝑦0.

Let us introduce the following definition:

Definition 9. Let (𝑌, 𝑑𝑞𝑏, 𝑠) be a dislocated 𝑏-quasi-metric
space and 𝑆, 𝑇 : 𝑌 󳨀→ 𝑃(𝑌) be two multivalued mappings.
The pair (𝑆, 𝑇) is called a𝐷𝑄𝐹−contraction, if there exists𝐹 ∈
F𝑆 and 𝜏, 𝑎 > 0 such that for every two consecutive points𝑥, 𝑦 belonging to the range of an iterative sequence {𝑇𝑆(𝑦𝑛)}
with max{𝐻𝑑𝑞𝑏(𝑆𝑥, 𝑇𝑦),𝐻𝑑𝑞𝑏(𝑇𝑦, 𝑆𝑥), 𝐷𝑞𝑏(𝑥, 𝑦), 𝐷𝑞𝑏(𝑦, 𝑥)} >0, we have

𝜏 +max {𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑆𝑥, 𝑇𝑦)) , 𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑇𝑦, 𝑆𝑥))}
≤ min {𝐹 (𝐷𝑞𝑏 (𝑥, 𝑦)) , 𝐹 (𝐷𝑞𝑏 (𝑦, 𝑥))}

(5)



Journal of Function Spaces 3

where

𝐷𝑞𝑏 (𝑥, 𝑦) = max{𝑑𝑞𝑏 (𝑥, 𝑦) ,
𝑑𝑞𝑏 (𝑥, 𝑆𝑥) .𝑑𝑞𝑏 (𝑦, 𝑇𝑦)

𝑎 +max {𝑑𝑞𝑏 (𝑥, 𝑦) , 𝑑𝑞𝑏 (𝑦, 𝑥)} , 𝑑𝑞𝑏 (𝑥, 𝑆𝑥) ,

𝑑𝑞𝑏 (𝑦, 𝑇𝑦)} ,

(6)

And we now prove the following main result.

Theorem 10. Let (𝑌, 𝑑𝑞𝑏, 𝑠) be a complete dislocated 𝑏-quasi-
metric with 𝑠 ≥ 1 and (𝑆, 𝑇) be a 𝐷𝑄𝐹−contraction. Then{𝑇𝑆(𝑦𝑛)} 󳨀→ 𝑢 ∈ 𝑌. Also, if (5) holds for each 𝑥, 𝑦 ∈ {𝑢}, then𝑆 and 𝑇 have a common fixed point 𝑢 in 𝑌 and 𝑑𝑞𝑏(𝑢, 𝑢) = 0.
Proof. Let {𝑇𝑆(𝑦𝑝)} be the iterative sequence in 𝑌 generated
by a point 𝑦0 ∈ 𝑌. If

max {𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑝󸀠 , 𝑇𝑦2𝑝󸀠+1) ,𝐻𝑑𝑞𝑏 (𝑇𝑦2𝑝󸀠+1, 𝑆𝑦2𝑝󸀠) ,
𝐷𝑞𝑏 (𝑦2𝑝󸀠 , 𝑦2𝑝󸀠+1) , 𝐷𝑞𝑏 (𝑦2𝑝󸀠+1, 𝑦2𝑝󸀠)} ̸> 0 (7)

for some 𝑝󸀠 ∈ N ∪ {0}, then
𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑝󸀠 , 𝑇𝑦2𝑝󸀠+1) = 𝐻𝑑𝑞𝑏 (𝑇𝑦2𝑝󸀠+1, 𝑆𝑦2𝑝󸀠)

= 𝐷𝑞𝑏 (𝑦2𝑝󸀠 , 𝑦2𝑝󸀠+1)
= 𝐷𝑞𝑏 (𝑦2𝑝󸀠+1, 𝑦2𝑝󸀠) = 0

(8)

Clearly, if 𝐷𝑞𝑏(𝑦2𝑝󸀠 , 𝑦2𝑝󸀠+1) = 0, then 𝑑𝑞𝑏(𝑦2𝑝󸀠 , 𝑦2𝑝󸀠+1) = 0.
Also 𝐷𝑞𝑏(𝑦2𝑝󸀠+1, 𝑦2𝑝󸀠) = 0 implies 𝑑𝑞𝑏(𝑦2𝑝󸀠+1, 𝑦2𝑝󸀠) = 0. So,𝑦2𝑝󸀠 = 𝑦2𝑝󸀠+1 and 𝑦2𝑝󸀠 ∈ 𝑆𝑦2𝑝󸀠 . Now,𝐻𝑑𝑞𝑏(𝑆𝑦2𝑝󸀠 , 𝑇𝑦2𝑝󸀠+1) = 0
implies 𝑑𝑞𝑏(𝑦2𝑝󸀠+1, 𝑇𝑦2𝑝󸀠+1) = 0 and 𝐻𝑑𝑞𝑏(𝑇𝑦2𝑝󸀠+1, 𝑆𝑦2𝑝󸀠) = 0
implies 𝑑𝑞𝑏(𝑇𝑦2𝑝󸀠+1, 𝑦2𝑝󸀠+1) = 0. So, 𝑦2𝑝󸀠+1 ∈ 𝑇𝑦2𝑝󸀠+1 and 𝑦2𝑝󸀠
is a common fixed point of 𝑆 and𝑇. So the proof is completed
in this case. Now, let

max {𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝+1) ,𝐻𝑑𝑞𝑏 (𝑇𝑦2𝑝+1, 𝑆𝑦2𝑝) ,
𝐷𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝐷𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)} > 0,

(9)

for all 𝑝 ∈ N ∪ {0}. By Lemma 6, we have

𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) ≤ 𝐻𝑑𝑞𝑏 (𝑇𝑦2𝑝−1, 𝑆𝑦2𝑝) ,
𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝) ≤ 𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝−1) ,

(10)

and

𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2) ≤ 𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝+1) ,
𝑑𝑞𝑏 (𝑦2𝑝+2, 𝑦2𝑝+1) ≤ 𝐻𝑑𝑞𝑏 (𝑇𝑦2𝑝+1, 𝑆𝑦2𝑝) .

(11)

From (11), (F1) and using condition (5), we get

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2)) ≤ 𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝+1))
≤ max {𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝+1)) ,
𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑇𝑦2𝑝+1, 𝑆𝑦2𝑝))}
≤ min {𝐹 (𝐷𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) , 𝐹 (𝐷𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝))}
− 𝜏 ≤ 𝐹 (𝐷𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) − 𝜏,

(12)

From (6), we have

𝐷𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) = max{𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) ,
𝑑𝑞𝑏 (𝑦2𝑝, 𝑆𝑦2𝑝) .𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑇𝑦2𝑝+1)

𝑎 +max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)} ,

𝑑𝑞𝑏 (𝑦2𝑝, 𝑆𝑦2𝑝) , 𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑇𝑦2𝑝+1)}

= max{𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) ,
𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) .𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2)

𝑎 +max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)} ,

𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2)}
≤ max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2)} .

(13)

If max{𝑑𝑞𝑏(𝑦2𝑝, 𝑦2𝑝+1), 𝑑𝑞𝑏(𝑦2𝑝+1, 𝑦2𝑝+2)} = 𝑑𝑞𝑏(𝑦2𝑝+1, 𝑦2𝑝+2),
then

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2)) ≤ 𝐹 (𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2)) − 𝜏, (14)

which is a contradiction due to (F1) and 𝑠 ≥ 1.Therefore,

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2)) ≤ 𝐹 (𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) − 𝜏, (15)

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2))
≤ 𝐹 (max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)})
− 𝜏.

(16)



4 Journal of Function Spaces

From (11), (F1) and using condition (5), we get

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+2, 𝑦2𝑝+1)) ≤ 𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑇𝑦2𝑝+1, 𝑆𝑦2𝑝))
≤ max {𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝+1)) ,
𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑇𝑦2𝑝+1, 𝑆𝑦2𝑝))}
≤ min {𝐹 (𝐷𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) , 𝐹 (𝐷𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝))}
− 𝜏 ≤ 𝐹 (𝐷𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) − 𝜏
= 𝐹 (max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2)})
− 𝜏

(17)

By using (15) and (F1), we get

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+2, 𝑦2𝑝+1))
≤ 𝐹(max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 1𝑠 𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)})
− 𝜏 = 𝐹 (𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) − 𝜏

≤ 𝐹 (max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)})
− 𝜏.

(18)

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+2, 𝑦2𝑝+1))
≤ 𝐹 (max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)})
− 𝜏.

(19)

Combining (16) and (19), we get

max {𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+2, 𝑦2𝑝+1)) , 𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2))}
≤ 𝐹 (max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)})
− 𝜏.

(20)

By using (10) and (5), we have

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) ≤ 𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑇𝑦2𝑝−1, 𝑆𝑦2𝑝))
≤ max {𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝−1)) ,
𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑇𝑦2𝑝−1, 𝑆𝑦2𝑝))}
≤ min {𝐹 (𝐷𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝)) , 𝐹 (𝐷𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1))}
− 𝜏 ≤ 𝐹 (𝐷𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1)) − 𝜏.

(21)

From (6), we have

𝐷𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1) = max{𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1) ,
𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) .𝑑𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝)

𝑎 +max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1) , 𝑑𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝)} ,

𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑑𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝)}
≤ max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1) , 𝑑𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝) ,
𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)} .

(22)

If max{𝑑𝑞𝑏(𝑦2𝑝, 𝑦2𝑝−1), 𝑑𝑞𝑏(𝑦2𝑝−1, 𝑦2𝑝), 𝑑𝑞𝑏(𝑦2𝑝, 𝑦2𝑝+1)} =𝑑𝑞𝑏(𝑦2𝑝, 𝑦2𝑝+1), then we obtain

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) ≤ 𝐹 (𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) − 𝜏, (23)

which is a contradiction due to (F1). Therefore,

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1))
≤ 𝐹 (max {𝑑𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝) , 𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1)})
− 𝜏.

