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We establish new Lyapunov-type inequalities for the following conformable fractional boundary value problem (BVP): 𝑇𝑎𝛼𝑢(𝑡) +𝑞(𝑡)𝑢(𝑡) = 0, 𝑎 < 𝑡 < 𝑏, 𝑢(𝑎) = 𝑢󸀠(𝑎) = 𝑢󸀠󸀠(𝑎) = 𝑢󸀠󸀠(𝑏) = 0, where 𝑇𝑎𝛼 is the conformable fractional derivative of order 𝛼 ∈ (3, 4]
and 𝑞 is a real-valued continuous function. Some applications to the corresponding eigenvalue problem are discussed.

1. Introduction

In [1], Lyapunov proved that if the boundary value problem
BVP

𝑢󸀠󸀠 (𝑡) + 𝑞 (𝑡) 𝑢 (𝑡) = 0, 𝑎 < 𝑡 < 𝑏,
𝑢 (𝑎) = 𝑢 (𝑏) = 0, (1)

where 𝑞 : [𝑎, 𝑏] 󳨀→ R, has a nontrivial continuous solution,
then

∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝑞 (𝑟)󵄨󵄨󵄨󵄨 𝑑𝑟 > 4
𝑏 − 𝑎 . (2)

Moreover, the constant 4 in (2) is sharp (see [2]).
We emphasize that the above inequality has been proved

to be very useful in the study of various problems related
to differential equations; see, for instance, [2–5] and the
references therein.

Many researchers have studied generalizations and exten-
sions of Lyapunov’s inequality.

In [6], Wintner improved inequality (2) and obtained the
following version:

∫𝑏
𝑎
𝑞+ (𝑟) 𝑑𝑟 > 4

𝑏 − 𝑎 , (3)

where 𝑞+(𝑟) = max{𝑞(𝑟), 0}.

In [2], Hartamn generalized inequality (2) as follows:

∫𝑏
𝑎
(𝑏 − 𝑟) (𝑟 − 𝑎) 𝑞+ (𝑟) 𝑑𝑟 > 𝑏 − 𝑎. (4)

In the frame of fractional differential equations, Ferreira
(see [7]) proved a Lyapunov-type inequality for the Caputo
fractional BVP

𝐶𝐷𝛼𝑎+𝑢 (𝑡) + 𝑞 (𝑡) 𝑢 (𝑡) = 0, 𝑎 < 𝑡 < 𝑏, 1 < 𝛼 ≤ 2
𝑢 (𝑎) = 𝑢 (𝑏) = 0. (5)

where 𝑞 is a real and continuous function.
He showed that if a nontrivial continuous solution to the

above problem exists, then

∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝑞 (𝑟)󵄨󵄨󵄨󵄨 𝑑𝑟 > Γ (𝛼) ( 4
𝑏 − 𝑎)

𝛼−1 . (6)

In [8], the same author investigated a Lyapunov-type inequal-
ity for the Riemann-Liouville fractional BVP

𝐷𝛼𝑎+𝑢 (𝑡) + 𝑞 (𝑡) 𝑢 (𝑡) = 0, 𝑎 < 𝑡 < 𝑏, 1 < 𝛼 ≤ 2
𝑢 (𝑎) = 𝑢 (𝑏) = 0. (7)

He proved that if (7) has a nontrivial continuous solution,
then

∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝑞 (𝑟)󵄨󵄨󵄨󵄨 𝑑𝑟 > Γ (𝛼) 𝛼𝛼
[(𝛼 − 1) (𝑏 − 𝑎)]𝛼−1 . (8)
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For definitions and properties of Caputo fractional deriva-
tives and Riemann-Liouville fractional, we refer the reader to
[9, 10].

Observe that inequalities (6) and (8) lead to Lyapunov’s
classical inequality (2) when 𝛼 = 2.

Recently, Khalil et al. [11] introduced a new definition of a
fractional derivative called conformable fractional derivative
(see Definition 1). This derivative is much easier to handle, is
well-behaved, and obeys the Leibniz rule and chain rule [12].

