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In this paper, we obtain the weighted endpoint estimates for the commutators of the singular integral operators with the 𝐵𝑀𝑂
functions and the associated maximal operators on Orlicz-Morrey Spaces. We also get the similar results for the commutators of
the fractional integral operators with the 𝐵𝑀𝑂 functions and the associated maximal operators.

1. Introduction and Main Results

The Morrey spaces were introduced by Morrey in [1] to
investigate the local behavior of solutions to second-order
elliptic partial differential equations. Chiarenza and Frasca
[2] showed the boundedness of the Hardy-Littlewood max-
imal operator, singular integral operators, and the fractional
integral operators on the Morrey spaces. Komori and Shirai
[3] introduced the weighted Morrey spaces and proved that,
for 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝, 𝑇 and [𝑏, 𝑇] are bounded on𝐿𝑝,𝜅(𝑤), and if 𝑝 = 1 and 𝑤 ∈ 𝐴1, then for all 𝑡 > 0 and any
cube𝑄,

𝑤 ({𝑥 ∈ 𝑄 : 𝑇𝑓 (𝑥) > 𝑡}) ≤ 𝐶𝑡 𝑓𝐿1,𝜅(𝑤)𝑤 (𝑄)𝜅 . (1)

In this paper, we obtain the weighted endpoint estimates
for the commutators of the singular integral operators with𝐵𝑀𝑂 functions and associated maximal operators. We also
obtain the similar results for the commutators of the frac-
tional integral operators with 𝐵𝑀𝑂 functions and associated
maximal operators.

Let 𝑓 be a measurable function on R𝑛 and 1 ≤ 𝑝 < ∞,0 ≤ 𝜅 < 1, for two weights 𝑤 and 𝑢, and the weighted Morrey
space is defined by

𝐿𝑝,𝜅 (𝑤, 𝑢) = {𝑓 ∈ 𝐿 𝑙𝑜𝑐𝑝 (𝑤) : 𝑓𝐿𝑝,𝜅(𝑤,𝑢) < ∞} , (2)

where

𝑓𝐿𝑝,𝜅(𝑤,𝑢) = sup
𝑄

( 1𝑢 (𝑄)𝜅 ∫𝑄 𝑓 (𝑥)𝑝 𝑤 (𝑥) d𝑥)
1/𝑝 , (3)

and the supremum is taken over all cubes𝑄 inR𝑛. When𝑤 =𝑢, we write 𝐿𝑝,𝜅(𝑤, 𝑢) as 𝐿𝑝,𝜅(𝑤).
We say that 𝑇 is a singular integral operator if there exists

a function 𝐾 which satisfies the following conditions:

𝑇𝑓 (𝑥) = p.v. ∫
R𝑛
𝐾(𝑥 − 𝑦) 𝑓 (𝑦) 𝑑𝑦,

|𝐾 (𝑥)| ≤ 𝐶|𝑥|𝑛 ,
|∇𝐾 (𝑥)| ≤ 𝐶|𝑥|𝑛+1 ,

𝑥 ̸= 0.

(4)

The 𝐵𝑀𝑂(R𝑛) space is defined by

𝐵𝑀𝑂(R𝑛) = {𝑏 ∈ 𝐿 𝑙𝑜𝑐 (R𝑛) : ‖𝑏‖𝐵𝑀𝑂
= sup

𝑄

1|𝑄| ∫𝑄 𝑏 (𝑥) − 𝑏𝑄 𝑑𝑥 < ∞} ,
(5)

where 𝑏𝑄 = (1/|𝑄|) ∫𝑄 𝑏(𝑦)𝑑𝑦.
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For the singular integral operator 𝑇 and 𝑏 ∈ 𝐵𝑀𝑂, the
commutator [𝑏, 𝑇] is defined by

[𝑏, 𝑇] 𝑓 (𝑥) = ∫
R𝑛
(𝑏 (𝑥) − 𝑏 (𝑦))𝐾 (𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦. (6)

In order to state our results, we need to recall some
notations and facts about the Young functions and Orlicz
spaces; for further information, see [4]. A function Φ :[0,∞) → [0,∞) is a Young function if it is convex and
increasing, and if Φ(0) = 0 and Φ(𝑡) → ∞ as 𝑡 → ∞.