(24)

By using (10) and (5), we have

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)) ≤ 𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝−1))
≤ 𝐹 (𝐷𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1)) − 𝜏
≤ 𝐹 (max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1) , 𝑑𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝) ,
𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)}) − 𝜏.

(25)

From (24), 𝑑𝑞𝑏(𝑦2𝑝, 𝑦2𝑝+1) <
max{𝑑𝑞𝑏(𝑦2𝑝−1, 𝑦2𝑝), 𝑑𝑞𝑏(𝑦2𝑝, 𝑦2𝑝−1)}, so

𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝))
≤ 𝐹 (max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1) , 𝑑𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝)})
− 𝜏.

(26)

Combining (24) and (26), we get

max {𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) , 𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝))}
≤ max {𝑑𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1) , 𝑑𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝)} − 𝜏. (27)

Combining (20) and (27), we get

𝜏 + 𝐹 (𝑠max {𝑑𝑞𝑏 (𝑦𝑛, 𝑦𝑛+1) , 𝑑𝑞𝑏 (𝑦𝑛+1, 𝑦𝑛)})
≤ 𝐹 (max {𝑑𝑞𝑏 (𝑦𝑛−1, 𝑦𝑛) , 𝑑𝑞𝑏 (𝑦𝑛, 𝑦𝑛−1)}) (28)
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By Lemma 8, {𝑇𝑆(𝑦𝑛)} is a Cauchy sequence in (𝑌, 𝑑𝑞𝑏). Since(𝑌, 𝑑𝑞𝑏) is a complete dislocated 𝑏-quasi-metric space, so there
exists 𝑢 ∈ 𝑌 such that {𝑇𝑆(𝑦𝑛)} 󳨀→ 𝑢; that is,

lim
𝑛󳨀→∞

𝑑𝑞𝑏 (𝑦𝑛, 𝑢) = lim
𝑛󳨀→∞

𝑑𝑞𝑏 (𝑢, 𝑦𝑛) = 0. (29)

Now, suppose 𝑑𝑞𝑏(𝑢, 𝑇𝑢) > 0, and then𝐷𝑞𝑏(𝑦2𝑛, 𝑢) > 0, so
max {𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑛, 𝑇𝑢) ,𝐻𝑑𝑞𝑏 (𝑇𝑢, 𝑆𝑦2𝑛) , 𝐷𝑞𝑏 (𝑦2𝑛, 𝑢) ,
𝐷𝑞𝑏 (𝑢, 𝑦2𝑛)} > 0.

(30)

By using Lemma 6 and (5), we have

𝜏 + 𝐹 (𝑠𝑑𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢)) ≤ 𝜏
+max {𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑛, 𝑇𝑢)) ,
𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑇𝑢, 𝑆𝑦2𝑛))} ≤ min {𝐹 (𝐷𝑞𝑏 (𝑦2𝑛, 𝑢)) ,
𝐹 (𝐷𝑞𝑏 (𝑢, 𝑦2𝑛))} ≤ 𝐹 (𝐷𝑞𝑏 (𝑦2𝑛, 𝑢)) .

(31)

Since 𝐹 is strictly increasing, we have

𝑠𝑑𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢) < 𝐷𝑞𝑏 (𝑦2𝑛, 𝑢) . (32)

Taking lim𝑛󳨀→∞ on both sides, we get

lim
𝑛󳨀→∞

𝑠𝑑𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢) < lim
𝑛󳨀→∞

𝐷𝑞𝑏 (𝑦2𝑛, 𝑢) (33)

From (6)

𝐷𝑞𝑏 (𝑦2𝑛, 𝑢) = max{𝑑𝑞𝑏 (𝑦2𝑛, 𝑢) ,
𝑑𝑞𝑏 (𝑦2𝑛, 𝑦2𝑛+1) .𝑑𝑞𝑏 (𝑢, 𝑇𝑢)

𝑎 +max {𝑑𝑞𝑏 (𝑦2𝑛, 𝑢) , 𝑑𝑞𝑏 (𝑢, 𝑦2𝑛)} ,

𝑑𝑞𝑏 (𝑦2𝑛, 𝑦2𝑛+1) , 𝑑𝑞𝑏 (𝑢, 𝑇𝑢)} .

(34)

Taking limit as 𝑛 󳨀→ ∞, and by using (29), we get

lim
𝑛󳨀→∞

𝐷𝑞𝑏 (𝑦2𝑛, 𝑢) = 𝑑𝑞𝑏 (𝑢, 𝑇𝑢) . (35)

Using inequality (35) in (33), we get

lim
𝑛󳨀→∞

𝑠𝑑𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢) < 𝑑𝑞𝑏 (𝑢, 𝑇𝑢) . (36)

Now,

𝑑𝑞𝑏 (𝑢, 𝑇𝑢) ≤ 𝑠𝑑𝑞𝑏 (𝑢, 𝑦2𝑛+1) + 𝑠𝑑𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢) . (37)

Taking limit as 𝑛 󳨀→ ∞,

𝑑𝑞𝑏 (𝑢, 𝑇𝑢) ≤ 𝑠 lim𝑛󳨀→∞𝑑𝑞𝑏 (𝑢, 𝑦2𝑛+1)
+ lim
𝑛󳨀→∞

𝑠𝑑𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢) . (38)

Using inequalities (29) and (36) in (38), we get

𝑑𝑞𝑏 (𝑢, 𝑇𝑢) < 𝑑𝑞𝑏 (𝑢, 𝑇𝑢) . (39)

This is a contradiction, so 𝑑𝑞𝑏(𝑢, 𝑇𝑢) = 0. Now, sup-
pose 𝑑𝑞𝑏(𝑇𝑢, 𝑢) > 0, and then there exists 𝑛0 ∈ N

such that 𝑑𝑞𝑏(𝑇𝑢, 𝑦2𝑛+1) > 0 for all 𝑛 ≥ 𝑛0. By
Lemma 6 𝑑𝑞𝑏(𝑇𝑢, 𝑦2𝑛+1) ≤ 𝐻𝑑𝑞𝑏(𝑇𝑢, 𝑆𝑦2𝑛), so
max {𝐻𝑑𝑞𝑏 (𝑆𝑦2𝑛, 𝑇𝑢) ,𝐻𝑑𝑞𝑏 (𝑇𝑢, 𝑆𝑦2𝑛) , 𝐷𝑞𝑏 (𝑦2𝑛, 𝑢) ,
𝐷𝑞𝑏 (𝑢, 𝑦2𝑛)} > 0.

(40)

for all 𝑛 ≥ 𝑛0. Following similar arguments as above, we get

lim
𝑛󳨀→∞

𝑠𝑑𝑞𝑏 (𝑇𝑢, 𝑦2𝑛+1) < 𝑑𝑞𝑏 (𝑢, 𝑇𝑢) = 0. (41)

Now,

𝑑𝑞𝑏 (𝑇𝑢, 𝑢) ≤ 𝑠𝑑𝑞𝑏 (𝑇𝑢, 𝑦2𝑛+1) + 𝑠𝑑𝑞𝑏 (𝑦2𝑛+1, 𝑢) . (42)

Taking limit as 𝑛 󳨀→ ∞, and using inequalities (29) and (41),
we get

𝑑𝑞𝑏 (𝑇𝑢, 𝑢) ≤ 0 (43)

which is a contradiction, so 𝑑𝑞𝑏(𝑇𝑢, 𝑢) = 0. Hence 𝑢 ∈ 𝑇𝑢.
Similarly by using (29), Lemma 6, and the inequality

𝜏 + 𝑑𝑞𝑏 (𝑆𝑢, 𝑦2𝑛+2) ≤ 𝜏 + 𝐹 (𝐻𝑑𝑞𝑏 (𝑆𝑢, 𝑇𝑦2𝑛+1)) , (44)

we can show that 𝑑𝑞𝑏(𝑆𝑢, 𝑢) = 0. Similarly, 𝑑𝑞𝑏(𝑢, 𝑆𝑢) = 0.
Hence, the pair (𝑆, 𝑇) has a common fixed point 𝑢 in (𝑌, 𝑑𝑞𝑏).
Now,

𝑑𝑞𝑏 (𝑢, 𝑢) ≤ 𝑑𝑞𝑏 (𝑢, 𝑇𝑢) + 𝑑𝑞𝑏 (𝑇𝑢, 𝑢) ≤ 0. (45)

This implies that 𝑑𝑞𝑏(𝑢, 𝑢) = 0.Hence the proof is completed.

Now, let us introduce the following example.

Example 11. Let 𝑌 = {0} ∪ Q+ and 𝑑𝑞𝑏(𝑥, 𝑦) = (𝑥 + 2𝑦)2 if𝑥 ̸= 𝑦, and 𝑑𝑞𝑏(𝑥, 𝑦) = 0, if 𝑥 = 𝑦.Then (𝑌, 𝑑𝑞𝑏) is a dislocated𝑏-quasi-metric space with 𝑠 = 2. Define the mappings 𝑆, 𝑇 :𝑌 󳨀→ 𝑃(𝑌) as follows:
𝑆 (𝑦)
= {{{

[14𝑦, 25𝑦] ∩Q+, for all 𝑦 ∈ {0, 7, 74 , 712 , 748 , . . .} ,[𝑦 + 1, 𝑦 + 4] ∩Q+, otherwise.
}}}

𝑇 (𝑦)
= {{{

[13𝑦, 38𝑦] ∩Q+, for all 𝑦 ∈ {0, 7, 74 , 712 , 748 , . . .} ,[𝑦 + 3, 𝑦 + 6] ∩Q+, otherwise.
}}}

(46)