In short time, this new fractional derivative definition
has attracted many researchers. In [13], Chung used the
conformable fractional derivative and integral to discuss
fractional Newtonian mechanics.

In [14], the authors proved a generalized Lyapunov-type
inequality for a conformable BVP of order 1 < 𝛼 ≤ 2. They
have established that if the BVP

𝑇𝑎𝛼𝑢 (𝑡) + 𝑞 (𝑡) 𝑢 (𝑡) = 0, 𝑎 < 𝑡 < 𝑏, 1 < 𝛼 ≤ 2
𝑢 (𝑎) = 𝑢 (𝑏) = 0, (9)

where 𝑇𝑎𝛼 is the conformable derivative of order 𝛼 ∈ (1, 2],
has a nontrivial continuous solution, then

∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝑞 (𝑟)󵄨󵄨󵄨󵄨 𝑑𝑟 > 𝛼𝛼
[(𝛼 − 1) (𝑏 − 𝑎)]𝛼−1 . (10)

For other generalizations and extensions of the classical
Lyapunov’s inequality, we refer the reader to [2, 5, 15–23] and
the references therein.

In this paper, we establish new Hartman-type and Lya-
punov-type inequalities for the following conformable frac-
tional BVP:

𝑇𝑎𝛼𝑢 (𝑡) + 𝑞 (𝑡) 𝑢 (𝑡) = 0, 𝑎 < 𝑡 < 𝑏, 3 < 𝛼 ≤ 4
𝑢 (𝑎) = 𝑢󸀠 (𝑎) = 𝑢󸀠󸀠 (𝑎) = 𝑢󸀠󸀠 (𝑏) = 0, (11)

where 𝑇𝑎𝛼 is the conformable derivative starting at 𝑎 of order3 < 𝛼 ≤ 4 and 𝑞 is a real-valued continuous function on [𝑎, 𝑏].
Some applications to the corresponding eigenvalue problem
are discussed. The obtained results are new in the context of
conformable fractional derivatives.

The outline of the paper is as follows. In Section 2, we
recall and collect basic properties on conformable derivatives.
This allows us to construct Green’s function of the corre-
sponding linear problem. Some properties of this Green’s
function are established. In Section 3, we state and prove our
main results. Some applications are discussed.

2. Preliminaries on Conformable Derivatives

In this section, we recall some basic definitions and lemmas,
which will be very useful to state our results.

Definition 1 (see [11, 12]). For a given function ℎ : [𝑎,∞) 󳨀→
R, the conformable fractional derivative of ℎ of order 𝛼 ∈(0, 1] is defined by

𝑇𝑎𝛼ℎ (𝑡) = lim
𝜀󳨀→0

ℎ (𝑡 + 𝜀 (𝑡 − 𝑎)1−𝛼) − ℎ (𝑡)
𝜀 ,

for all 𝑡 > 𝑎.
(12)

If 𝑎 = 0, we write 𝑇𝛼. If 𝑇𝑎𝛼ℎ(𝑡) exists on (𝑎, 𝑏), then
define 𝑇𝑎𝛼ℎ(𝑎) = lim𝑡󳨀→𝑎+𝑇𝑎𝛼ℎ(𝑡).The geometric and physical
interpretation of the conformable fractional derivatives was
given in Zhao [24].

Remark 2. (i) Let 0 < 𝛼 ≤ 1 and ℎ be differentiable function
at 𝑡 > 𝑎, and then

𝑇𝑎𝛼ℎ (𝑡) = (𝑡 − 𝑎)1−𝛼 ℎ󸀠 (𝑡) . (13)

(ii) For ℎ(𝑡) = 2√𝑡 − 𝑎, we have 𝑇1/2ℎ(𝑡) = 1, for all 𝑡 > 𝑎.
Therefore 𝑇1/2ℎ(𝑎) = 1, but ℎ is not differentiable at 𝑎.

Some important properties for the conformable frac-
tional derivative given in [11, 12] are as follows.