Let Φ be a Young function, 0 < 𝜅 < 1 and two weights𝑤 and 𝑢, and the weighted Orlicz-Morrey Class 𝐿Φ,𝜅(𝑤, 𝑢) is
defined as

𝐿Φ,𝜅 (𝑤, 𝑢) = {𝑓 : 𝑓𝐿Φ,𝜅(𝑤,𝑢) < ∞} , (7)

where

𝑓𝐿Φ,𝜅(𝑤,𝑢) = sup
𝑄

1𝑢 (𝑄)𝜅 ∫𝑄Φ(𝑓 (𝑥)) 𝑤 (𝑥) 𝑑𝑥. (8)

When 𝑤 = 𝑢, we write 𝐿Φ,𝜅(𝑤, 𝑢) as 𝐿Φ,𝜅(𝑤).
Given a locally integrable function 𝑓 and a Young

functionΦ, define the mean Luxemburg norm of 𝑓 on a cube𝑄 by

𝑓Φ,𝑄 = inf {𝜆 > 0 : 1|𝑄| ∫𝑄Φ(
𝑓 (𝑥)𝜆 ) 𝑑𝑥 ≤ 1} . (9)

For 𝛼, 0 ≤ 𝛼 < 𝑛, and a Young function Φ, we define
Orlicz maximal operator

𝑀𝛼,Φ𝑓 (𝑥) = sup
𝑄∋𝑥

|𝑄|𝛼/𝑛 𝑓Φ,𝑄 . (10)

If 𝛼 = 0, we write 𝑀𝛼,Φ simply as 𝑀Φ. If 𝛼 = 0 andΦ(𝑡) = 𝑡, 𝑀𝛼,Φ is the Hardy-Littlewood maximal operator𝑀. If Φ𝜀(𝑡) = 𝑡 log(𝑒 + 𝑡)𝜀, 𝜀 ≥ 0, we write 𝑀Φ𝜀
simply as𝑀𝐿(log𝐿)𝜀 .

If 0 < 𝛼 < 𝑛 and Φ(𝑡) = 𝑡,𝑀𝛼,Φ is the fractional maximal
operator of order 𝛼 and we write it as𝑀𝛼. IfΦ𝜀(𝑡) = 𝑡 log(𝑒 +𝑡)𝜀, we write𝑀𝛼,Φ simply as𝑀𝛼,𝐿(log𝐿)𝜀 .

Take 𝑤 ∈ 𝐴1, which means𝑀𝑤(𝑥) ≤ 𝐶𝑤(𝑥) for a.e. 𝑥 ∈
R𝑛.

Given 𝛼, 0 < 𝛼 < 𝑛, for an appropriate function 𝑓 on
R𝑛, the fractional integral operator (or the Riesz potential) of
order 𝛼 is defined by

𝐼𝛼𝑓 (𝑥) = ∫
R𝑛

𝑓 (𝑦)𝑥 − 𝑦𝑛−𝛼𝑑𝑦. (11)

For 𝑏 ∈ 𝐵𝑀𝑂(R𝑛), we define the commutators of the
operator 𝐼𝛼 and 𝑏 by

[𝑏, 𝐼𝛼] 𝑓 (𝑥) = ∫
R𝑛

(𝑏 (𝑥) − 𝑏 (𝑦)) 𝑓 (𝑦)𝑥 − 𝑦𝑛−𝛼 𝑑𝑦. (12)

The following theorems are our main results.

�eorem 1. Let 𝑤 ∈ 𝐴1 and Φ(𝑡) = 𝑡 log(𝑒 + 𝑡), then there
exists a positive constant 𝐶 such that, for any cube 𝑄 and any𝑡 > 0,

𝑤({𝑥 ∈ 𝑄 : 𝑀𝐿(log𝐿)𝑓 (𝑥) | > 𝑡})
≤ 𝐶 

𝑓𝑡
𝐿Φ,𝜅(𝑤) 𝑤 (𝑄)𝜅 .

(13)

�eorem 2. Let 𝑇 be any singular integral operator, 𝑤 ∈ 𝐴1,Φ(𝑡) = 𝑡 log(𝑒 + 𝑡), and 𝑏 ∈ 𝐵𝑀𝑂. Then there exists a positive
constant 𝐶 such that, for any cube 𝑄 and any 𝑡 > 0,

𝑤 ({𝑥 ∈ 𝑄 : [𝑏, 𝑇] 𝑓 (𝑥) > 𝑡})
≤ 𝐶 

𝑓𝑡
𝐿Φ,𝜅(𝑤)𝑤 (𝑄)𝜅 .

