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Partial metric spaces were introduced as a generalization of usual metric spaces where the self-distance for any point need not be
equal to zero. In this work, we defined generalized integral type F-contractions and proved common fixed point theorems for four
mappings satisfying this type (Branciari type) of contractions in partial metric spaces.

1. Introduction and Preliminaries

Let X be a nonempty set and p : X x X — [0, 00) satisfy
(PM1): x = y & p(x,x) = p(y, y) = p(x, y),

(PM2): p(x,x) < p(x, ¥),

(PM3): p(x, y) = p(y,x),

(PM4): p(x, y) < p(x, 2) + p(z, y) — p(z,2)

for all x, y and z € X. Then the pair (X, p) is called a
partial metric space (in short PMS) and p is called a partial
metric on X ([1]).

Let (X, p) be a PMS. Then, the functions dp, d, : Xx
X — [0, 00) given by

d,(x,y)=2p(x,y) - p(x,x) - p(» ), 0))
d,, (x, )

=max{p(x,y) - p(x,x),p(x.y) - p(y.y)}

)

are (usual) metrics on X. It is clear that dlfJ and d,, are
equivalent ([1]).

Definition 1 (see [1]).

(i) A sequence {x,} in a PMS (X, p) converges to x € X
ifand only if p(x, x) = lim,__, p(x, x,,).

(ii) A sequence {x,} in a PMS (X, p) is called a Cauchy
sequence if and only if lim, ,, . p(x,,x,,) exists
(and finite).

(iii) A PMS (X, p) is said to be complete if every Cauchy
sequence {x,} in X converges, with respect to 7,, to a
point x € X such that p(x, x) = lim,,,, ., p(x,, x,,).

(iv) A mapping f : X — X is said to be continuous at
x, € X if for every € > 0, there exists § > 0 such that

f(B(xy,08)) € B(f(x),¢).

Lemma 2 (see [1]).
(i) A sequence {x,} is Cauchy in a PMS (X, p) if and only
if {x,} is Cauchy in a metric space (X, d,,).
(ii) A PMS (X, p) is complete if and only if the metric space
(X, dp) is complete. Moreover,

lim d, (x,x,) =0 =

n—oo P

©)

pox) = lim p(x,x,) = lim p(x,,x,)
where x is a limit of {x,)} in (X, dp).

Remark 3 (see [2]). Let (X, p) be a PMS. Therefore,
(i) if p(x, y) = 0, then x = y;
(ii) if x # y, then p(x, y) > 0.
Lemma 4 (see [3]). Assume x,, — z asn — 00 in a PMS

(X, p) such that p(z,z) = 0. Then lim,_, p(x,, y) = p(z, y)
forevery y € X.

In literature, there are many generalizations of Banach
contraction principle in metric and generalized metric
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spaces. One of them is integral type contraction which was
defined by Brianciari ([4]). On the other hand, Wardowski
[5] introduced F—contraction in metric spaces as a general-
ization Banach contraction principle. For more details, you
can see [5-9]. In this work, we will introduce generalized
integral type F—contraction in partial metric spaces and
prove common fixed point theorems.

Definition 5 (see [5]). Let a mapping F : (0, 00) — R satisty
the following:

(F1) F is strictly increasing, i.e., for all «, € (0, c0) such
that o < 3, F(«) < F(f);

(F2) for each sequence {a,},cn» lim
lim F(a,) = —00;

sy = 0 =

n—:oo

(F3) there exists k € (0, 1) such that lima_>0+ockF(a) =0.

Definition 6 (see [5]). A mapping T : X — X is said to be
F—contraction if there exists T > 0 such that

Vx,y € X,
d(Tx, Ty) >0 = (4)

7+ F(d(Tx,Ty)) < F(d(x,y)).

Theorem 7 (see [5]). Let (X, d) be a complete metric space and
letT : X — X be an F—contraction. Then T has a unique fixed
point in X.

Example 8 (see [5]). Let F : R* — R be given by F(a) =
In «. F satisfies (F1), (F2), and (F3). Each mapping T : X —
X is an F-contraction such that, for all x, y in X and Tx # T,

d(Tx,Ty) <e "d(x,y) (5)

It is clear that for x,y € X such that Tx = Ty the
inequality d(Tx,Ty) < e "d(x,y) also holds; ie., T is a
Banach contraction.

Definition 9 (see [10]). The mappings f,g : X — X are

said to be weakly compatible if f and g commute at each
coincidence point; i.e., fx = gx for some x € X.