Theorem 3. Let 𝛼 ∈ (0, 1] and 𝑓, 𝑔 be 𝛼-differentiable at a
point 𝑡, and then

(i) 𝑇𝑎𝛼(𝜆𝑓 + 𝜇𝑔) = 𝜆𝑇𝑎𝛼(𝑓) + 𝜇𝑇𝑎𝛼(𝑔), for all 𝜆, 𝜇 ∈ R.
(ii) 𝑇𝑎𝛼((𝑠 − 𝑎)𝜇)(𝑡) = 𝜇(𝑡 − 𝑎)𝜇−𝛼, for all 𝑡 > 𝑎 and 𝜇 ∈ R.
(iii) 𝑇𝑎𝛼(𝑓𝑔) = 𝑓𝑇𝑎𝛼(𝑔) + 𝑔𝑇𝑎𝛼(𝑓).
(iv) 𝑇𝑎𝛼(𝑓/𝑔) = (𝑓𝑇𝑎𝛼(𝑔) − 𝑔𝑇𝑎𝛼(𝑓))/𝑔2.
(v) Assume further that the function 𝑔 is defined in the

range of 𝑓, and then for all 𝑡 with 𝑡 ̸= 𝑎 and 𝑔(𝑡) ̸= 0, one
has the following Chain Rule:

𝑇𝑎𝛼 (𝑓 ∘ 𝑔) (𝑡) = 𝑇𝑎𝛼𝑓 (𝑔 (𝑡)) .𝑇𝑎𝛼𝑔 (𝑡) . (𝑔 (𝑡))𝛼−1 (14)

The following conformable fractional derivatives of cer-
tain functions [11] are worth noting:

(i) 𝑇𝑎𝛼((1/𝛼)(𝑡 − 𝑎)𝛼) = 1.
(ii) 𝑇𝑎𝛼(sin(1/𝛼)(𝑡 − 𝑎)𝛼) = cos(1/𝛼)(𝑡 − 𝑎)𝛼.
(iii) 𝑇𝑎𝛼(cos(1/𝛼)(𝑡 − 𝑎)𝛼) = − sin(1/𝛼)(𝑡 − 𝑎)𝛼.
(iv) 𝑇𝑎𝛼(𝑒(1/𝛼)(𝑡−𝑎)𝛼) = 𝑒(1/𝛼)(𝑡−𝑎)𝛼 .

Definition 4 (see [11, 12]). Let 𝑛 < 𝛼 ≤ 𝑛+1 and ℎ : [𝑎,∞) 󳨀→
R be a function such that ℎ(𝑛)(𝑡) exists. The conformable
fractional derivative of ℎ of order 𝛼 is defined by

𝑇𝑎𝛼ℎ (𝑡) = (𝑇𝑎𝛾ℎ(𝑛)) (𝑡) , for which 𝛾 = 𝛼 − 𝑛. (15)

Definition 5 (see [11, 12]). Let 𝑛 < 𝛼 ≤ 𝑛 + 1. The fractional
integral of a function ℎ : [𝑎,∞) 󳨀→ R of order 𝛼 is defined
by

(𝐼𝑎𝛼ℎ) (𝑡) = 1
𝑛! ∫
𝑡

𝑎
(𝑡 − 𝑠)𝑛 (𝑠 − 𝑎)𝛼−𝑛−1 ℎ (𝑠) 𝑑𝑠. (16)

Lemma 6 (see [11, 12]). Let 𝛼 ∈ (𝑛, 𝑛 + 1].
(i) If ℎ is continuous on [𝑎,∞), then

𝑇𝑎𝛼 (𝐼𝑎𝛼ℎ) (𝑡) = ℎ (𝑡) , for all 𝑡 ≥ 𝑎. (17)

(ii) 𝑇𝑎𝛼ℎ(𝑡) = 0 if and only if ℎ(𝑡) = ∑𝑛𝑘=0 𝑐𝑘(𝑡 − 𝑎)𝑘,
where 𝑐𝑘 ∈ R, for 𝑘 = 0, 1, . . . , 𝑛.