(14)

�eorem 3. Let 0 < 𝛼 < 𝑛, 𝑤 ∈ 𝐴1, 1/𝑞 = 1 − 𝛼/𝑛, 0 <𝜅 < 1/𝑞, Φ(𝑡) = 𝑡 log(𝑒 + 𝑡), Ψ(𝑡) = 𝑡1/𝑞 log(𝑒 + 𝑡)−1, andΘ(𝑡) = 𝑡1/𝑞 log(𝑒 + 𝑡−1). Then there exists a positive constant 𝐶
such that, for any cube 𝑄 and any 𝑡 > 0,

Ψ(𝑤 ({𝑥 ∈ 𝑄 : 𝑀𝛼,𝐿(log𝐿)𝑓 (𝑥) > 𝑡}))
≤ 𝐶 

𝑓𝑡
𝐿Φ,𝜅(𝑤,Θ(𝑤)) 𝑤 (𝑄)𝜅 .

(15)

�eorem 4. Let 0 < 𝛼 < 𝑛,𝑤 ∈ 𝐴1, 𝑏 ∈ 𝐵𝑀𝑂, 1/𝑞 = 1−𝛼/𝑛,0 < 𝜅 < 1/𝑞, Φ(𝑡) = 𝑡 log(𝑒 + 𝑡), Ψ(𝑡) = 𝑡1/𝑞 log(𝑒 + 𝑡)−1, andΘ(𝑡) = 𝑡1/𝑞 log(𝑒 + 𝑡−1). Then there exists a positive constant 𝐶
such that, for any cube 𝑄 and any 𝑡 > 0,

Ψ (𝑤 ({𝑥 ∈ 𝑄 : [𝑏, 𝐼𝛼] 𝑓 (𝑥) > 𝑡}))
≤ 𝐶 

𝑓𝑡
𝐿Φ,𝜅(𝑤,Θ(𝑤))𝑤 (𝑄)𝜅 .

(16)

2. Proof of Theorems 1 and 2

Lemma 5 (see [5]). Let Φ(𝑡) = 𝑡 log(𝑒 + 𝑡), then there exists a
positive constant 𝐶 such that, for any weight 𝑤 and all 𝑡 > 0,

𝑤({𝑥 ∈ R𝑛 : 𝑀𝐿(log𝐿)𝑓 (𝑥) > 𝑡})
≤ 𝐶∫

R𝑛
Φ(𝑓 (𝑥)𝑡 )𝑀𝑤 (𝑥) 𝑑𝑥 (17)

for every locally integrable function 𝑓.
Lemma 6 (see [6]). Let 𝑤 ∈ 𝐴1, then there exist a constant𝐶 > 0 and 𝜂 > 0 such that, for any cube 𝑄 and a measurable
subset 𝐸 ⊂ 𝑄,

𝑤 (𝐸)𝑤 (𝑄) ≤ 𝐶( |𝐸||𝑄|)
𝜂 . (18)
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Proof of Theorem 1. Fix a cube𝑄 centered at 𝑥0. By Lemma 5,
we have

𝑤({𝑥 ∈ 𝑄 : 𝑀𝐿(log𝐿)𝑓 (𝑥) > 𝑡})
= ∫

{𝑥∈R𝑛 :𝑀𝐿(log𝐿)𝑓(𝑥)>𝑡}
𝜒𝑄𝑤 (𝑥) 𝑑𝑥

≤ 𝐶∫
R𝑛
Φ(𝑓 (𝑥)𝑡 )𝑀 (𝜒𝑄𝑤) (𝑥) 𝑑𝑥

≤ 𝐶(∫
3𝑄
+∫

(3𝑄)𝑐
)Φ(𝑓 (𝑥)𝑡 )𝑀 (𝜒𝑄𝑤) (𝑥) 𝑑𝑥

≤ I + II.

(19)

To estimate term I, since 𝑤 ∈ 𝐴1, we have

I ≤ 𝐶∫
3𝑄
Φ(𝑓 (𝑥)𝑡 )𝑤 (𝑥) 𝑑𝑥

≤ 𝐶 
𝑓𝑡
𝐿Φ,𝜅(𝑤) 𝑤 (𝑄)𝜅 .

(20)

For term II, observe that, for 𝑥 ∈ (3𝑄)𝑐, 𝑥 ∈ 𝑅 and𝑅∩𝑄 ̸=0. We have1|𝑅| ∫𝑅 𝜒𝑄 (𝑦)𝑤 (𝑦) 𝑑𝑦 = 1|𝑅| ∫𝑅∩𝑄𝑤 (𝑦) 𝑑𝑦
≤ 𝐶𝑥 − 𝑥0𝑛 ∫𝑄𝑤 (𝑦) 𝑑𝑦 =

𝐶𝑥 − 𝑥0𝑛𝑤 (𝑄) .
(21)

Therefore we obtain

𝑀(𝜒𝑄𝑤) (𝑥) ≤ 𝐶 𝑥 − 𝑥0−𝑛𝑤 (𝑄) . (22)