Case 1. If 𝜏 +max{𝐹(𝑠𝐻𝑑𝑞𝑏(𝑆𝑥, 𝑇𝑦)), 𝐹(𝑠𝐻𝑑𝑞𝑏(𝑇𝑥, 𝑆𝑦))} = 𝜏 +𝐹(𝑠𝐻𝑑𝑞𝑏(𝑆𝑥, 𝑇𝑦)) ≤ min{𝐹(𝐷𝑞𝑏(𝑥, 𝑦)), 𝐹(𝐷𝑞𝑏(𝑦, 𝑥))} holds.
Define the function 𝐹 : 𝑅+ 󳨀→ 𝑅 by 𝐹(𝑥) = ln(𝑥) for all
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𝑥 ∈ 𝑅+ and 𝜏 > 0. As 𝑥, 𝑦 ∈ 𝑌, 𝜏 = ln(1.2) and by taking 𝑦0 =7, we define the sequence {𝑇𝑆(𝑦𝑛)} = {7, 7/4, 7/12, 7/48, ⋅ ⋅ ⋅ }
in 𝑌 generated by 𝑦0 = 7. Also, {𝑇𝑆(𝑦𝑛)} 󳨀→ 0. Now, if𝑥, 𝑦 ∈ {𝑇𝑆(𝑦𝑛)} ∪ {0}, we have
𝑠𝐻𝑑𝑞𝑏 (𝑆𝑥, 𝑇𝑦) = 2𝐻𝑑𝑞𝑏 ([14𝑥, 25𝑥] , [13𝑦, 38𝑦]) = 2
⋅max[{sup

𝑎∈𝑆𝑥

𝑑𝑞𝑏 (𝑎, [13𝑦, 38𝑦]) ,

sup
𝑏∈𝑇𝑦

𝑑𝑞𝑏 ([14𝑥, 25𝑥] , 𝑏)}] = 2max {𝑑𝑞𝑏 (2𝑥5 , 𝑦3 ) ,

𝑑𝑞𝑏 (𝑥4 , 38𝑦)} = 2max{(2𝑥5 + 2𝑦3 )
2 , (𝑥4 + 34

⋅ 𝑦)2} .

(47)

Also

𝐷𝑞𝑏 (𝑥, 𝑦) = max{𝑑𝑞𝑏 (𝑥, 𝑦) ,
𝑑𝑞𝑏 (𝑥, [𝑥/4, 2𝑥/5]) .𝑑𝑞𝑏 (𝑦, [𝑦/3, 3𝑦/8])

1 +max {𝑑𝑞𝑏 (𝑥, 𝑦) , 𝑑𝑞𝑏 (𝑦, 𝑥)} ,

𝑑𝑞𝑏 (𝑥, [𝑥4 , 2𝑥5 ]) , 𝑑𝑞𝑏 (𝑦, [𝑦3 , 3𝑦8 ])}

= max{𝑑𝑞𝑏 (𝑥, 𝑦) , 𝑑𝑞𝑏 (𝑥, 𝑥/4) .𝑑𝑞𝑏 (𝑦, 𝑦/3)
1 +max {𝑑𝑞𝑏 (𝑥, 𝑦) , 𝑑𝑞𝑏 (𝑦, 𝑥)} ,

𝑑𝑞𝑏 (𝑥, 𝑥4 ) , 𝑑𝑞𝑏 (𝑦, 𝑦3 )} = max
{{{
(𝑥 + 2𝑦)2 ,

(5𝑥𝑦)2
4 (1 + (𝑥 + 2𝑦)2) , (

3𝑥2 )
2 , (5𝑦3 )

2}}}
= (𝑥 + 2𝑦)2 .

(48)

Case (i). If max{(2𝑥/5 + 2𝑦/3)2, (𝑥/4 + (3/4)𝑦)2} = (𝑥/4 +
(3/4)𝑦)2, and 𝜏 = ln(1.2), then we have

3 (𝑥 + 3𝑦)2 ≤ 20 (𝑥 + 2𝑦)2
65 (𝑥4 + 34𝑦)

2 ≤ (𝑥 + 2𝑦)2

ln (1.2) + ln(𝑥4 + 34𝑦)
2 ≤ ln (𝑥 + 2𝑦)2 .

(49)

This implies that

𝜏 + 𝐹(𝑠𝐻𝑑𝑞𝑏 (𝑆𝑥, 𝑇𝑦) ≤ 𝐹 (𝐷𝑞𝑏 (𝑥, 𝑦)) . (50)

Case (ii). Similarly, if max{(2𝑥/5 + 2𝑦/3)2, (𝑥/4 + (3/4)𝑦)2} =
(2𝑥/5 + 2𝑦/3)2, and 𝜏 = ln(1.2), then we have

48 (3𝑥 + 5𝑦)2 ≤ 1125 (𝑥 + 2𝑦)2
65 (2𝑥5 + 2𝑦3 )

2 ≤ (𝑥 + 2𝑦)2

ln (1.2) + ln(2𝑥5 + 2𝑦3 )
2 ≤ ln (𝑥 + 2𝑦)2 .

(51)

Hence,

𝜏 + 𝐹(𝑠𝐻𝑑𝑞𝑏 (𝑆𝑥, 𝑇𝑦) ≤ 𝐹 (𝐷𝑞𝑏 (𝑥, 𝑦)) . (52)

Case 2. If max{𝜏 + 𝐹(𝑠𝐻𝑑𝑞𝑏(𝑆𝑥, 𝑇𝑦)), 𝜏 + 𝐹(𝑠𝐻𝑑𝑞𝑏(𝑇𝑥, 𝑆𝑦))} =𝜏 + 𝐹(𝑠𝐻𝑑𝑞𝑏(𝑇𝑥, 𝑆𝑦)) holds.
𝑠𝐻𝑑𝑞𝑏 (𝑇𝑥, 𝑆𝑦) = 2max[{sup

𝑏∈𝑇𝑥

𝑑𝑞𝑏 (𝑏, 𝑆𝑦) ,

sup
𝑎∈𝑆𝑦

𝑑𝑞𝑏 (𝑇𝑥, 𝑎)}] = 2

⋅max[{sup
𝑏∈𝑇𝑥

𝑑𝑞𝑏 (𝑏, [14𝑦, 25𝑦]) ,

sup
𝑎∈𝑆𝑦

𝑑𝑞𝑏 ([13𝑥, 38𝑥] , 𝑎)}] = 2max {𝑑𝑞𝑏 (3𝑥8 , 𝑦4 ) ,

𝑑𝑞𝑏 (𝑥3 , 2𝑦5 )} = 2max{(3𝑥8 + 2𝑦4 )
2 , (𝑥3

+ 4𝑦5 )
2} ,

(53)

where

𝐷𝑞𝑏 (𝑦, 𝑥) = max{𝑑𝑞𝑏 (𝑦, 𝑥) ,
𝑑𝑞𝑏 (𝑥, [𝑥/4, 2𝑥/5]) .𝑑𝑞𝑏 (𝑦, [𝑦/3, 3𝑦/8])

1 +max {𝑑𝑞𝑏 (𝑥, 𝑦) , 𝑑𝑞𝑏 (𝑦, 𝑥)} ,

𝑑𝑞𝑏 (𝑥, [𝑥4 , 2𝑥5 ]) , 𝑑𝑞𝑏 (𝑦, [𝑦3 , 3𝑦8 ])}

= max{𝑑𝑞𝑏 (𝑦, 𝑥) ,
𝑑𝑞𝑏 (𝑥, 𝑥/4) .𝑑𝑞𝑏 (𝑦, 𝑦/3)

1 +max {𝑑𝑞𝑏 (𝑥, 𝑦) , 𝑑𝑞𝑏 (𝑦, 𝑥)} , 𝑑𝑞𝑏 (𝑥,
𝑥4 ) ,

𝑑𝑞𝑏 (𝑦, 𝑦3 )}
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𝐷𝑞𝑏 (𝑦, 𝑥) = max
{{{
(𝑦 + 2𝑥)2 , (5𝑥𝑦)2

4 (1 + (𝑦 + 2𝑥)2) ,

(3𝑥2 )
2 , (5𝑦3 )

2}}}
= (𝑦 + 2𝑥)2 .

(54)

Case (i). Ifmax{(3𝑥/8+2𝑦/4)2, (𝑥/3+4𝑦/5)2} = (𝑥/3+4𝑦/5)2,
and 𝜏 = ln(1.2), then we have

12 (5𝑥 + 12𝑦)2 ≤ 1125 (𝑦 + 2𝑥)2
65 (𝑥3 + 4𝑦5 )

2 ≤ (𝑦 + 2𝑥)2

ln (1.2) + ln((𝑥3 + 4𝑦5 )
2 ≤ ln (𝑦 + 2𝑥)2 ,

(55)

so

𝜏 + 𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑇𝑥, 𝑆𝑦) ≤ 𝐹 (𝐷𝑞𝑏 (𝑦, 𝑥)) . (56)

Case (ii). Similarly, if max{(3𝑥/8 + 2𝑦/4)2, (𝑥/3 + 4𝑦/5)2} =
(3𝑥/8 + 2𝑦/4)2, and 𝜏 = ln(1.2), then we have

12 (3𝑥 + 4𝑦)2 ≤ 320 (𝑦 + 2𝑥)2
65 (3𝑥8 + 2𝑦4 )

2 ≤ (𝑦 + 2𝑥)2

ln (1.2) + ln(3𝑥8 + 2𝑦4 )
2 ≤ ln (𝑦 + 2𝑥)2 .

(57)

Hence,

𝜏 + 𝐹 (𝑠𝐻𝑑𝑞𝑏 (𝑇𝑥, 𝑆𝑦) ≤ 𝐹 (𝐷𝑞𝑏 (𝑦, 𝑥)) . (58)

Now, if 𝑥, 𝑦 ∉ {𝑇𝑆(𝑦𝑛)}, then the contraction does not hold.
Hence all the hypotheses ofTheorem 10 are satisfied so 𝑆 and𝑇 have a common fixed point.

If we take 𝑆 = 𝑇 in Theorem 10, then we obtain the
following theorem.