2. Main Results

Theorem10. Let (X, p) be a complete partial metric space and
19,5 T : X — X are mappings satisfying f(X) < T(X) and

M (x2n’x2n+l) = max 1
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g(X) < S(X). Suppose there exist F € & and T > 0 such that
forall x, y € X satisfying p(fx, gy) >0

p(fx.9y) M(x.y)
T+F<J (p(t)dt>sF<J (p(t)dt) (6)
0 0

where

M (x, ) = max {p (55.1).p (fx.5). p (9. Ty),
(7)

p@%gﬂ+p(ﬁﬂww
2

and ¢ : [0,00) — [0,00) is a Lebesgue integrable mapping
which is summable, nonnegative and for each y > 0

13
L¢wm>a (8)

If
(i) f(X), g(X),S(X), or T(X) is closed,
(ii) F is continuous,

(iil) {f, S} and {g, T} are weakly compatible,

then the pairs f, g,S, and T have a unique common fixed
point.

Proof. Let x, € X be arbitrary. Define a sequence {x,} for
n >0 by

Yont1 = f‘x2n = Tx2n+1

)
and ¥,15 = X211 = SXpuia-
Step I. Prove that p(y,, ¥,,,) — 0asn — oo.
By (6),
p(y2n+l’y2n+2)
T+F (J. o (1) dt)
0
P(fX2n9%ons1)
=T+P(J ¢Uﬁh> (10)
0
M(x205%X9n41)
<F <J @ (t) dt)
0
where

[P (SXam> f%2,) > P (TX 2415 9X2s1) »
P (SxZn’ Tx2n+1) >

2

= max o

P (Txoi15 [X30) + P (SX0 G%X011)

[ D (V2> Yane1) > P Vansts Yansa) > P (Vo> Yanen)
P (Vans1s Yane1) + P (Vams Yans2)

2



Journal of Function Spaces 3
P (Vo Vane1) s P (Vane1> Yanea)
SMAX D (5000 Yane1) + P (Vaw Yans1) + P Vanits Yanez) = P (Ponsts> Yansr)
2
= max {p (Yo Yane1) > P (Vans1> Yansa)} -
(11)
If max{p(2> YVans1)> POansts YVans2)b = P(Vane1> Yanso)> then And
it follows from (10) PGy aner)
F <J @ (t) dt)
0
PYani1>Yani2)
T+F <J0 ¢ (t) dt) PVan-1>Y2n)
2n+1>)2n+2 17
<F <J ¢ (t) dt) P(Yan-2>Y2n-1) ( )
0 sF(J <p(t)dt)—21§-~-
0
which is a contradiction (as T > 0). Thus pooy1)
. F(J <p(t)dt) ~@n)e
0
max {p (Yo Yane1) > P (Vans1> Vane2)} Y.
(13)  'Then, it follows limn_,OOF(_[O " e(t)dt) = —00. By F €
= P (Van> Yons1) - F and (F2), we have
li s Vpe1) = 0.
From (10), Jm p (3 yi1) (18)
Step 1I. Now, we prove that {y,} is p—Cauchy sequence. By
2Dy 1> Yamsa) F € & and (F3), there exits k € (0, 1) such that
F ( J @ (1) dt) . f
0 (14) nh—r>noo (p (yn’ yn+1)) F (p (yn’ yn+1)) = 0. (19)
P2 Yani1)
SP(J o0 dt) . By (16) and (17),
0 k PYans15Yne2)
(P (Vans1> Yans2)) | F J @ (1) dt
. . 0
Continuing this way, we have
P(osyn) (20)
P(VonsYani1) -F ( L ¢ (t) dt)) =- (21’1 M 1)
F (J o (1) dt)
0 k
(15) (P (Vone1 Yani2)) T<0
P(Yan-1>Yam)
SP(J (p(t)dt)—‘r. and
0 k PYamwYani1)
(Omra) (P[0 00d
Using (14) and (15),
P(osx1) « (2D
-F J ¢ () dt ) < = (2n) (p (Yo Yanr1))
P(Yani1>Yani2) 0
F ( J @ (t) dt)
0 -T7<0
PVonsYani1) H H i3
<F ( J o (t) dt) . Using the above inequalities and (19),
0 . k
(16) nll_I)noof’l (p (yn’ yn+1)) =0. (22)

IN
o>

PYan-15Yan)
(J (p(t)dt)—ZTS---
0

P(oy1)
SF(J go(t)dt)—(2n+l)'r.
0

Therefore, there exists 7, € N such that n(p(y,, y,,,))* < 1
foralln > n,, or

1
p(yn’ yn+1) < m (23)