Since 𝑤 ∈ 𝐴1, using Lemma 6, we get

II ≤ 𝐶∫
(3𝑄)𝑐

Φ(𝑓 (𝑥)𝑡 ) 𝑥 − 𝑥0−𝑛𝑤 (𝑄) 𝑑𝑥
≤ 𝐶𝑤 (𝑄) ∞∑

𝑗=1

∫
3𝑗+1𝑄\3𝑗𝑄

Φ(𝑓 (𝑥)𝑡 ) 𝑥 − 𝑥0−𝑛 𝑑𝑥
≤ 𝐶𝑤 (𝑄) ∞∑

𝑗=1

13𝑗𝑄 ∫3𝑗+1𝑄Φ(
𝑓 (𝑥)𝑡 ) 𝑑𝑥

≤ 𝐶𝑤 (𝑄)𝜅
⋅ ∞∑
𝑗=1

𝑤 (𝑄)1−𝜅𝑤 (3𝑗+1𝑄)1−𝜅 1𝑤 (3𝑗+1𝑄)𝜅 ∫3𝑗+1𝑄Φ(
𝑓 (𝑥)𝑡 )

⋅ 𝑤 (𝑥) 𝑑𝑥 ≤ 𝐶𝑤 (𝑄)𝜅 
𝑓𝑡
𝐿Φ,𝜅(𝑤)

∞∑
𝑗=1

13𝑗𝑛𝜂(1−𝜅)
≤ 𝐶𝑤 (𝑄)𝜅 

𝑓𝑡
𝐿Φ,𝜅(𝑤) .

(23)

This ends the proof.

Lemma 7 (see [7]). Let 𝑇 be any Calderón-Zygmund singular
integral operator, Φ(𝑡) = 𝑡 log(𝑒 + 𝑡), 𝜀 > 0, and 𝑏 ∈ 𝐵𝑀𝑂.
Then there exists a positive constant 𝐶 such that, for all weights𝑤,

𝑤 ({𝑥 ∈ R𝑛 : [𝑏, 𝑇] 𝑓 (𝑥) > 𝑡})
≤ 𝐶∫

R𝑛
Φ(𝑓 (𝑥)𝑡 )𝑀𝐿(log 𝐿)1+𝜀𝑤 (𝑥) 𝑑𝑥. (24)

Lemma 8 (see [6]). Let 𝑤 ∈ 𝐴1, then there exist a constant𝐶 > 0 and 𝜃 > 0 such that, for any cube 𝑄,
( 1|𝑄| ∫𝑄𝑤 (𝑦)1+𝜃 𝑑𝑦)

1/(1+𝜃) ≤ 𝐶 1|𝑄| ∫𝑄𝑤 (𝑦) 𝑑𝑦. (25)

Proof ofTheorem 2. Fix a cube𝑄 centered at 𝑥0. By Lemma 7,
we have

𝑤 ({𝑥 ∈ 𝑄 : [𝑏, 𝑇] 𝑓 (𝑥) > 𝑡})
= ∫

{𝑥∈R𝑛 :[𝑏,𝑇]𝑓(𝑥)>𝑡}
𝑤 (𝑥) 𝜒𝑄 (𝑥) 𝑑𝑥

≤ 𝐶∫
R𝑛
Φ(𝑓 (𝑥)𝑡 )𝑀𝐿(log𝐿)1+𝜀 (𝑤𝜒𝑄) (𝑥) 𝑑𝑥

≤ 𝐶(∫
3𝑄
+∫

(3𝑄)𝑐
)Φ(𝑓 (𝑥)𝑡 )𝑀𝐿(log𝐿)1+𝜀 (𝑤𝜒𝑄)

⋅ (𝑥) 𝑑𝑥 ≤ I + II.

(26)

To estimate term I, since 𝑤 ∈ 𝐴1, it is easy to prove that𝑀𝐿(log𝐿)1+𝜀(𝑤𝜒𝑄)(𝑥) ≤ 𝐶𝑤(𝑥), 𝑥 ∈ 3𝑄, and we have

I ≤ 𝐶∫
3𝑄
Φ(𝑓 (𝑥)𝑡 )𝑤 (𝑥) 𝑑𝑥

≤ 𝐶 
𝑓𝑡
𝐿Φ,𝜅(𝑤) 𝑤 (𝑄)𝜅 .