Theorem 12. Let (𝑌, 𝑑𝑞𝑏) be a complete dislocated 𝑏-quasi-
metric space with 𝑠 ≥ 1 and 𝑆 : 𝑌 󳨀→ 𝑃(𝑌) be a
multivaluedmapping such that for every two consecutive points𝑥, 𝑦 belonging to the range of an iterative sequence {𝑆(𝑦𝑛)}with𝐷𝑞𝑏(𝑥, 𝑦) > 0, 𝐹 ∈ F𝑆, 𝜏, 𝑎 > 0

𝜏 + 𝐹 (𝑠𝐻𝑞𝑏 (𝑆𝑥, 𝑆𝑦)) ≤ 𝐹 (𝐷𝑞𝑏 (𝑥, 𝑦)) , (59)

where

𝐷𝑞𝑏 (𝑥, 𝑦) = max{𝑑𝑞𝑏 (𝑥, 𝑦) , 𝑑𝑞𝑏 (𝑥, 𝑆𝑥) .𝑑𝑞𝑏 (𝑦, 𝑆𝑦)𝑎 + 𝑑𝑞𝑏 (𝑥, 𝑦) ,

𝑑𝑞𝑏 (𝑥, 𝑆𝑥) , 𝑑𝑞𝑏 (𝑦, 𝑆𝑦)} .
(60)

Then {𝑆(𝑦𝑛)} 󳨀→ 𝑢 ∈ 𝑌.Moreover, if (59) also holds for 𝑢, then𝑆 has a fixed point 𝑢 in 𝑌 and 𝑑𝑞𝑏(𝑢, 𝑢) = 0.
Remark 13. By setting the different values of 𝐷𝑞𝑏(𝑥, 𝑦)
in (6), we can obtain different results on multivalued𝐹−contractions as corollaries of Theorem 10.

3. 𝐹𝜌∗𝑠 -Khan Type Contraction in
Quasi b-Metric Spaces

Piri et al. [42] extended the results of Khan [43] and Fisher
[44] by introducing a new general contractive condition with
rational expressions. Recently, Piri et al. [30] improved some
fixed point results of 𝐹𝑘-Khan type self-mapping on complete
metric spaces. In this section, we introduce a new type of
contraction satisfying an inequality of rational expressions
and prove a new fixed point theorem concerning this type
of contraction. Our result is real generalization of Khan fixed
point theorem;we introduced𝐹𝜌∗𝑠 -Khan typemultivalued for
two mappings in 𝑏-quasi-metric space. We start this section
with the following definitions.

Definition 14. Let 𝑌 be a nonempty set, 𝑠 ≥ 1, and 𝜌𝑠 :𝑋 × 𝑋 󳨀→ [0, +∞) be a mapping such that 𝜌𝑠(𝑥, 𝑦) ≥𝑠 and 𝜌𝑠(𝑦, 𝑥) ≥ 𝑠, implying 𝑥 = 𝑦. Let 𝑀 ⊆ 𝑌
define 𝜌∗𝑠 (𝑥,𝑀)=inf{𝜌𝑠(𝑥, 𝑎), 𝑎 ∈ 𝑀} and 𝜌∗𝑠 (𝑀, 𝑦) =
inf{𝜌𝑠(𝑏, 𝑦), 𝑏 ∈ 𝑀}. Let 𝑆, 𝑇 : 𝑌 󳨀→ 𝑃(𝑌) be the
multivalued mappings; then the pair (𝑆, 𝑇) is said to be𝜌∗𝑠 −Alt multivalued mapping; if 𝑥 ∈ 𝑌, then
(a) 𝜌∗𝑠 (𝑥, 𝑆𝑥) ≥ 𝑠,

𝑞𝑏 (𝑥, 𝑆𝑥) = 𝑞𝑏 (𝑥, 𝑦)
and 𝑞𝑏 (𝑆𝑥, 𝑥) = 𝑞𝑏 (𝑦, 𝑥) implies 𝜌∗𝑠 (𝑆𝑦, 𝑦) ≥ 𝑠,
(b) 𝜌∗𝑠 (𝑆𝑥, 𝑥) ≥ 𝑠,

𝑞𝑏 (𝑥, 𝑇𝑥) = 𝑞𝑏 (𝑥, 𝑦)
and 𝑞𝑏 (𝑇𝑥, 𝑥) = 𝑞𝑏 (𝑦, 𝑥) implies 𝜌∗𝑠 (𝑦, 𝑆𝑦) ≥ 𝑠.

(61)

Definition 15 (see [30]). Let (𝑋, 𝑑) be a metric space. A
mapping 𝑇 : 𝑋 󳨀→ 𝑋 is said to be 𝐹-Khan type contraction
if there exists 𝜏 ∈ (0,∞) and 𝐹 ∈ F𝑘 such that

𝜏 + 𝐹 (𝑑 (𝑇𝑥, 𝑇𝑦))
≤ 𝐹(𝑑 (𝑥, 𝑇𝑥) .𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑦) .𝑑 (𝑦, 𝑇𝑥)

max {𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥)} ) , (62)

for all 𝑥, 𝑦 ∈ 𝑋, and if max{𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)} ̸= 0, then𝑇𝑥 ̸= 𝑇𝑦 and if max{𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)} = 0, then 𝑇𝑥 = 𝑇𝑦.
Definition 16. Let (𝑌, 𝑞𝑏, 𝑠) be a 𝑏-quasi-metric space and(𝑆, 𝑇) be a pair of 𝜌∗𝑠 multivalued mappings. Then (𝑆, 𝑇)
is called 𝐹𝜌∗𝑠 Khan type contraction, if there exists 𝐹 ∈
F𝑆 and 𝜏 > 0 such that for every two consecutive
points 𝑥, 𝑦 belonging to the range of an iterative sequence{𝑇𝑆(𝑦𝑛)} with 𝜌∗𝑠 (𝑆𝑦, 𝑦) ≥ 𝑠, 𝜌∗𝑠 (𝑥, 𝑆𝑥) ≥ 𝑠, and
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max{𝐻𝑞𝑏(𝑆𝑥, 𝑇𝑦),𝐻𝑞𝑏(𝑇𝑦, 𝑆𝑥), 𝑞𝑏(𝑥, 𝑦), 𝑞𝑏(𝑦, 𝑥)} > 0, we
have

𝜏 +max {𝐹 (𝑠𝐻𝑞𝑏 (𝑆𝑥, 𝑇𝑦)) , 𝐹 (𝑠𝐻𝑞𝑏 (𝑇𝑦, 𝑆𝑥)
≤ min {𝐹 (𝑄𝑏 (𝑥, 𝑦)) , 𝐹 (𝑄𝑏 (𝑦, 𝑥))} , (63)

where

𝑄𝑏 (𝑥, 𝑦)
= 𝑞𝑏 (𝑥, 𝑆𝑥) 𝑞𝑏 (𝑥, 𝑇𝑦) + 𝑞𝑏 (𝑦, 𝑇𝑦) 𝑞𝑏 (𝑦, 𝑆𝑥)

max {𝑞𝑏 (𝑥, 𝑇𝑦) , 𝑞𝑏 (𝑦, 𝑆𝑥)} . (64)

Theorem 17. Let (𝑌, 𝑞𝑏, 𝑠) be a complete 𝑏-quasi-metric space
with 𝑠 ≥ 1. Let 𝜌𝑠 : 𝑌 × 𝑌 󳨀→ [0, +∞) and (𝑆, 𝑇) be a
pair of 𝐹𝜌∗𝑠 Khan type contractions and the set 𝐺(𝑆) = {𝑥 :𝜌∗𝑠 (𝑥, 𝑆𝑥) ≥ 𝑠} is closed and contained 𝑦0.Then {𝑇𝑆(𝑦𝑛)} 󳨀→𝑢 ∈ 𝑌. Also, if (63) holds for each 𝑥, 𝑦 ∈ {𝑢}, then 𝑆 and 𝑇 have
a common fixed point 𝑢 in 𝑌 and 𝑞𝑏(𝑢, 𝑢) = 0.
Proof. As 𝑦0 is an arbitrary element of 𝐺(𝑆), from condition
of the theorem 𝜌∗𝑠 (𝑦0, 𝑆𝑦0) ≥ 𝑠. Let {𝑇𝑆(𝑦𝑛)} be the iterative
sequence in 𝑌 generated by a point 𝑦0 ∈ 𝑌. Let 𝑦2𝑝󸀠 , 𝑦2𝑝󸀠+1 be
elements of this sequence. Clearly, if

max {𝐻𝑞𝑏 (𝑆𝑦2𝑝󸀠 , 𝑇𝑦2𝑝󸀠+1) ,𝐻𝑞𝑏 (𝑇𝑦2𝑝󸀠+1, 𝑆𝑦2𝑝󸀠) ,
𝑞𝑏 (𝑦2𝑝󸀠 , 𝑦2𝑝󸀠+1) , 𝑞𝑏 (𝑦2𝑝󸀠+1, 𝑦2𝑝󸀠)} ̸> 0, (65)

for some 𝑝󸀠 ∈ N ∪ {0}, then
𝐻𝑞𝑏 (𝑆𝑦2𝑝󸀠 , 𝑇𝑦2𝑝󸀠+1) = 𝐻𝑞𝑏 (𝑇𝑦2𝑝󸀠+1, 𝑆𝑦2𝑝󸀠)

= 𝑞𝑏 (𝑦2𝑝󸀠 , 𝑦2𝑝󸀠+1)
= 𝑞𝑏 (𝑦2𝑝󸀠+1, 𝑦2𝑝󸀠) = 0.