(iii) If 𝑇𝑎𝛼ℎ is continuous on [𝑎,∞), then, for 𝑡 > 𝑎,
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𝐼𝑎𝛼 (𝑇𝑎𝛼ℎ) (𝑡) = ℎ (𝑡) + 𝑐0 + 𝑐1 (𝑡 − 𝑎) + ⋅ ⋅ ⋅ + 𝑐𝑛 (𝑡 − 𝑎)𝑛 , (18)

where 𝑐𝑘 ∈ R, for 𝑘 = 0, 1, . . . , 𝑛.
Lemma 7. Let 𝛼 ∈ (3, 4] and ℎ ∈ 𝐶([𝑎, 𝑏]).Then the BVP

𝑇𝑎𝛼𝑢 (𝑡) = −ℎ (𝑡) , 𝑎 < 𝑡 < 𝑏,
𝑢 (𝑎) = 𝑢󸀠 (𝑎) = 𝑢󸀠󸀠 (𝑎) = 𝑢󸀠󸀠 (𝑏) = 0, (19)

admits a solution 𝑢 ∈ 𝐶 ([𝑎, 𝑏],R) if and only if
𝑢 (𝑡) = ∫𝑏

𝑎
𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (20)

where 𝐺(𝑡, 𝑠) is Green’s function defined as

𝐺 (𝑡, 𝑠) = 1
6 (𝑠 − 𝑎)𝛼−4

⋅
{{{{{{{

(𝑡 − 𝑎)3 (𝑏 − 𝑠)
𝑏 − 𝑎 − (𝑡 − 𝑠)3 , 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏,

(𝑡 − 𝑎)3 (𝑏 − 𝑠)
𝑏 − 𝑎 , 𝑎 ≤ 𝑡 ≤ 𝑠 ≤ 𝑏.

(21)

Proof. Using Lemma 6 and Definition 5, we deduce that 𝑢 ∈𝐶([𝑎, 𝑏],R) is a solution of problem (19) if and only if

𝑢 (𝑡) = 𝑐0 + 𝑐1 (𝑡 − 𝑎) + 𝑐2 (𝑡 − 𝑎)2 + 𝑐3 (𝑡 − 𝑎)3

− 1
6 ∫𝑡
𝑎
(𝑡 − 𝑠)3 (𝑠 − 𝑎)𝛼−4 ℎ (𝑠) 𝑑𝑠, (22)

where (𝑐0, 𝑐1, 𝑐2, 𝑐3) ∈ R4.
This, together with the boundary conditions, implies 𝑐0 =𝑐1 = 𝑐2 = 0 and

𝑐3 = 1
6 (𝑏 − 𝑎) ∫

𝑏

𝑎
(𝑏 − 𝑠) (𝑠 − 𝑎)𝛼−4 ℎ (𝑠) 𝑑𝑠. (23)

Hence

𝑢 (𝑡) = 1
6 (𝑏 − 𝑎) ∫

𝑏

𝑎
(𝑡 − 𝑎)3 (𝑏 − 𝑠) (𝑠 − 𝑎)𝛼−4 ℎ (𝑠) 𝑑𝑠

− 1
6 ∫𝑡
𝑎
(𝑡 − 𝑠)3 (𝑠 − 𝑎)𝛼−4 ℎ (𝑠) 𝑑𝑠,

= ∫𝑏
𝑎
𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠,

(24)

where 𝐺(𝑡, 𝑠) is given in (21).

Lemma 8. Let 𝛼 ∈ (3, 4].The following property is satisfied by
Green’s function (21): For any (𝑡, 𝑠) in [𝑎, 𝑏] × [𝑎, 𝑏],

0 ≤ 𝐺 (𝑡, 𝑠) ≤ 𝐺 (𝑏, 𝑠)
= 1
6 (𝑠 − 𝑎)𝛼−3 (𝑏 − 𝑠) (2𝑏 − 𝑎 − 𝑠) . (25)

Proof. Fix 𝑠 in [𝑎, 𝑏]. By differentiating 𝐺(𝑡, 𝑠) with respect to𝑡, we obtain
𝜕𝑡𝐺 (𝑡, 𝑠) = 1

2 (𝑠 − 𝑎)𝛼−4

⋅
{{{{{{{

(𝑡 − 𝑎)2 (𝑏 − 𝑠)
𝑏 − 𝑎 − (𝑡 − 𝑠)2 , 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏,

(𝑡 − 𝑎)2 (𝑏 − 𝑠)
𝑏 − 𝑎 , 𝑎 ≤ 𝑡 ≤ 𝑠 ≤ 𝑏.