(27)

For term II, observe that, for 𝑥 ∈ (3𝑄)𝑐, 𝑥 ∈ 𝑅,𝑅 is a cube,
and 𝑅 ∩ 𝑄 ̸= 0, by Lemma 8, for any 𝛿 : 0 < 𝛿 ≤ 𝜃, we have

( 1|𝑅| ∫𝑅 (𝑤 (𝑦) 𝜒𝑄 (𝑦))1+𝛿 𝑑𝑦)
1/(1+𝛿)

≤ ( 1|𝑅| ∫𝑄𝑤 (𝑦)1+𝛿 𝑑𝑦)
1/(1+𝛿)

= (|𝑄||𝑅| )
1/(1+𝛿) ( 1|𝑄| ∫𝑄𝑤 (𝑦)1+𝛿 𝑑𝑦)

1/(1+𝛿)

≤ 𝐶(|𝑄||𝑅| )
1/(1+𝛿) ( 1|𝑄| ∫𝑄𝑤 (𝑦) 𝑑𝑦)

≤ 𝐶(|𝑄||𝑅| )
1/(1+𝛿) 𝑤 (𝑄)|𝑄| .

(28)
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Noticing the definition of themaximal function𝑀, we obtain

𝑀𝐿(log𝐿)1+𝜀 (𝑤𝜒𝑄) (𝑥) ≤ (𝑀(𝑤1+𝛿𝜒𝑄) (𝑥))1/(1+𝛿)
≤ 𝐶( |𝑄|𝑥 − 𝑥0𝑛)

1/(1+𝛿) 𝑤 (𝑄)|𝑄| .
(29)

By Lemma 6, we get

II ≤ 𝐶∫
(3𝑄)𝑐

Φ(𝑓 (𝑥)𝑡 )( |𝑄|𝑥 − 𝑥0𝑛)
1/(1+𝛿)

⋅ 𝑤 (𝑄)|𝑄| 𝑑𝑥 ≤ 𝐶
∞∑
𝑗=1

∫
3𝑗+1𝑄\3𝑗𝑄

Φ(𝑓 (𝑥)𝑡 )
⋅ ( |𝑄|𝑥 − 𝑥0𝑛)

1/(1+𝛿) 𝑤 (𝑄)|𝑄| 𝑑𝑥 ≤ 𝐶𝑤 (𝑄)𝜅

⋅ ∞∑
𝑗=1

( 𝑤 (𝑄)𝑤 (3𝑗+1𝑄))
1−𝜅 ( |𝑄|3𝑗+1𝑄)

−𝛿/(1+𝛿)

⋅ 1(𝑤 (3𝑗+1𝑄))𝜅 ∫3𝑗+1𝑄Φ(
𝑓 (𝑥)𝑡 )𝑤 (𝑥) 𝑑𝑥

≤ 𝐶𝑤 (𝑄)𝜅 ∞∑
𝑗=1

( |𝑄|3𝑗+1𝑄)
𝜂(1−𝜅)−𝛿/(1+𝛿) 

𝑓𝑡
𝐿Φ,𝜅(𝑤)

≤ 𝐶𝑤 (𝑄)𝜅 
𝑓𝑡
𝐿Φ,𝜅(𝑤) ,

(30)

in which we take 𝛿 > 0 small enough such that 𝜂(1 − 𝜅) −𝛿/(1 + 𝛿) > 0. This ends the proof.

3. Proof of Theorems 3 and 4

Given an increasing function 𝜑 : [0,∞) → [0,∞), as in [8],
we define the function ℎ𝜑 by

ℎ𝜑 (𝑠) = sup
𝑡>0

𝜑 (𝑠𝑡)𝜑 (𝑡) , 0 ≤ 𝑠 < ∞. (31)

If 𝜑 is submultiplicative, then ℎ𝜑 ≈ 𝜑. Also, for all 𝑠, 𝑡 > 0,𝜑(𝑠𝑡) ≤ ℎ𝜑(𝑠)𝜑(𝑡).
In this section, we set Φ(𝑡) = 𝑡 log(𝑒 + 𝑡), it is

submultiplicative, and so ℎΦ ≈ Φ. Let 0 < 𝛼 < 𝑛, and 𝑞 be
a number 1/𝑞 = 1 − 𝛼/𝑛. Denote

Ψ (𝑡) = {{{{{
0, 𝑡 = 0,𝑡Φ (𝑡𝛼/𝑛) , 𝑡 > 0. (32)

So

Ψ (𝑡) ≈ 𝑡1/𝑞 log (𝑒 + 𝑡)−1 . (33)

The function Ψ is invertible with

Ψ−1 (𝑡) ≈ Γ (𝑡) = [𝑡 log (𝑒 + 𝑡)]𝑞 = Φ (𝑡)𝑞 . (34)

Lemma 9 (see [8]). If 𝜑(𝑡)/𝑡 is decreasing, then, for any posi-
tive sequence {𝑡𝑗},

𝜑(∑
𝑗

𝑡𝑗) ≤ ∑
𝑗

𝜑 (𝑡𝑗) . (35)