Let m,n € N with m > n > n;; using triangular inequality, we
have

p (yn’ ym) =p ()/n’ yn+1) +p (yn+1’)/n+2) +ee
+ P (ym—l’ym) - [P (yn+l’yn+1) + P (yn+2’ yn+2)
Tt p(ym—l’ym—l)] B p(yn’ yn+1)

(24)
+p (yn+1’ yn+2) +oo+p (ym—l’ym)
m—1 0 0 1
= P (Vo Yir1) < ZP (Voo yir1) < 2117
Ask € (0, 1), the series Z;fn(l/il/k) converges, SO
lim_p (¥, Y) = 0. (25)

n,Mm—00

Thus y, is a Cauchy sequence in (X, p). Therefore, y, is a
Cauchy sequence in (X, dp). Since (X, p) is complete partial
metric space, then (X, dp) is complete metric space. Then,
there exists a u € X such that lim, , d,(y,,u) = 0.
Moreover

lim_p (¥, ym) =0. (26)

1n,M— 00

pwu) = lim p(y, u)=

Since y, — u, then fx,,, TXy,,1,9%204 1> SXapin CONVErge to
u.

Step II1. We will prove that f, g,S, and T have a coincidence
point.

Suppose T(X) is closed, there exists v € X such that Tv =
u. We shall show that gv = u. Then from (6),

P(fx29v) M(x3,,,v)
T+F(J go(t)dt)SP<J (p(t)dt) 27)
0 0

where

M (xZn’ V)

P (SxZn’ fx2n) > P (TV’ gV) > P (SxZn’ TV) >

p (TV’ fon) + p (SxZn’ gV)
2 (28)

’P (SxZn’ fon) ’p (M, gV) ’p (SxZn’ u) >

P (u’ fx2n)) +p (Sx2n’ gv)
2

= max o

Passing to limit as n — o0,

plu,gv) plu,gv)
T+P<J go(t)dt)sP(J (p(t)dt). (29)
0 0

This is a contradiction with 7 > 0. Thus we have gv = u.
Therefore Tv = gv = u. Since g and T are weakly compatible
gu=glv=Tgv="Tu.

Now we show that gu = u.

P(fxongu) M(x3,14)
T+F<J (p(t)dt>sF<J (p(t)dt) (30)
0 0

Journal of Function Spaces

where
M (xZn’ u)
p (SxZn’ fon) > p (Tu’ gu) > p (SxZn’ T”) >
= max 1 P (Tu’ fx2n) + P (S‘x2n’ gu)
2 (31
P (Sx3 fx34), p (gus gu1), p (S gu) »
= max 1 P (gus fx34)) + p (Sx3> gu)
2

Passing to the limit as n — ©o and using continuity of F, we
have

p(u,gu) plu,gu)
T+F<J (p(t)dt)SP<J (p(t)dt), (32)
0

0

which is a contradiction. Therefore p(u, gu) = 0; that is, u is
a fixed point of g and T.

Now we show that u is a fixed point of f and S. Since
g(X) <€ S(X), there exists a point z € X such that gu = Sz.
Suppose that fz # Sz, then

p(fz,gu) M(z,u)
T+F(J (p(t)dt)sP(J (p(t)dt) (33)
0 0

where
M (z,u)

(0 (Sz, f2), p(Tu, gu), p (Sz, Tu),
p(Tu, fz) + p(Sz, gu)
2 (34)

p(Tu, fz) + p(Sz, gu) }
2

= max Ao

= max { p (Sz, fz),
= p(Sz, fz) = p(gu. f2).

Thus

p(fz,gu) p(fz,gu)
T+F(J (p(t)dt)SP<J (p(t)dt), (35)
0 0

which is a contradiction. Thus fz = gu = Sz. By weak
compatibility of f and S, Su = Sfz = fSz = fu. Finally we
show that fu = u. From (6),

p(fusu) p(fugu)
T+P<J ¢(t)dt)=T+F<J go(t)dt)
0 0

M(u,u)
<F (J @ (t) dt)
0

(36)
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where
M (4, u)
[ p(Su, fu), p(Tu, gu), p (Su, Tu),
- maxy p(Tu, fu) + p(Su, gu)
? (37)
(p (fu, fu), p (wu), p(fu,u),
=maxy p(u fu)) + p(fu.u)
L 2
=p(fu,u).
Thus,

p(fusu) p(fuu)
T+F(J (p(t)dt)§F<J (p(t)dt) (38)
0 0

and we have fu = Su = u.
So u is a common fixed point of f, g, S, and T.