(66)

As 𝑞𝑏(𝑦2𝑝󸀠 , 𝑦2𝑝󸀠+1) = 𝑞𝑏(𝑦2𝑝󸀠+1, 𝑦2𝑝󸀠) = 0, so 𝑦2𝑝󸀠 = 𝑦2𝑝󸀠+1
and 𝑦2𝑝󸀠 ∈ 𝑆𝑦2𝑝󸀠 . Now, 𝐻𝑞𝑏(𝑆𝑦2𝑝󸀠 , 𝑇𝑦2𝑝󸀠+1) = 0 implies𝑞𝑏(𝑦2𝑝󸀠+1, 𝑇𝑦2𝑝󸀠+1) = 0 and 𝐻𝑞𝑏(𝑇𝑦2𝑝󸀠+1, 𝑆𝑦2𝑝󸀠) = 0 implies𝑞𝑏(𝑇𝑦2𝑝󸀠+1, 𝑦2𝑝󸀠+1) = 0. So, 𝑦2𝑝󸀠+1 ∈ 𝑇𝑦2𝑝󸀠+1 and 𝑦2𝑝󸀠 is a

common fixed point of 𝑆 and 𝑇. So the proof is done. In order
to find common fixed point of both 𝑆 and 𝑇, when

max {𝐻𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝+1) ,𝐻𝑞𝑏 (𝑇𝑦2𝑝+1, 𝑆𝑦2𝑝) ,
𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)} > 0, (67)

for all 𝑝 ∈ {0} ∪ N. Since 𝜌∗𝑠 (𝑦0, 𝑆𝑦0) ≥ 𝑠, 𝑞𝑏(𝑦0, 𝑆𝑦0) =𝑞𝑏(𝑦0, 𝑦1) and 𝑞𝑏(𝑆𝑦0, 𝑦0) = 𝑞𝑏(𝑦1, 𝑦0). As (𝑆, 𝑇) is 𝜌∗𝑠
multivalued mapping, 𝜌∗𝑠 (𝑆𝑦1, 𝑦1) ≥ 𝑠. Now, 𝜌∗𝑠 (𝑆𝑦1, 𝑦1) ≥𝑠, 𝑞𝑏(𝑦1, 𝑇𝑦1) = 𝑞𝑏(𝑦1, 𝑦2) and 𝑞𝑏(𝑇𝑦1, 𝑦1) = 𝑞𝑏(𝑦2, 𝑦1)
implies that 𝜌∗𝑠 (𝑦2, 𝑆𝑦2) ≥ 𝑠. By induction we deduce that𝜌∗𝑠 (𝑦2𝑝, 𝑆𝑦2𝑝) ≥ 𝑠 and 𝜌∗𝑠 (𝑆𝑦2𝑝+1, 𝑦2𝑝+1) ≥ 𝑠, for all 𝑝 =0, 1, 2, ⋅ ⋅ ⋅ . Now, by Lemma 6, we have

𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) ≤ 𝐻𝑞𝑏 (𝑇𝑦2𝑝−1, 𝑆𝑦2𝑝) ,
𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝) ≤ 𝐻𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝−1)

(68)

and

𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2) ≤ 𝐻𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝+1) ,
𝑞𝑏 (𝑦2𝑝+2, 𝑦2𝑝+1) ≤ 𝐻𝑞𝑏 (𝑇𝑦2𝑝+1, 𝑆𝑦2𝑝) .

(69)

As 𝑠 ≥ 1, then (69) implies

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2)) ≤ 𝐹 (𝑠𝐻𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝+1))
≤ max {𝐹 (𝑠𝐻𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝+1)) ,
𝐹 (𝑠𝐻𝑞𝑏 (𝑇𝑦2𝑝+1, 𝑆𝑦2𝑝))} .

(70)

As 𝑦2𝑝, 𝑦2𝑝+1 ∈ {𝑇𝑆(𝑦𝑛)}, 𝜌∗𝑠 (𝑦2𝑝, 𝑆𝑦2𝑝) ≥ 𝑠 and𝜌∗𝑠 (𝑆𝑦2𝑝+1, 𝑦2𝑝+1) ≥ 𝑠, then by using the condition (63), we
get

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2))
≤ min {𝐹 (Q𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) , 𝐹 (𝑄𝑏 (𝑦2𝑝+1, 𝑦2𝑝))}
− 𝜏 ≤ 𝐹 (𝑄𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) − 𝜏.

(71)

From (64), we get

𝑄𝑏 (𝑦2𝑝, 𝑦2𝑝+1) = 𝑞𝑏 (𝑦2𝑝, 𝑆𝑦2𝑝) 𝑞𝑏 (𝑦2𝑝, 𝑇𝑦2𝑝+1) + 𝑞𝑏 (𝑦2𝑝+1, 𝑇𝑦2𝑝+1) 𝑞𝑏 (𝑦2𝑝+1, 𝑆𝑦2𝑝)max {𝑞𝑏 (𝑦2𝑝, 𝑇𝑦2𝑝+1) , 𝑞𝑏 (𝑆𝑦2𝑝, 𝑦2𝑝+1)}
= 𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) .𝑞𝑏 (𝑦2𝑝, 𝑇𝑦2𝑝+1) + 𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2) × 0

max {𝑞𝑏 (𝑦2𝑝, 𝑇𝑦2𝑝+1) , 0} = 𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) .
(72)

Therefore,

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2) ≤ 𝐹 (𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) − 𝜏 (73)

and this implies

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2))
≤ 𝐹 (max {𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)}) − 𝜏. (74)
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As 𝑠 ≥ 1, then (69) implies

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝+2, 𝑦2𝑝+1)) ≤ 𝐹 (𝑠𝐻𝑞𝑏 (𝑇𝑦2𝑝+1, 𝑆𝑦2𝑝))
≤ max {𝐹 (𝑠𝐻𝑞𝑏 (𝑇𝑦2𝑝+1, 𝑆𝑦2𝑝)) ,
𝐹 (𝑠𝐻𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝+1))}

(75)

As 𝑦2𝑝+1, 𝑦2𝑝 ∈ {𝑇𝑆(𝑦𝑛)}, 𝜌∗𝑠 (𝑆𝑦2𝑝+1,, 𝑦2𝑝+1) ≥ 𝑠 and𝜌∗𝑠 (𝑦2𝑝, 𝑆𝑦2𝑝) ≥ 𝑠, then using condition (63), we get

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝+2, 𝑦2𝑝+1))
≤ min {𝐹 (𝑄𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) , 𝐹 (𝑄𝑏 (𝑦2𝑝+1, 𝑦2𝑝))}
− 𝜏 ≤ 𝐹 (𝑄𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) − 𝜏

= 𝐹 (𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) − 𝜏.
(76)

Therefore,

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝+2, 𝑦2𝑝+1))
≤ 𝐹 (max {𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)}) − 𝜏.

(77)

Combining (74) and (77), we get

max {𝐹 (𝑠𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝+2)) , 𝐹 (𝑠𝑞𝑏 (𝑦2𝑝+2, 𝑦2𝑝+1))}
≤ 𝐹 (max {𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) , 𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝)}) − 𝜏. (78)

As 𝑠 ≥ 1, then (68) implies

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) ≤ (𝑠𝐻𝑞𝑏 (𝑇𝑦2𝑝−1, 𝑆𝑦2𝑝))
≤ max {𝐹 (𝑠𝐻𝑞𝑏 (𝑆𝑦2𝑝, 𝑇𝑦2𝑝−1)) ,
𝐹 (𝑠𝐻𝑞𝑏 (𝑇𝑦2𝑝−1, 𝑆𝑦2𝑝))}

(79)

As 𝑦2𝑝, 𝑦2𝑝−1 ∈ {𝑇𝑆(𝑦𝑛)}, 𝜌∗𝑠 (𝑦2𝑝,, 𝑆𝑦2𝑝) ≥ 𝑠 and𝜌∗𝑠 (𝑆𝑦2𝑝−1, 𝑦2𝑝−1) ≥ 𝑠, then by using condition (63), we get

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) ≤ min {𝐹 (𝑄𝑏 (𝑦2𝑝, 𝑦2𝑝−1)) , 𝐹 (𝑄𝑏 (𝑦2𝑝−1, 𝑦2𝑝))} − 𝜏 ≤ 𝐹 (𝑄𝑏 (𝑦2𝑝, 𝑦2𝑝−1)) − 𝜏.
𝐹 (𝑠𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) ≤ 𝐹(𝑞𝑏 (𝑦2𝑝, 𝑆𝑦2𝑝) .𝑞𝑏 (𝑦2𝑝, 𝑇𝑦2𝑝−1) + 𝑞𝑏 (𝑦2𝑝−1, 𝑇𝑦2𝑝−1) .𝑞𝑏 (𝑦2𝑝−1, S𝑦2𝑝)max {𝑞𝑏 (𝑦2𝑝, 𝑇𝑦2𝑝−1) , 𝑞𝑏 (𝑦2𝑝−1, 𝑆𝑦2𝑝)} ) − 𝜏

≤ 𝐹(𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1) .𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝) + 𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝) .𝑞𝑏 (𝑦2𝑝−1, 𝑆𝑦2𝑝)
max {0, 𝑞𝑏 (𝑦2𝑝−1, 𝑆𝑦2𝑝)} ) − 𝜏

≤ 𝐹 (𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝)) − 𝜏.