Lemma 10. Let 0 < 𝛼 < 𝑛, 1/𝑞 = 1 − 𝛼/𝑛. Then there exists a
constant 𝐶 > 0 such that, for any 𝑡 > 0, for any weight 𝑤, we
have

Ψ(𝑤 ({𝑥 ∈ R𝑛 : 𝑀𝛼,𝐿 log𝐿 (𝑓) (𝑥) > 𝑡}))
≤ 𝐶∫

R𝑛
Φ(𝑓 (𝑦)𝑡 ) ℎΨ (𝑀𝑤 (𝑦)) 𝑑𝑦. (36)

Proof. By homogeneity, we may assume that 𝑡 = 1. Define the
set

Ω = {𝑥 ∈ R𝑛 : 𝑀𝛼,𝐿(log𝐿) (𝑓) (𝑥) > 1} . (37)

It is easy to see that Ω is open and we may assume that it is
not empty. To estimate the size of Ω, it is enough to estimate
the size of every compact set 𝐹 contained inΩ. We can cover𝐹 by a finite family of cubes {Q𝑗} for which

𝑄𝑗𝛼/𝑛 𝑓𝐿(log 𝐿),𝑄𝑗 > 1. (38)

Using Vitali’s covering lemma, we can extract a subfamily of
disjoint cubes {𝑄𝑘} such that

𝐹 ⊂ ⋃
𝑘

3𝑄𝑘. (39)

For each 𝑘, by homogeneity and the properties of the norm‖ ⋅ ‖Φ,𝑄, we have
1 < 1𝑄𝑘 ∫𝑄𝑘 Φ(𝑓 (𝑦) 𝑄𝑘𝛼/𝑛) 𝑑𝑦
≤ 𝐶Φ(𝑄𝑘𝛼/𝑛)𝑄𝑘 ∫

𝑄𝑘

Φ(𝑓 (𝑦)) 𝑑𝑦
≤ 𝐶Ψ (𝑄𝑘) ∫𝑄𝑘 Φ(𝑓 (𝑦)) 𝑑𝑦.

(40)

For each 𝑘, we have
Ψ (𝑤 (𝑄𝑘)) ≤ 𝐶Ψ (𝑤 (𝑄𝑘))Ψ (𝑄𝑘) ∫

𝑄𝑘

Φ(𝑓 (𝑦)) 𝑑𝑦
≤ 𝐶ℎΨ (𝑤 (𝑄𝑘)𝑄𝑘 ) ∫𝑄𝑘 Φ(𝑓 (𝑦)) 𝑑𝑦
≤ 𝐶∫

𝑄𝑘

Φ(𝑓 (𝑦)) ℎΨ (𝑀𝑤 (𝑦)) 𝑑𝑦.
(41)
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It is easy to see thatΨ(𝑡)/𝑡 is decreasing; by Lemma 9, we have

Ψ (𝑤 (𝐹)) ≤ ∑
𝑘

Ψ (𝑤 (𝑄𝑘))
≤ 𝐶∑

𝑘

∫
𝑄𝑘

Φ (𝑓 (𝑦)) ℎΨ (𝑀𝑤 (𝑦)) 𝑑𝑦
≤ 𝐶∫

R𝑛
Φ (𝑓 (𝑦)) ℎΨ (𝑀𝑤 (𝑦)) 𝑑𝑦.

(42)

This ends the proof.

Proof ofTheorem 3. Fix a cube𝑄 centered at𝑥0 . By Lemma 10,
we have

Ψ(𝑤 ({𝑥 ∈ 𝑄 : 𝑀𝛼,𝐿(log𝐿)𝑓 (𝑥) > 𝑡}))
= Ψ(∫

{𝑥∈R𝑛 :𝑀𝛼,𝐿(log𝐿)𝑓(𝑥)>𝑡}
𝑤 (𝑥) 𝜒𝑄 (𝑥) 𝑑𝑥)

≤ 𝐶∫
R𝑛
Φ(𝑓 (𝑥)𝑡 ) ℎΨ (𝑀 (𝑤𝜒𝑄)) (𝑥) 𝑑𝑥

≤ 𝐶(∫
3𝑄
+∫

(3𝑄)𝑐
)Φ(𝑓 (𝑥)𝑡 ) ℎΨ (𝑀(𝑤𝜒𝑄))

⋅ (𝑥) 𝑑𝑥 ≤ I + II.