(26)

Hence 𝑎 ≤ 𝑡 ≤ 𝑠 ≤ 𝑏, and we have

𝜕𝑡𝐺 (𝑡, 𝑠) = 1
2 (𝑠 − 𝑎)𝛼−4 (𝑡 − 𝑎)2 (𝑏 − 𝑠)

𝑏 − 𝑎 ≥ 0, (27)

and for 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏, we have
𝜕𝑡𝐺 (𝑡, 𝑠) = 1

2 (𝑠 − 𝑎)𝛼−4((𝑡 − 𝑎)2 (𝑏 − 𝑠)
𝑏 − 𝑎 − (𝑡 − 𝑠)2)

= 1
2 (𝑠 − 𝑎)𝛼−4 (𝑡 − 𝑎)2 (𝑏 − 𝑠)

𝑏 − 𝑎 [1

− ( 𝑏 − 𝑠
𝑏 − 𝑎)((𝑏 − 𝑎) (𝑡 − 𝑠)

(𝑏 − 𝑠) (𝑡 − 𝑎))
2] .

(28)

Using the fact that ((𝑏−𝑠)/(𝑏−𝑎)) and (𝑏−𝑎)(𝑡−𝑠)/(𝑏−𝑠)(𝑡−𝑎)
are in [0, 1], we deduce that

𝜕𝑡𝐺 (𝑡, 𝑠) ≥ 0, for 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏. (29)

So, the function 𝑡 󳨀→ 𝐺(𝑡, 𝑠) is nondecreasing on [𝑎, 𝑏].This
implies that

0 = 𝐺 (𝑎, 𝑠) ≤ 𝐺 (𝑡, 𝑠) ≤ 𝐺 (𝑏, 𝑠) ,
(𝑡, 𝑠) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] . (30)

The proof is completed.

3. Main Results

Theorem9 (Hartman-type inequality). Assume that the BVP
(11) has a nontrivial continuous solution; then

∫𝑏
𝑎
(𝑠 − 𝑎)𝛼−3 (𝑏 − 𝑠) (2𝑏 − 𝑎 − 𝑠) 󵄨󵄨󵄨󵄨𝑞 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 ≥ 6. (31)

Proof. Let 𝛼 ∈ (3, 4], 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏 and 𝑞 ∈𝐶 ([𝑎, 𝑏],R).
Consider the Banach space 𝐶([𝑎, 𝑏],R), equipped with

the uniform norm ‖𝑢‖∞ = sup𝑡∈[𝑎,𝑏]|𝑢(𝑡)|.
Assume that problem (11) has a nontrivial solution 𝑢 ∈𝐶([𝑎, 𝑏],R).
By (20), we have

𝑢 (𝑡) = ∫𝑏
𝑎
𝐺 (𝑡, 𝑠) 𝑞 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] . (32)
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Note that since 𝑢 is nontrivial, then 𝑞 cannot be the zero
function on [𝑎, 𝑏]. This, with Lemma 8, implies, for all 𝑡 ∈[𝑎, 𝑏],

|𝑢 (𝑡)| ≤ ∫𝑏
𝑎
𝐺 (𝑡, 𝑠) 󵄨󵄨󵄨󵄨𝑞 (𝑠)󵄨󵄨󵄨󵄨 |𝑢 (𝑠)| 𝑑𝑠

≤ ‖𝑢‖∞ (∫𝑏
𝑎
𝐺 (𝑏, 𝑠) 󵄨󵄨󵄨󵄨𝑞 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠) .

(33)

Therefore

‖𝑢‖∞ ≤ ‖𝑢‖∞ (∫𝑏
𝑎
𝐺 (𝑏, 𝑠) 󵄨󵄨󵄨󵄨𝑞 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠) . (34)

Now, since ‖𝑢‖∞ ̸= 0, then we deduce that

1 ≤ (∫𝑏
𝑎
𝐺 (𝑏, 𝑠) 󵄨󵄨󵄨󵄨𝑞 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠) , (35)

where

𝐺 (𝑏, 𝑠) = 1
6 (𝑠 − 𝑎)𝛼−3 (𝑏 − 𝑠) (2𝑏 − 𝑎 − 𝑠) ,

for 𝑠 ∈ [𝑎, 𝑏] .
(36)

The proof is completed.

Corollary 10. Assume that the BVP (11) has a nontrivial
continuous solution; then

∫𝑏
𝑎
(𝑠 − 𝑎)𝛼−3 (𝑏 − 𝑠) 󵄨󵄨󵄨󵄨𝑞 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 ≥ 3

𝑏 − 𝑎 . (37)

Proof. The property follows fromTheorem 9 and the fact

(2𝑏 − 𝑎 − 𝑠) ≤ 2 (𝑏 − 𝑎) , for 𝑠 ∈ [𝑎, 𝑏] . (38)

Theorem 11 (Lyapunov-type inequality). Assume that the
BVP (11) has a nontrivial continuous solution; then

∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝑞 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 ≥ 3 (𝛼 − 2)𝛼−2
(𝛼 − 3)𝛼−3 (𝑏 − 𝑎)𝛼−1 . (39)

Proof. From Corollary 10, we have

∫𝑏
𝑎
𝜑 (𝑠) 󵄨󵄨󵄨󵄨𝑞 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 ≥ 3

𝑏 − 𝑎 , (40)

where 𝜑(𝑠) = (𝑠 − 𝑎)𝛼−3(𝑏 − 𝑠), 𝑠 ∈ [𝑎, 𝑏].
By simple computation, one can check that

max
𝑠∈[𝑎,𝑏]

𝜑 (𝑠) = 𝜑(𝑎 + (𝛼 − 3) 𝑏
𝛼 − 2 )

= (𝛼 − 3)𝛼−3 (𝑏 − 𝑎
𝛼 − 2)

𝛼−2 .
(41)

This fact with (40) gives the required result.

Corollary 12. If 𝜆 is an eigenvalue to the fractional BVP

𝑇𝛼𝑢 (𝑡) + 𝜆𝑢 (𝑡) = 0, 0 < 𝑡 < 1,
𝑢 (0) = 𝑢󸀠 (0) = 𝑢󸀠󸀠 (0) = 𝑢󸀠󸀠 (1) = 0, (42)

then

|𝜆| ≥ 6𝛼 (𝛼 − 1) (𝛼 − 2)
𝛼 + 2 . (43)

Proof. By using Theorem 9, we obtain

|𝜆| ∫1
0
𝑠𝛼−3 (1 − 𝑠) (2 − 𝑠) 𝑑𝑠 ≥ 6. (44)

Now, by simple computation, we have

∫1
0
𝑠𝛼−3 (1 − 𝑠) (2 − 𝑠) 𝑑𝑠 = 𝛼 + 2

𝛼 (𝛼 − 1) (𝛼 − 2) . (45)

This gives inequality (43).

Corollary 13. Let 3 < 𝛼 ≤ 4 and 𝑞 ∈ 𝐶 ([0, 1],R), such that
∫1
0

󵄨󵄨󵄨󵄨𝑞 (𝑟)󵄨󵄨󵄨󵄨 𝑑𝑟 < 3 (𝛼 − 2)𝛼−2
(𝛼 − 3)𝛼−3 . (46)

Then the fractional BVP

𝑇𝛼𝑢 (𝑡) + 𝑞 (𝑡) 𝑢 (𝑡) = 0, 0 < 𝑡 < 1,
𝑢 (0) = 𝑢󸀠 (0) = 𝑢󸀠󸀠 (0) = 𝑢󸀠󸀠 (1) = 0, (47)

has no nontrivial solution.

Proof. The assertion follows fromTheorem 11.
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inequalities for fourth-order boundary value problems,” Revista
de la Real Academia de Ciencias Exactas, Fı́sicas y Naturales.
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