(80)

Therefore,

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1))
≤ 𝐹 (max {𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝) , 𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1)}) − 𝜏. (81)

Similarly, by using (63), (64), and (68), we get

𝐹 (𝑠𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝))
≤ 𝐹 (max {𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝) , 𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1)}) − 𝜏. (82)

Combining (81) and (82), we get

𝜏 + 𝐹 (𝑠max {𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝+1)) 𝐹 (𝑞𝑏 (𝑦2𝑝+1, 𝑦2𝑝))
≤ 𝐹 (max {𝑞𝑏 (𝑦2𝑝−1, 𝑦2𝑝) , 𝑞𝑏 (𝑦2𝑝, 𝑦2𝑝−1)}) . (83)

Combining (78) and (83), we get

𝜏 + 𝐹 (𝑠max {𝑞𝑏 (𝑦𝑛, 𝑦𝑛+1) , 𝑞𝑏 (𝑦𝑛+1, 𝑦𝑛)})
≤ 𝐹 (max {𝑞𝑏 (𝑦𝑛−1, 𝑦𝑛) , 𝑞𝑏 (𝑦𝑛, 𝑦𝑛−1)}) . (84)

By Lemma 8, {𝑇𝑆(𝑦𝑛)} is a Cauchy sequence in(𝑌, 𝑞𝑏).𝜌∗𝑠 (𝑦2𝑝,, 𝑆𝑦2𝑝) ≥ 𝑠 for all 𝑝 ∈ N. So {𝑦2𝑝} is a
subsequence of {𝑇𝑆(𝑦𝑛)} contained in𝐺(𝑆).As𝐺(𝑆) is closed,
there exists 𝑢 ∈ 𝐺(𝑆) such that {𝑦2𝑝} 󳨀→ 𝑢, that is,

lim
𝑛󳨀→∞

𝑞𝑏 (𝑦𝑛, 𝑢) = lim
𝑛󳨀→∞

𝑞𝑏 (𝑢, 𝑦𝑛) = 0. (85)

Also

𝜌∗𝑠 (𝑢, 𝑆𝑢) ≥ 𝑠. (86)

Now, we show that 𝑢 is a fixed point for 𝑆. We claim that𝑞𝑏(𝑆𝑢, 𝑢) = 𝑞𝑏(𝑢, 𝑆𝑢) = 0. On the contrary, we assume that𝑞𝑏(𝑢, 𝑆𝑢) > 0. Now
𝑞𝑏 (𝑢, 𝑆𝑢) ≤ 𝑠 (𝑞𝑏 (𝑢, 𝑦2𝑛) + 𝑞𝑏 (𝑦2𝑛, 𝑆𝑢)) . (87)

So, there exists 𝑛0 ∈ N such that 𝑞𝑏(𝑦2𝑛, 𝑆𝑢) > 0 for all 𝑛 ≥ 𝑛0.
By Lemma 6, we have 0 < 𝑞𝑏(𝑦2𝑛, 𝑆𝑢) ≤ 𝐻𝑞𝑏(𝑇𝑦2𝑛−1, 𝑆𝑢) for
all 𝑛 ≥ 𝑛0, so

max {𝐻𝑞𝑏 (𝑇𝑦2𝑛−1, 𝑆𝑢) ,𝐻𝑞𝑏 (𝑆𝑢, 𝑇𝑦2𝑛−1) , 𝑞𝑏 (𝑢, 𝑦2𝑛−1) ,
𝑞𝑏 (𝑦2𝑛−1, 𝑢)} > 0, (88)



10 Journal of Function Spaces

for all 𝑛 ≥ 𝑛0. By Lemma 6, and 𝑠 ≥ 1, we get
𝜏 + 𝐹 (𝑠𝑞𝑏 (𝑦2𝑛, 𝑆𝑢))
≤ 𝜏
+ 𝐹 (𝑠max {𝐻𝑞𝑏 (𝑇𝑦2𝑛−1, 𝑆𝑢) ,𝐻𝑞𝑏 (𝑆𝑢, 𝑇𝑦2𝑛−1)}) .

(89)

Now, 𝜌∗𝑠 (𝑢, 𝑆𝑢) ≥ 𝑠 and 𝜌∗𝑠 (𝑆𝑦2𝑛−1, 𝑦2𝑛−1) ≥ 𝑠, and then by
(64), we get

𝜏 + 𝐹 (𝑠𝑞𝑏 (𝑦2𝑛, 𝑆𝑢)) ≤ 𝐹 (𝑄𝑏 (𝑦2𝑛−1, 𝑢)) . (90)

Since 𝐹 is strictly increasing, we have

𝑠𝑞𝑏 (𝑦2𝑛, 𝑆𝑢) < 𝑄𝑏 (𝑦2𝑛−1, 𝑢) . (91)

Taking limit as 𝑛 󳨀→ ∞, on both sides of inequality (91), we
get

lim
𝑛󳨀→∞

𝑠𝑞𝑏 (𝑦2𝑛, 𝑆𝑢) < lim
𝑛󳨀→∞

𝑄𝑏 (𝑦2𝑛−1, 𝑢) (92)

Since 𝑞𝑏(𝑢, 𝑇𝑦2𝑛−1) ≤ 𝑞𝑏(𝑢, 𝑦2𝑛), taking limit as 𝑛 󳨀→ ∞, on
both sides, we get

lim
𝑛󳨀→∞

𝑞𝑏 (𝑢, 𝑇𝑦2𝑛−1) = 0 (93)

By (64), we have

𝑄𝑏 (𝑦2𝑛−1, 𝑢)
= 𝑞𝑏 (𝑦2𝑛−1, 𝑇𝑦2𝑛−1) 𝑞𝑏 (𝑦2𝑛−1, 𝑆𝑢) + 𝑞𝑏 (𝑢, 𝑆𝑢) 𝑞𝑏 (𝑢, 𝑇𝑦2𝑛−1)

max {𝑞𝑏 (𝑦2𝑛−1, 𝑆𝑢) , 𝑞𝑏 (𝑢, 𝑇𝑦2𝑛−1)}
(94)

Taking limit as 𝑛 󳨀→ ∞ and using inequality (93), we have

lim
𝑛󳨀→∞

𝑄𝑏 (𝑦2𝑛−1, 𝑢) = lim
𝑛󳨀→∞

𝑞𝑏 (𝑦2𝑛−1, 𝑦2𝑛) = 0. (95)

Now, inequality (92) implies

lim
𝑛󳨀→∞

𝑠𝑞𝑏 (𝑦2𝑛, 𝑆𝑢) < 0. (96)

Taking limit as 𝑛 󳨀→ ∞ on both sides of inequality (87) and
using the above inequality, we have

𝑞𝑏 (𝑢, 𝑆𝑢) < 0. (97)

So our assumption is wrong and 𝑞𝑏(𝑢, 𝑆𝑢) = 0. Now assume
that 𝑞𝑏(𝑆𝑢, 𝑢) > 0, and then there exists 𝑛1 ∈ N such that𝑞𝑏(𝑆𝑢, 𝑦2𝑛) > 0 for all 𝑛 ≥ 𝑛1. By Lemma 6 𝑞𝑏(𝑆𝑢, 𝑦2𝑛) ≤𝐻𝑞𝑏(𝑆𝑢, 𝑇𝑦2𝑛−1), so

max {𝐻𝑞𝑏 (𝑇𝑦2𝑛−1, 𝑆𝑢) ,𝐻𝑞𝑏 (𝑆𝑢, 𝑇𝑦2𝑛−1) , 𝑞𝑏 (𝑢, 𝑦2𝑛−1) ,
𝑞𝑏 (𝑦2𝑛−1, 𝑢)} > 0, (98)

for all 𝑛 ≥ 𝑛1. Following similar arguments as above, we get

lim
𝑛󳨀→∞

𝑠𝑞𝑏 (𝑆𝑢, 𝑦2𝑛) < 0. (99)

Now,

𝑞𝑏 (𝑆𝑢, 𝑢) ≤ 𝑠𝑞𝑏 (𝑆𝑢, 𝑦2𝑛) + 𝑠𝑞𝑏 (𝑦2𝑛, 𝑢) . (100)

Taking limit as 𝑛 󳨀→ ∞, on both sides of inequality (100) and
using (85) and (99), we get

𝑞𝑏 (𝑆𝑢, 𝑢) < 0 (101)

which is a contradiction, so 𝑞𝑏(𝑆𝑢, 𝑢) = 0. Hence 𝑢 ∈ 𝑆𝑢.
As 𝜌∗𝑠 (𝑢, 𝑆𝑢) ≥ 𝑠 and 𝑞𝑏(𝑢, 𝑆𝑢) = 𝑞𝑏(𝑆𝑢, 𝑢) = 𝑞𝑏(0, 0), then
Definition 14 implies

𝜌∗𝑠 (𝑆𝑢, 𝑢) ≥ 𝑠. (102)

Now, we show that 𝑢 is a fixed point for 𝑇. We claim that𝑞𝑏(𝑢, 𝑇𝑢) = 0. On the contrary, we assume that 𝑞𝑏(𝑢, 𝑇𝑢) > 0,
and then there exists 𝑛2 ∈ N such that 𝑞𝑏(𝑦2𝑛+1, 𝑇𝑢) > 0 for
all 𝑛 ≥ 𝑛2. By Lemma 6, 0 < 𝑞𝑏(𝑦2𝑛+1, 𝑇𝑢) ≤ 𝐻𝑞𝑏(𝑆𝑦2𝑛, 𝑇𝑢),
so

max {𝐻𝑞𝑏 (𝑆𝑦2𝑛, 𝑇𝑢) ,𝐻𝑞𝑏 (𝑇𝑢, 𝑆𝑦2𝑛) , 𝑞𝑏 (𝑦2𝑛, 𝑢) ,
𝑞𝑏 (𝑢, 𝑦2𝑛)} > 0, (103)

for all 𝑛 ≥ 𝑛2. By Lemma 6, and 𝑠 ≥ 1, we get
𝜏 + 𝐹 (𝑠𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢)) ≤ 𝜏
+max {𝐹 (𝑠𝐻𝑞𝑏 (𝑆𝑦2𝑛, 𝑇𝑢)) , 𝐹 (𝑠𝐻𝑞𝑏 (𝑇𝑢, 𝑆𝑦2𝑛))} .

