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In this manuscript, using CLR property, coupled coincidence and common coupled fixed point results for two-hybrid pairs
satisfying (𝐹, 𝜑)- contraction are demonstrated. Using the established results existence of solution to the coupled system of
functional and nonlinear matrix equations is also discussed. We provide examples where the main theorem is applicable but most
current relevant results in literature fail to have a common coupled fixed point.

1. Introduction and Preliminaries

The existence and uniqueness of solution of a nonlinear
matrix equations and functional equations are very inter-
esting research area. Metric fixed point theory provides
beneficial and best techniques for the existence of the above-
mention equations. In [1–6] the authors worked on matrix
equations and demonstrated the existence and uniqueness in
the form of their positive definite solutions. Matrix equations
and functional equations often arise from various areas, such
as ladder networks [7, 8], control theory [9, 10], and dynamic
programming [11–14].

Banach [15] has sorted out successful and well-known
result; such consequence was later on named as Banach
contraction principle (BCP). The Banach principle has been
generalized in various spaces. Nadler [16] in 1969 further
modified and elaborated the Banach contraction principle
(BCP) to set-valued mapping using the Hausdorff metric
known as Nadler contraction principle (NCP). Later, thou-
sands of articles appeared in literature to generalize the BCP.
Very recently, some authors proved the contraction principle
in metric in controlled metric type spaces where the triangle
inequality possess control functions (see [17–19] and the
references therein).

Aamri and Moutawakil [20] defined (E.A) property
for self-mappings which contained the class of compatible

and noncompatible mappings and proved common fixed
point results under strict contractive conditions. Kamran
[21] demonstrated the (E.A) property for hybrid pair and
established fixed point and coincidence points results with
hybrid strict contractions. Liu et al. [22] introduced com-
mon (E.A) property for hybrid pairs of single and multi-
valued mappings and presented new common fixed point
theorems using hybrid contractive conditions. Sintunavarat
and Kumam [23] brought together the idea of common
limit range (CLR) property for single-valued mappings and
displayed its superiority over the property (E.A). Imdad et
al. [24] defined common limit range property for a hybrid
pair of mappings and demonstrated fixed point results in
the symmetric (semimetric) spaces. These concepts were
converted by Abbas et al. [25] to multivalued mappings
and formulated coupled coincidence point and common
coupled fixed point theorems linking hybrid pair ofmappings
satisfying generalized contractive conditions. Deshpande
and Handa [26, 27] defined (E.A) property and occasional
w-compatibility for hybrid (pair) coupled maps and also
presented common (E.A) property for two hybrid coupled
mappings.

In 2012, Wardowski [28] introduced a new type of
contraction called F-contraction. In this way Wardowski
generalized the Banach contraction principle (BCP) in differ-
ent manner from the known results of literature. Following
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this direction Sgroi and Vetro [14] studied multivalued
F-contractions and discussed their application on certain
functional and integral equations. Recently, Nashine et al.[29]
introduced generalized (𝐹, 𝜑)-contractions and studied com-
mon fixed point results for a hybrid pair under common
limit range property with applications to certain system of
functional equations and Volterra integral inclusion.

Coupled fixed points for several type contraction map-
pings were studied by many authors in different type metric
spaces [30–32]. For more details see [25, 33–37]. For other
types of common fixed point results we refer to [38–40] and
the references therein.

Motivated by the above results, we studied common
coupled fixed point results by defining the concept of CLR
property for two hybrid pairs of mapping via generalized(𝐹, 𝜑) type contraction. Using the established results we also
studied the existence of solution for the coupled system of
functional and coupled systemof nonlinearmatrix equations.
All over the paper R+, N, and N0 represent the set of all
positive real numbers, the set of positive integers, and the set
of nonnegative integers, respectively.

Definition 1. SupposeΘ is nonempty set and let 𝑑 : Θ×Θ →
R+ be a function satisfying the conditions

(1) 𝑑(𝜅, 𝜉) = 0 if and only if 𝜅 = 𝜉 for all 𝜅, 𝜉 ∈ Θ;

(2) 𝑑(𝜅, 𝜉) = 𝑑(𝜉, 𝜅), where 𝜅, 𝜉 ∈ Θ;

(3) 𝑑(𝜅, 𝜉) ≤ 𝑑(𝜅, �̃�) + 𝑑(𝜉, �̃�) for all 𝜅, 𝜉, �̃� ∈ Θ.

Then 𝑑 is a metric on Θ and the pair (Θ, 𝑑) is called metric
space.