Step IV. We show uniqueness of common fixed point. Let w
be another common fixed point of f and g and u # w.
From (6), we have

pluw) p(fu, fw)
T+F<J (p(t)dt):T+F<J (p(t)dt)
0 0

(39)
M(u,w)
<F (J @ (t) dt)
0
where
M (u, w)
[ p (Su, fu), p(Tw, gw), p (Su, Tw),
=maxy p (Tw, fu)) + p(Su, gw)) ’
2
(40)
=maxqpu,u), pww),pu,w),
p (w,u)) + p(u,w))
5 .
Hence,
plu,w) plu,w)
T+F<J (p(t)dt>sF<J (p(t)dt> (41)
0 0
which is a contradiction. So u = w. O

Corollaryll. Let (X, p) be a complete partial metric space and
f, g : X — X are two mappings. Suppose there exist F € F
and T > 0 such that for all x, y € X satisfying p(fx, gy) > 0

p(fx.9y) M(x.y)
T+F(J (p(t)dt)§F<J (p(t)dt) (42)
0

0

where

p(xy),p(x fx),p(y.9y)

P fx)+p(xgy) [- (43
2

M (x, y) = max

and ¢ : [0,00) — [0,00) is a Lebesgue integrable mapping
which is summable, nonnegative and for each y > 0

J.:go ) dt > 0. (44)

If
(i) f(X) or g(X) is closed,

(ii) F is continuous,

then the pairs f and g have a unique common fixed point.

Corollary 12. Let (X, p) be a complete partial metric space
and f,g : X — X are two mappings. Suppose there exist
F € Fand t > 0 such that for all x, y € X satisfying p(fx,

gy) >0

p(fx.gy) px.y)
T+F<J ¢(t)dt)sF<J (p(t)dt). (45)
0 0

And ¢ : [0,00) — [0,00) is a Lebesgue integrable map-
ping which is summable, nonnegative and for each y > 0

j:go () dt > 0. (46)

If
(i) f(X) or g(X) is closed,

(ii) F is continuous,

then the pairs f and g have a unique common fixed point.

Theorem 13. Let (X, p) be a complete partial metric space and
f,g + X — X be mappings. Suppose there exist F € F and
T > 0 such that for all x, y € X satisfying p(fx, gy) >0

p(fx.gy) M(x,y)
T+F<J go(t)dt)sF<J go(t)dt) (47)
0

0

where

M (x, ) = max {p(»c,y),p(x, 15,0 (1,99)
(48)

p(y, fx) +pl(x gy)} .
2

And ¢ : [0,00) — [0,00) is a Lebesgue integrable mapping
which is summable, nonnegative and for each y > 0

J:go O dt > 0. (49)

If



(i) f or g is continuous, or

(ii) F is continuous,

then the pairs f and g have a unique common fixed point.

Proof. Let x, € X be arbitrary. Define a sequence {x,} for
n >0 by

Xone1 = [Xon (50)
and Xy,,,5 = GXpi1-

Step I. Prove that p(x,,x,,;) — 0asn — oo.

By (47),
P(Xani1>X2n42)
T+F (j @ (1) dt)
0
P(fX2n59%2n11)
=T+F(J (p(t)dt) (51)
0
M(Xp5%X241)
<F <J @ (t) dt)
0
where

M (x2n> x2n+1)

P (%o %2041) > P (%2 f%2) > P (X1 9%201) »

P (Xan1s [%2,) + P (%2,9%011)
2

= max

P (%o X2041) > P (%20 X311) > P (X1 Xani2) »

P (o1 X0n1) + P (X0 X34)
2

= max

(52)

< max {P (%2 X301) > P (%2001 Xans2) »

P (%2 X241) + P (X2041> X¥2042)
2

} = max {p (X5 Xp41) »

P (X1 Xom12)} -

Then the proof is similar proof of Theorem 10.

We will prove that f and g have common fixed point.
Since (X, p) is complete partial metric space, then (X, d p) is
complete metric space. Then, there exists u € X such that
lim, ,.,d,(y,,u) = 0. Moreover

im p(y,, ¥) =0.  (53)

n,M—00

p(wu) = lim p(y, u)=
We consider two cases.

Case 1. Suppose f is continuous. Then, u = lim, | x, =
lim, |, x,, =lim, , x,,., =1lim, fx,, = fu. Thusu
is a fixed point of f.

Now we prove u is a fixed point of g. On the contrary, we

assume gu # u. From (47),

P(fxongu) M(x3,,14)
T+F<J (p(t)dt>sF<J (p(t)dt) (54)
0 0
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where

M (xy ) = max {p (oo 0) p (s f50) (s 1),

P (1, fx30) + P (%30 1) } _ max { P (xytd).