(104)

Now, 𝜌∗𝑠 (𝑦2𝑛, 𝑆𝑦2𝑛) ≥ 𝑠 and 𝜌∗s (𝑆𝑢, 𝑢) ≥ 𝑠, and then by (64),
we get

𝜏 + 𝐹 (𝑠𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢)) ≤ 𝐹 (𝑄𝑏 (𝑦2𝑛, 𝑢)) . (105)

Since 𝐹 is strictly increasing, we have

𝑠𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢) < 𝑄𝑏 (𝑦2𝑛, 𝑢) . (106)

Taking limit 𝑛 󳨀→ ∞, on both sides of inequality (106), we
get

lim
𝑛󳨀→∞

𝑠𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢) < lim
𝑛󳨀→∞

𝑄𝑏 (𝑦2𝑛, 𝑢) . (107)

Since 𝑞𝑏(𝑢, 𝑆𝑦2𝑛) ≤ 𝑞𝑏(𝑢, 𝑦2𝑛+1), taking limit 𝑛 󳨀→ ∞, on
both sides, we get

lim
𝑛󳨀→∞

𝑞𝑏 (𝑢, 𝑆𝑦2𝑛) = 0 (108)

By using (64), we get

𝑄𝑏 (𝑦2𝑛, 𝑢)
= 𝑞𝑏 (𝑦2𝑛, 𝑦2𝑛+1) 𝑞𝑏 (𝑦2𝑛, 𝑇𝑢) + 𝑞𝑏 (𝑢, 𝑇𝑢) 𝑞𝑏 (𝑢, 𝑆𝑦2𝑛)

max {𝑞𝑏 (𝑦2𝑛, 𝑇𝑢) , 𝑞𝑏 (𝑢, 𝑆𝑦2𝑛)} . (109)

Taking limit as 𝑛 󳨀→ ∞ and using inequality (108), we have

lim
𝑛󳨀→∞

𝑄𝑏 (𝑦2𝑛, 𝑢) = lim
𝑛󳨀→∞

𝑞𝑏 (𝑦2𝑛, 𝑦2𝑛+1) = 0. (110)

Now, inequality (107) implies

lim
𝑛󳨀→∞

𝑠𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢) < 0 (111)
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Now

𝑞𝑏 (𝑢, 𝑇𝑢) ≤ 𝑠𝑞𝑏 (𝑢, 𝑦2𝑛+1) + 𝑠𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢) . (112)

Taking limit as 𝑛 󳨀→ ∞,

𝑞𝑏 (𝑢, 𝑇𝑢) ≤ 𝑠 lim𝑛󳨀→∞𝑞𝑏 (𝑢,2𝑛+1)
+ lim
𝑛󳨀→∞

𝑠𝑞𝑏 (𝑦2𝑛+1, 𝑇𝑢) . (113)

Using inequalities (85) and (111) in (113), we get

𝑞𝑏 (𝑢, 𝑇𝑢) < 0. (114)

This is a contradiction, so 𝑞𝑏(𝑢, 𝑇𝑢) = 0. Now assume that𝑞𝑏(𝑇𝑢, 𝑢) > 0, and then there exists 𝑛3 ∈ N such that𝑞𝑏(𝑇𝑢, 𝑦2𝑛+1) > 0 for all 𝑛 ≥ 𝑛3. By Lemma 6 𝑞𝑏(𝑇𝑢, 𝑦2𝑛+1) ≤𝐻𝑞𝑏(𝑇𝑢, 𝑆𝑦2𝑛), so
max {𝐻𝑞𝑏 (𝑆𝑦2𝑛, 𝑇𝑢) ,𝐻𝑞𝑏 (𝑇𝑢, 𝑆𝑦2𝑛) , 𝑞 (𝑦2𝑛, 𝑢) ,
𝑞𝑏 (𝑢, 𝑦2𝑛) > 0. (115)

for all 𝑛 ≥ 𝑛3. Following similar arguments as above, we get

𝑞𝑏 (𝑇𝑢, 𝑢) < 0. (116)

So 𝑞𝑏(𝑇𝑢, 𝑢) = 0. Hence 𝑢 ∈ 𝑇𝑢. As 𝜌∗𝑠 (𝑆𝑢, 𝑢) ≥ 𝑠 and𝑞𝑏(𝑢, 𝑇𝑢) = 𝑞𝑏(𝑇𝑢, 𝑢) = 𝑞𝑏(0, 0), then Definition 14 implies

𝜌∗𝑠 (𝑢, 𝑆𝑢) ≥ 𝑠. (117)

Hence, the pair (𝑆, 𝑇) has a common fixed point 𝑢 in (𝑌, 𝑞𝑏).
Hence the proof is completed.

Corollary 18 (see [30]). Let (𝑋, 𝑑) be a complete metric space
and 𝑇 : 𝑋 󳨀→ 𝑋 be an 𝐹-Khan contraction. Then, 𝑇 has a
unique fixed point 𝑥∗ ∈ 𝑋 and for every 𝑥 ∈ 𝑋 the sequence{𝑇𝑛𝑥} converges to 𝑥∗.
4. Single Valued Result with Application to
System of Integral Equations

Let 𝑆, 𝑇 : 𝑌 󳨀→ 𝑌 be two self-mappings and 𝑥0 ∈ 𝑌. Let𝑥1 = 𝑆𝑥0, 𝑥2 = 𝑇𝑥1, 𝑥3 = 𝑆𝑥2 and so on. In this way, we
construct a sequence 𝑥𝑛 in𝑋 such that

𝑥2𝑝+1 = 𝑆𝑥2𝑝
and 𝑥2𝑝+2 = 𝑇𝑥2𝑝+1,

(where 𝑝 = 0, 1, 2, . . .) .
(118)

We say that {𝑇𝑆(𝑥𝑛)} is a sequence in 𝑌 generated by 𝑥0.
The following result is obtained by replacing the multi-

valued mappings with the single valued mappings in Theo-
rem 10. Our result generalizes Theorem 24 in [41]. Also, we
prove uniqueness of common fixed point in our result.

Theorem 19. Let (𝑌, 𝑑𝑞𝑏) be a complete dislocated 𝑏-quasi-
metric space with constant 𝑠 ≥ 1 and 𝑆, 𝑇 : 𝑌 󳨀→

𝑌 be two self-mappings. If there exists 𝐹 ∈ F𝑆 and𝜏, 𝑎 > 0 such that for every two consecutive points 𝑥, 𝑦
belonging to the range of an iterative sequence {𝑇𝑆(𝑦𝑛)} with
max{𝑑𝑞𝑏(𝑆𝑥, 𝑇𝑦), 𝑑𝑞𝑏(𝑇𝑦, 𝑆𝑥), 𝐷𝑞𝑏(𝑥, 𝑦), 𝐷𝑞𝑏(𝑦, 𝑥)} > 0, we
have

𝜏 +max {𝐹 (𝑠𝑑𝑞𝑏 (𝑆𝑥, 𝑇𝑦)) , 𝐹 (𝑠𝑑𝑞𝑏 (𝑇𝑦, 𝑆𝑥))}
≤ min {𝐹 (𝐷𝑞𝑏 (𝑥, 𝑦)) , 𝐹 (𝐷𝑞𝑏 (𝑦, 𝑥))} ,

(119)

where

𝐷𝑞𝑏 (𝑥, 𝑦) = max{𝑑𝑞𝑏 (𝑥, 𝑦) ,
𝑑𝑞𝑏 (𝑥, 𝑆𝑥) .𝑑𝑞𝑏 (𝑦, 𝑇𝑦)

𝑎 +max {𝑑𝑞𝑏 (𝑥, 𝑦) , 𝑑𝑞𝑏 (𝑦, 𝑥)} , 𝑑𝑞𝑏 (𝑥, 𝑆𝑥) ,

𝑑𝑞𝑏 (𝑦, 𝑇𝑦)} ,

(120)

then {𝑇𝑆(𝑦𝑛) 󳨀→ 𝑢 ∈ 𝑋. Also, if 𝑢 satisfies (119), then 𝑆 and 𝑇
have a unique common fixed point 𝑢 in𝑋 and 𝑑𝑞𝑏(𝑢, 𝑢) = 0.
Proof. Now, we have to prove uniqueness only. Let 𝑥∗ be
another common fixed point of 𝑆, 𝑇. Suppose 𝑑𝑞𝑏(𝑆𝑢, 𝑇𝑥∗) >0. Then, we have

𝜏 + 𝐹 (𝑠𝑑𝑞𝑏 (𝑆𝑢, 𝑇𝑥∗)) ≤ 𝐹(max{𝑑𝑞𝑏 (𝑢, 𝑥∗) ,
𝑑𝑞𝑏 (𝑢, 𝑆𝑢) .𝑑𝑞𝑏 (𝑥∗, 𝑇𝑥∗)

1 +max {𝑑𝑞𝑏 (𝑢, 𝑥∗) , 𝑑𝑞𝑏 (𝑥∗, 𝑢)} , 𝑑𝑞𝑏 (𝑢, 𝑆𝑢) ,

𝑑𝑞𝑏 (𝑥∗, 𝑇𝑥∗)}) ,

(121)

which implies that

𝑠𝑑𝑞𝑏 (𝑢, 𝑥∗) < 𝑑𝑞𝑏 (𝑢, 𝑥∗) (122)

which is contradiction. Then 𝑑𝑞𝑏(𝑆𝑢, 𝑇𝑥∗) = 0. Also
𝜏 + 𝐹 (𝑠𝑑𝑞𝑏 (𝑆𝑥∗, 𝑇𝑢)) ≤ 𝐹(max{𝑑𝑞𝑏 (𝑥∗, 𝑢) ,

𝑑𝑞𝑏 (𝑥∗, 𝑆𝑥∗) .𝑑𝑞𝑏 (𝑢, 𝑇𝑢)
1 +max {𝑑𝑞𝑏 (𝑥∗, 𝑢) , 𝑑𝑞𝑏 (𝑢, 𝑥∗)} , 𝑑𝑞𝑏 (𝑥

∗, 𝑆𝑥∗) ,

𝑑𝑞𝑏 (𝑢, 𝑇𝑢)}) ,

(123)

And then, we get 𝑑𝑞𝑏(𝑆𝑥∗, 𝑇𝑢) = 0. So, 𝑥∗ = 𝑢. Now, we
deduce the following main result.