(43)

Now we estimate term I. Noticing that, for 𝑠 > 0, we have
ℎΨ (𝑠) = sup

𝑡>0

Ψ (𝑠𝑡)Ψ (𝑡) = 𝑠 sup𝑡>0
Φ(𝑡𝛼/𝑛)
Φ( ((𝑠𝑡)𝛼/𝑛) ≤ 𝐶Θ (𝑠) . (44)

Since 𝑤 ∈ 𝐴1, we get

I ≤ 𝐶∫
3𝑄
Φ(𝑓 (𝑥)𝑡 ) ℎΨ (𝑤 (𝑥)) 𝑑𝑥

≤ 𝐶∫
3𝑄
Φ(𝑓 (𝑥)𝑡 )Θ (𝑤 (𝑥)) 𝑑𝑥

≤ 𝐶 
𝑓𝑡
𝐿Φ,𝜅(𝑤,Θ(𝑤))𝑤 (𝑄)𝜅 .

(45)

For term II, observe that, for 𝑥 ∈ (3𝑄)𝑐, 𝑥 ∈ 𝑅 and𝑅∩𝑄 ̸=0. As in the proof of Theorem 1, we have

𝑀(𝜒𝑄𝑤) (𝑥) ≤ 𝐶 𝑥 − 𝑥0−𝑛𝑤 (𝑄) . (46)

Since𝑤 ∈ 𝐴1,Θ is submultiplicative, and using Lemma 6, we
get

II ≤ 𝐶∫
(3𝑄)𝑐

Φ(𝑓 (𝑥)𝑡 ) ℎΨ (𝑥 − 𝑥0−𝑛 𝑤 (𝑄)) 𝑑𝑥
≤ 𝐶∞∑

𝑗=1

∫
3𝑗+1𝑄\3𝑗𝑄

Φ(𝑓 (𝑥)𝑡 )Θ( 𝑤 (𝑄)3𝑗+1𝑄) 𝑑𝑥
≤ 𝐶∞∑

𝑗=1

∫
3𝑗+1𝑄

Φ(𝑓 (𝑥)𝑡 )

⋅ Θ(𝑤(3𝑗+1𝑄)3𝑗+1𝑄
𝑤 (𝑄)𝑤 (3𝑗+1𝑄))𝑑𝑥

≤ 𝐶∞∑
𝑗=1

∫
3𝑗+1𝑄

Φ(𝑓 (𝑥)𝑡 )
⋅ Θ(𝑤 (𝑥) 𝑤 (𝑄)𝑤 (3𝑗+1𝑄)) 𝑑𝑥
≤ 𝐶∞∑

𝑗=1

𝑤 (𝑄)1/𝑞𝑤 (3𝑗+1𝑄)1/𝑞 log(𝑒 +
𝑤 (3𝑗+1𝑄)𝑤 (𝑄) )

⋅ ∫
3𝑗+1𝑄

Φ(𝑓 (𝑥)𝑡 )Θ (𝑤 (𝑥)) 𝑑𝑥 ≤ 𝐶𝑤 (𝑄)𝜅
⋅ 
𝑓𝑡
𝐿Φ,𝜅(𝑤,Θ(𝑤))

∞∑
𝑗=1

13𝑗𝑛𝜂(1/𝑞−𝜅) log (𝑒 + 3𝑗𝑛𝜂)
≤ 𝐶𝑤 (𝑄)𝜅 

𝑓𝑡
𝐿Φ,𝜅(𝑤,Θ(𝑤)) .

(47)

This ends the proof.

Lemma 11 (see [9]). Let 0 < 𝛼 < 𝑛, 1/𝑞 = 1 − 𝛼/𝑛, 𝑤 ∈ 𝐴1,
and 𝑏 ∈ 𝐵𝑀𝑂. Then there exists a constant 𝐶 > 0 such that,
for any 𝑡 > 0,

Ψ (𝑤 ({𝑥 ∈ R𝑛 : [𝑏, 𝐼𝛼] (𝑓) (𝑥) > 𝑡}))
≤ 𝐶∫

R𝑛
Φ(𝑓 (𝑦)𝑡 )Θ (𝑤 (𝑦)) 𝑑𝑦. (48)

Lemma 12 (see [6]). Let 𝑓(𝑥) ≥ 0, 𝑓 ∈ 𝐿1𝑙𝑜𝑐(R𝑛), and 0 < 𝛿 <1, then𝑀(𝑓)𝛿 ∈ 𝐴1.