2 (55)

P (%2 X241) > P (11 gu1)

p (u’ x2n+1) +p (xZn’ gu) }
> .

Letting n — o0,

Jim M (xy10) = p (16 gu).

plu,gu) p(u,gu)
T+F(J (p(t)dt)sF<J (p(t)dt).
0 0

This is a contradiction with 7 > 0. Thus we have gu = u.
Similarly, we have the same results when g is continuous.

(56)

Case 2. Now, we suppose that F is continuous. We can assume
there exists n; € N such that fx,,,, # u (i.e., p(x,,u) > 0) for
all n > ny. Then from (47) we have

P(fthgX2041)
T+F (J @ (t) dt)
0

(57)

M(u,x41)

<F (J @ (t) dt)
0
where
M) = e ) o),
P (%2015 fur) + p (1 GX241)
P (%2415 9%2041) » >

(58)

= max {P (1 X311) > P (s 1) s P (Xg1> X242) 5

P (%3415 fu) + p (4 X501) }
5 .

Then there exists 11, € N such that, for all n > n,, we have

P (1 %241) 5 p (s f1a) s P (X20415 X242) »

MAX Y p (x5, 1) + p (4, fuu) + p (4 X25) = p (s 1)
2

(59)
= p(u fu).

Thus, we have

P(fuh.9%2n11) p(u, fu)
T+F(J (p(t)dt)SF(J (p(t)dt), (60)
0 0
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for all n > max{n,, n,}. Since F is continuous, taking the limit
asn — 0o, we get

p(fusu) p(u, fu)
T+P<J go(t)dt)§F<J (p(t)dt) (61)
0

0

which is a contradiction. Therefore p(fu,u) = 0 and u isa
fixed point of f.
Now we show that u is a fixed point of g.

plu,gu) p(fugu)
T+F<J ¢(t)dt)=T+P(J (p(t)dt)
0 0

(62)
M(u,u)
<F (J @ (t) dt)
0

where
M (4, u) = max {p(u,u) ,p(u, fu), p(u, gu),

p(u, fu) + p(u, gu)
2

plg), LI .

} ) max{P(u,m,p(u,u), (63)

Thus

plu,gu) plu,gu)
T+F(J go(t)dt)SF<J (p(t)dt). (64)
0 0

Hence, u = gu.

So u is a common fixed point of f and g.

Now we prove uniqueness of common fixed point. We
assume that v is another common fixed point of f and g and
u#v.

From (47), we have

pluy) p(fugv)
T+F(J go(t)dt)zr+F<J go(t)dt)
0 0
(u,v)
<F <JM @ (t) dt>
0

where

(65)

M () = max {pw, D2 p (i) p (v, g9)

p (v, fu) + p(u,gv)

},:max{p(u,v),p(u,u), (66)

2
vu)+ pu,v
pvy), LW P WY } .
2
Hence,
p(uy) puv)
T+F<J go(t)dt)sF<J go(t)dt), (67)
0 0
which is a contradiction with 7 > 0. Sou = v. O

Corollary 14. Let (X, p) be a complete partial metric space
and f, g : X — X two mappings. Suppose there exist F € F
and T > 0 such that for all x, y € X satisfying p(fx, gy) > 0

p(fx.gv) p(x,v)
T+F(J go(t)dt)SP<J (p(t)dt) (68)
0 0

and ¢ : [0,00) — [0,00) is a Lebesgue integrable mapping
which is summable, nonnegative and for each y > 0

j:go ) dt > 0. (69)

If
(i) f or g is continuous, or

(ii) F is continuous, then the pairs f and g have a unique
common fixed point.

Example 15. Let X = [0, 1], and p(x, y) = max{x, y} for all
x,y € X. Then (X, p) is complete partial metric space. Let
£9ST:X — Xand ¢ : (0,00) — (0,00)

x
fx)= g,
g(x) =0,

_ 3 (70)
S(x) = ,
and T (x) = x,
@ (t) =2t

Consider F in Example 8. Then all conditions of Theorem 10
and the contractive condition (6) are satisfied for some 7 > 0
and for p(x, y) > 0.

If 3x/4 > y,

F P(fx.gy) J | X2
fdt )| = S
T+ (L @ (t) ) T+ n(128>
2 M(x,y)
sln<9i)=F<j go(t)dt).
16 0

If3x/4 < y,

F P(fx.gy) J | X2
t)dt | = —
T+ (JO @ (t) ) T+ n(128>
2 2
<T+ln(16y )sm(y—) (72)
3.128 2
M(x,y)
=F (J @ (t) dt) .
0

Therefore 0 is a fixed point of f, g,S, and T.

(71)
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