Corollary 20. Let (𝑌, 𝑑𝑞𝑏) be a complete dislocated 𝑏 metric
space with constant 𝑠 ≥ 1 and 𝑆, 𝑇 : 𝑌 󳨀→ 𝑌 be
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two self-mappings. If there exists 𝐹 ∈ F𝑆 and 𝜏, 𝑎 >0 such that for every two consecutive points 𝑥, 𝑦 belong-
ing to the range of an iterative sequence {𝑇𝑆(𝑦𝑛)} with
max{𝑑𝑞𝑏(𝑆𝑥, 𝑇𝑦), 𝐷𝑞𝑏(𝑥, 𝑦)} > 0, we have

𝜏 + 𝐹 (𝑠𝑑𝑞𝑏 (𝑆𝑥, 𝑇𝑦)) ≤ 𝐹 (𝐷𝑞𝑏 (𝑥, 𝑦)) , (124)

where

𝐷𝑞𝑏 (𝑥, 𝑦) = max{𝑑𝑞𝑏 (𝑥, 𝑦) ,
𝑑𝑞𝑏 (𝑥, 𝑆𝑥) .𝑑𝑞𝑏 (𝑦, 𝑇𝑦)𝑎 + 𝑑𝑞𝑏 (𝑥, 𝑦) , 𝑑𝑞𝑏 (𝑥, 𝑆𝑥) , 𝑑𝑞𝑏 (𝑦, 𝑇𝑦)} ,

(125)

then {𝑇𝑆(𝑦𝑛) 󳨀→ 𝑢 ∈ 𝑋. Also, if 𝑢 satisfies (124), then 𝑆 and 𝑇
have a unique common fixed point 𝑢 in𝑋 and 𝑑𝑞𝑏(𝑢, 𝑢) = 0.

LetF be the set of all functions 𝐹 : R+ 󳨀→ R defined by
[21]. Then, we have the following new result.

Corollary 21. Let (𝑌, 𝑑𝑞𝑏) be a complete dislocated quasi-
metric space and 𝑆, 𝑇 : 𝑌 󳨀→ 𝑌 be two self-
mappings. If there exists 𝐹 ∈ F and 𝜏, 𝑎 > 0
such that for every two consecutive points 𝑥, 𝑦 belong-
ing to the range of an iterative sequence {𝑇𝑆(𝑦𝑛)} with
max{𝑑𝑞𝑏(𝑆𝑥, 𝑇𝑦), 𝑑𝑞𝑏(𝑇𝑦, 𝑆𝑥), 𝐷𝑞𝑏(𝑥, 𝑦), 𝐷𝑞𝑏(𝑦, 𝑥)} > 0, we
have

𝜏 +max {𝐹 (𝑑𝑞𝑏 (𝑆𝑥, 𝑇𝑦)) , 𝐹 (𝑑𝑞𝑏 (𝑇𝑦, 𝑆𝑥))}
≤ min {𝐹 (𝐷𝑞𝑏 (𝑥, 𝑦)) , 𝐹 (𝐷𝑞𝑏 (𝑦, 𝑥))} ,

(126)

where

𝐷𝑞𝑏 (𝑥, 𝑦) = max{𝑑𝑞𝑏 (𝑥, 𝑦) ,
𝑑𝑞𝑏 (𝑥, 𝑆𝑥) .𝑑𝑞𝑏 (𝑦, 𝑇𝑦)

𝑎 +max {𝑑𝑞𝑏 (𝑥, 𝑦) , 𝑑𝑞𝑏 (𝑦, 𝑥)} , 𝑑𝑞𝑏 (𝑥, 𝑆𝑥) ,

𝑑𝑞𝑏 (𝑦, 𝑇𝑦)} ,

(127)

then {𝑇𝑆(𝑦𝑛) 󳨀→ 𝑢 ∈ 𝑋. Also, if 𝑢 satisfies (126), then 𝑆 and 𝑇
have a unique common fixed point 𝑢 in𝑋 and 𝑑𝑞𝑏(𝑢, 𝑢) = 0.

Now, as an application, we discuss the application of
Theorem 19 to find solution of the system of Volterra type
integral equations. Consider the following integral equations:

𝑢 (𝑡) = ∫𝑡
0
𝐾1 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠, (128)

V (𝑡) = ∫𝑡
0
𝐾2 (𝑡, 𝑠, V (𝑠)) 𝑑𝑠 (129)

for all 𝑡 ∈ [0, 1].We find the solution of (128) and (129). Let𝑋 = 𝐶([0, 1],R+) be the set of all continuous functions on

[0, 1], endowed with the complete dislocated 𝑏-quasi-metric.
For 𝑢 ∈ 𝐶([0, 1],R+), define supremum norm as ‖𝑢‖𝜏 =
sup𝑡∈[0,1]{𝑢(𝑡)𝑒−𝜏𝑡}, where 𝜏 > 0 is taken arbitrarily. Then
define

𝑑𝜏 (𝑢, V) = [ sup
𝑡∈[0,1]

{(𝑢 (𝑡) + 2V (𝑡)) 𝑒−𝜏𝑡}]2

= ‖𝑢 + 2V‖2𝜏
(130)

for all 𝑢, V ∈ 𝐶([0, 1],R+), and with these settings,(𝐶([0, 1],R+), 𝑑𝜏) becomes a dislocated 𝑏-quasi-metric space.
Now we prove the following theorem to ensure the

existence of solution of integral equations.

Theorem 22. Assume the following conditions are satisfied:
(i)𝐾1, 𝐾2 : [0, 1]× [0, 1]×R+ 󳨀→ R+ and 𝑓, 𝑔 : [0, 1] 󳨀→

R+ are continuous.
(ii) Define

𝑆𝑢 (𝑡) = ∫𝑡
0
𝐾1 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑇V (𝑡) = ∫𝑡
0
𝐾2 (𝑡, 𝑠, V (𝑠)) 𝑑𝑠.

(131)

Suppose there exist 𝜏 > 1, such that
max {𝐾1 (𝑡, 𝑠, 𝑢) + 2𝐾2 (𝑡, 𝑠, V) , 𝐾2 (𝑡, 𝑠, V)
+ 2𝐾1 (𝑡, 𝑠, 𝑢)}
≤ √𝜏𝑒2𝜏𝑠−𝜏min {𝑀 (𝑢, V) ,𝑀 (V, 𝑢)},

(132)

for all 𝑡, 𝑠 ∈ [0, 1] and 𝑢, V ∈ 𝐶([0, 1],R), where
𝑀(𝑢, V)

= max
{{{{{
‖𝑢 + 2V‖2 , ‖𝑢 + 2𝑆𝑢‖2 ‖V + 2𝑇V‖2

𝑎 +max {‖𝑢 + 2V‖2 , ‖V + 2𝑢‖2} ,‖𝑢 + 2𝑆𝑢‖2 , ‖V + 2𝑇V‖2
}}}}}
. (133)

Then integral equations (128) and (129) have a unique solution.

Proof. By assumption (ii) and (132), we have

max {𝑆𝑢 + 2𝑇V, 𝑇V + 2𝑆𝑢}
= max{∫𝑡

0
(𝐾1 (𝑡, s, 𝑢) + 2𝐾2 (𝑡, 𝑠, V)) 𝑑𝑠,

∫𝑡
0
(𝐾2 (𝑡, 𝑠, V) + 2𝐾1 (𝑡, 𝑠, 𝑢)) 𝑑𝑠}

≤ ∫𝑡
0

√𝜏𝑒2𝜏𝑠−𝜏min {𝑀 (𝑢, V) ,𝑀 (V, 𝑢)}𝑑𝑠
(max {𝑆𝑢 + 2𝑇V, 𝑇V + 2𝑆𝑢})2 ≤ 𝜏𝑒−𝜏min {𝑀 (𝑢, V) ,
𝑀 (V, 𝑢)} ∫𝑡

0
𝑒2𝜏𝑠𝑑𝑠 ≤ 12𝑒−𝜏min {𝑀 (𝑢, V) ,𝑀 (V, 𝑢)}

⋅ 𝑒2𝜏𝑡.

(134)
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This implies

(max {𝑆𝑢 + 2𝑇V, 𝑇V + 2𝑆𝑢} 𝑒−𝜏𝑡)2
≤ 12𝑒−𝜏min {𝑀 (𝑢, V) ,𝑀 (V, 𝑢)} . (135)

That is,

2 ‖max {𝑆𝑢 + 2𝑇V, 𝑇V + 2𝑆𝑢}‖2𝜏
≤ 𝑒−𝜏min {𝑀 (𝑢, V) ,𝑀 (V, 𝑢)} , (136)

which further implies

𝜏 + 2 ln ‖max {𝑆𝑢 + 2𝑇V, 𝑇V + 2𝑆𝑢}‖2𝜏
≤ lnmin {𝑀 (𝑢, V) ,𝑀 (V, 𝑢)} ,

𝜏 +max {𝑠 ln ‖𝑆𝑢 + 2𝑇V‖2𝜏 , 𝑠 ln ‖𝑇V + 2𝑆𝑢}‖2𝜏}
≤ lnmin {𝑀 (𝑢, V) ,𝑀 (V, 𝑢)} .

(137)

So, all the conditions ofTheorem 19 are satisfied for (𝑎) = ln 𝑎,𝑑𝜏(𝑢, V) = ‖𝑢 + 2V‖2𝜏, 𝑠 = 2. Hence integral equations given in
(128)and (129) have a common unique solution.

Remark 23. By setting different values of𝑀(𝑢, V) in (132), we
can obtain different weak contractive inequalities and results
as corollaries of Theorem 22.

5. Conclusion

In this work, we have discussed the notion of dislocated𝑏-quasi-metric space and given an application to find the
solutions of the nonlinear integral equations in such spaces.
New results in b-quasi-metric, quasi-metric, quasi dislocated
metric, dislocated metric, and metric can be obtained as
corollaries of our theorems, which are still not present in
the literature. The notions of 𝜌∗𝑠 −Alt multivalued mapping
and 𝐹𝜌∗𝑠 Khan type contraction on a sequence have been
introduced. Our observation is that the fixed points of
mappings which are contractive only on a sequence can be
ensured by the fixed point results. Our results extend the
results given in [41, 45].
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