Proof of Theorem 4. Fix a cube 𝑄 centered at 𝑥0, for any𝑤 ∈ 𝐴1 and 𝛿 : 0 < 𝛿 ≤ 𝜃, and by Lemma 12, we have𝑀(𝑤1+𝛿𝜒𝑄)1/(1+𝛿) ∈ 𝐴1. By Lemma 11, we obtain

Ψ (𝑤 ({𝑥 ∈ 𝑄 : [𝑏, 𝐼𝛼] 𝑓 (𝑥) | > 𝑡}))
= Ψ(∫

{𝑥∈R𝑛 :[𝑏,𝐼𝛼]𝑓(𝑥)>𝑡}
𝑤 (𝑥) 𝜒𝑄 (𝑥) 𝑑𝑥)

≤ 𝐶Ψ(∫
{𝑥∈R𝑛 :[𝑏,𝐼𝛼]𝑓(𝑥)>𝑡}

𝑀(𝑤𝜒𝑄) (𝑥) 𝑑𝑥)
≤ 𝐶Ψ(∫

{𝑥∈R𝑛 :[𝑏,𝐼𝛼]𝑓(𝑥)>𝑡}
(𝑀(𝑤1+𝛿𝜒𝑄)

⋅ (𝑥))1/(1+𝛿) 𝑑𝑥) ≤ 𝐶∫
R𝑛
Φ(𝑓 (𝑥)𝑡 )

⋅ Θ((𝑀(𝑤1+𝛿𝜒𝑄) (𝑥))1/(1+𝛿))𝑑𝑥
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≤ 𝐶(∫
3𝑄
+∫

(3𝑄)𝑐
)Φ(𝑓 (𝑥)𝑡 )

⋅ Θ((𝑀(𝑤1+𝛿𝜒𝑄) (𝑥))1/(1+𝛿))𝑑𝑥 ≤ I + II.
(49)

Nowwe estimate term I. Noticing that𝑤 ∈ 𝐴1, Lemma 8,
we have Θ((𝑀(𝑤1+𝛿𝜒𝑄)(𝑥))1/(1+𝛿) ≤ 𝐶Θ(𝑀𝑤(𝑥)) ≤𝐶Θ(𝑤(𝑥)). Then

I ≤ 𝐶∫
3𝑄
Φ(𝑓 (𝑥)𝑡 )Θ (𝑤 (𝑥)) 𝑑𝑥

≤ 𝐶 
𝑓𝑡
𝐿Φ,𝜅(𝑤,Θ(𝑤)𝑤 (𝑄)𝜅 .

(50)

For term II, as the proof of Theorem 2, for 𝑥 ∈ (3𝑄)𝑐,
(𝑀(𝑤1+𝛿𝜒𝑄) (𝑥))1/(1+𝛿)
≤ 𝐶( |𝑄|𝑥 − 𝑥0𝑛)

1/(1+𝛿) 𝑤 (𝑄)|𝑄| .
(51)

By Lemma 6, we get

II ≤ 𝐶∫
(3𝑄)𝑐

Φ(𝑓 (𝑥)𝑡 )Θ(( |𝑄|𝑥 − 𝑥0𝑛)
1/(1+𝛿)

⋅ 𝑤 (𝑄)|𝑄| ) 𝑑𝑥 ≤ 𝐶
∞∑
𝑗=1

∫
3𝑗+1𝑄\3𝑗𝑄

Φ(𝑓 (𝑥)𝑡 )
⋅ Θ(( |𝑄|3𝑗+1𝑄)

𝜂−𝛿/(1+𝛿)𝑤 (𝑥))𝑑𝑥 ≤ 𝐶𝑤 (𝑄)𝜅

⋅ ∞∑
𝑗=1

( |𝑄|3𝑗+1𝑄)
𝜂(1/𝑞−𝜅)−𝛿/𝑞(1+𝛿)

⋅ log(𝑒 + (3𝑗+1𝑄|𝑄| )𝜂−𝛿/(1+𝛿)) ⋅ 1(𝑤 (3𝑗+1𝑄))𝜅
⋅ ∫
3𝑗+1𝑄

Φ(𝑓 (𝑥)𝑡 )Θ (𝑤 (𝑥)) 𝑑𝑥 ≤ 𝐶𝑤 (𝑄)𝜅
⋅ 
𝑓𝑡
𝐿Φ,𝜅(𝑤,Θ(𝑤))

∞∑
𝑗=1

( 13𝑗𝑛)
𝜂(1/𝑞−𝜅)−𝛿/𝑞(1+𝛿)

⋅ log (𝑒 + 3𝑗𝑛(𝜂−𝛿/(1+𝛿))) ≤ 𝐶𝑤 (𝑄)𝜅 
𝑓𝑡
𝐿Φ,𝜅(𝑤,Θ(𝑤)) ,

(52)

in which we take 𝛿 > 0 small enough such that 𝜂(1/𝑞 − 𝜅) −𝛿/𝑞(1 + 𝛿) > 0 and 𝜂− 𝛿/(1 + 𝛿) > 0. This ends the proof.
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