Definition 2 (see [23]). Functions 𝑓, 𝑔 : Θ → Θ are said to
satisfy the common limit range property of 𝑓 w.r.t 𝑔 (shortly,
the (𝐶𝐿𝑅𝑓)-property w.r.t 𝑔) if there exists a sequence {𝜉𝑛} inΘ such that, for some 𝑢 ∈ Θ, lim𝑛→∞𝑓𝜉𝑛 = lim𝑛→∞𝑔𝜉𝑛 =𝑓𝑢.
Definition 3 (see [41]). Suppose 𝑓 : Θ → Θ, 𝑆 : Θ →𝐶𝐵(Θ) are defined on a metric space (Θ, 𝑑). Then 𝑓 and 𝑆 are
said to satisfy the common limit range property of 𝑓 w.r.t 𝑆
(shortly, (𝐶𝐿𝑅𝑓)-property w.r.t 𝑆) if there exists a sequence{𝜉𝑛} in Θ and Ω1 ∈ 𝐶𝐵(Θ) such that, for some 𝑢 ∈ Θ,
lim𝑛→∞𝑓𝜉𝑛 = 𝑓𝑢 ∈ Ω1 = lim𝑛→∞𝑆𝜉𝑛.
Definition 4 (see [41]). Functions 𝑓, 𝑔 : Θ → Θ and 𝑆, 𝑇 :Θ → 𝐶𝐵(Θ) defined on a metric space (Θ, 𝑑), are to satisfy
the common limit in the range of 𝑓 w.r.t 𝑆 (shortly, (𝐶𝐿𝑅𝑓)-
property w.r.t to 𝑆) if there exist sequences {𝜉𝑛} and {𝜁𝑛} inΘ and Ω1, Ω2 ∈ 𝐶𝐵(Θ) such that, for some 𝑢 ∈ Θ, we have
lim𝑛→∞𝑆𝜉𝑛 = Ω1, lim𝑛→∞𝑇𝜁𝑛 = Ω2, and lim𝑛→∞𝑓𝜉𝑛 =
lim𝑛→∞𝑔𝜁𝑛 = 𝑓𝑢 ∈ Ω1 ∩ Ω2.
Remark 5. Clearly, if 𝑓 = 𝑔 and 𝑆 = 𝑇 in Definition 4 then
we reobtain Definition 3.

Definition 6 (see [25]). Let 𝑓 : Θ → Θ and 𝐹 : Θ × Θ →𝐶𝐵(Θ) be mappings.

(1) A point (𝑥, 𝑦) ∈ Θ×Θ is called a coupled coincidence
point of 𝑓 and 𝐹 if 𝑓(𝑥) ∈ 𝐹(𝑥, 𝑦) and 𝑓(𝑦) ∈ 𝐹(𝑦, 𝑥).

(2) A point (𝑥, 𝑦) ∈ Θ × Θ is called a coupled common
point of𝑓 and 𝐹 if 𝑥 = 𝑓(𝑥) ∈ 𝐹(𝑥, 𝑦) and 𝑦 = 𝑓(𝑦) ∈𝐹(𝑦, 𝑥).

Definition 7 (see [25]). Let 𝑓 : Θ → Θ and 𝐹 : Θ ×Θ → 𝐶𝐵(Θ) be mappings. The mapping 𝑓 is called 𝐹−
weakly commuting at some point, point (𝑥, 𝑦) ∈ Θ × Θ if𝑓2(𝑥) ∈ 𝐹(𝑓𝑥, 𝑓𝑦) and 𝑓2(𝑦) ∈ 𝐹(𝑓𝑦, 𝑓𝑥).
Definition 8 (see [27]). Mappings 𝑓 : Θ → Θ and 𝑆 :Θ × Θ → 𝐶𝐵(Θ) on metric space (Θ, 𝑑) are said to have the
E.A property if there exist sequences {𝜉𝑛} and {𝜁𝑛} in Θ andΩ1, Ω2 ∈ 𝐶𝐵(Θ) such that for some 𝑢 ∈ Θ lim𝑛→∞𝑓𝜉𝑛 =𝑢 ∈ Ω1 = lim𝑛→∞𝑆(𝜉𝑛, 𝜁𝑛), lim𝑛→∞𝑓𝜁𝑛 = V ∈ Ω2 =
lim𝑛→∞𝑆(𝜁𝑛, 𝜉𝑛).

Now, we recall some definitions for multivalued map-
pings defined in a metric space (Θ, 𝑑). Recall the Hausdorff
metric 𝐻 : 𝐶𝐵(Θ) × 𝐶𝐵(Θ) → R+ for Ω1, Ω2 ∈ 𝐶𝐵(Θ) by

𝐻(Ω1, Ω2) = max{sup
𝜍∈Ω1

𝑑 (𝜍, Ω2) , sup
𝜁∈Ω2

𝑑 (𝜁,Ω1)} , (1)

where

𝑑 (𝜉, Ω1) = inf {𝑑 (𝜉, 𝜁) : 𝜁 ∈ Ω1} ,
𝛿 (Ω1, Ω2) = sup {𝑑 (𝜍, 𝜁) : 𝜍 ∈ Ω1, 𝜁 ∈ Ω2} (2)

and

𝐷 (Ω1, Ω2) = inf {𝑑 (𝜍, 𝜁) : 𝜍 ∈ Ω1, 𝜁 ∈ Ω2} . (3)

Lemma 9 (see [42]). Let (Θ, 𝑑) be a metric space. For anyΩ1, Ω2 ∈ 𝐶𝐵(Θ). We have 𝑑(𝜉, Ω2) ≤ 𝐻(Ω1, Ω2), for all𝜉 ∈ Ω1.
Lemma 10 (see [16]). Assume (Θ, 𝑑) is a metric space andΩ1, Ω2 ∈ 𝐶𝐵(Θ). Then for every 𝜆 > 1 and for each 𝜍 ∈ Ω1
there exists 𝜁(𝜍) ∈ Ω2 such that 𝑑(𝜍, 𝜁) ≤ 𝜆𝐻(Ω1, Ω2).

In [16] it was shown that the above lemma is also true for𝜆 ≥ 1. In fact we have the following.

Lemma 11. Assume (Θ, 𝑑) is a metric space and Ω1, Ω2 ∈𝐶𝐵(Θ). Then for every 𝜆 ≥ 1 and for each 𝜍 ∈ Ω1 there exists𝜁(𝜍) ∈ Ω2 such that 𝑑(𝜍, 𝜁) ≤ 𝜆𝐻(Ω1, Ω2).
Definition 12 (see [28]). Let 𝐹𝑠 represent the family of all
functions 𝐹 : R+ → R, with the following conditions

(1) 𝐹 is continuous and strictly increasing;
(2) lim𝑛→∞𝛼𝑛 = 0 ⇐⇒ lim𝑛→∞𝐹(𝛼𝑛) = −∞;
(3) for {𝛼𝑛} ⊂ R+, lim𝑛→∞𝛼𝑛 = 0, there exists 𝑘 ∈ (0, 1)

such that lim𝛼→0+(𝛼𝑛)𝑘𝐹(𝛼𝑛) = 0.
Theorem 13 (see [27]). Let (Θ, 𝑑) be a metric space. Assume𝑓, 𝑔 : Θ → Θ and 𝐹, 𝐺 : Θ × Θ → 𝐶𝐵(Θ) to be a mapping
satisfying the following.
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(a) (𝐹, 𝑓) and (𝐺, 𝑔) satisfy the common (EA) property.

(b) For all 𝑥, 𝑦, 𝑢, V ∈ Θ, there exist some 𝜑 ∈ Φ and some𝜓 ∈ Ψ such that

𝜑(𝐻 (𝐹 (𝑥, 𝑦) , 𝐺 (𝑢, V)) + 𝐻 (𝐹 (𝑦, 𝑥) , 𝐺 (V, 𝑢))2 )
≤ 𝜑(𝑑 (𝑓𝑥, 𝑔𝑢) + 𝑑 (𝑓𝑦, 𝑔V)2 )

− 𝜓(𝑑 (𝑓𝑥, 𝑔𝑢) + 𝑑 (𝑓𝑦, 𝑔V)2 ) .
(4)

(c) 𝑓(Θ) and 𝑔(Θ) are closed subsets of Θ. Then

(𝐴1) (𝑔, 𝐺) have coupled coincidence point.
(𝐴2) (𝑓, 𝐹) have coupled coincidence point.
(𝐴3) If 𝑔 is 𝐺− weakly commuting at (𝑤1, 𝑤2) and𝑔2𝑤1 = 𝑔𝑤1, 𝑔2𝑤2 = 𝑔𝑤2 for (𝑤1, 𝑤2) ∈𝐶(𝐺, 𝑔), then 𝐺 and 𝑔 have a common coupled

fixed point.
(𝐴4) If 𝑓 is 𝐹− weakly commuting at (𝑧1, 𝑧2) and𝑓2𝑧1 = 𝑓𝑧1, 𝑓2𝑧2 = 𝑓𝑧2 for (𝑧1, 𝑧2) ∈ 𝐶(𝐹, 𝑓),

then 𝐹 and𝑓 have a common coupled fixed point.
(𝐴5) 𝐹, 𝐺, 𝑓, and 𝑔 have common coupled fixed point

if (𝐴3) and (𝐴4) are true.
Theorem 14 (see [27]). Let (Θ, 𝑑) be a metric space. Assume𝑓, 𝑔 : Θ → Θ and 𝐹, 𝐺 : Θ × Θ → 𝐶𝐵(Θ) to be mappings
satisfying (𝑎) and (𝑏) of Theorem 13 and

(1) (𝐹, 𝑓) and (𝐺, 𝑔) are w-compatible.

(2) Suppose that either 𝑔(Θ) is closed subset ofΘ or 𝐺(Θ×Θ) ⊆ 𝑓(Θ) or 𝑓(Θ) is closed subset of Θ and 𝐹(Θ ×Θ) ⊆ 𝑔(Θ). Then 𝐹, 𝐺, 𝑓, 𝑔 have a common coupled
fixed point.

2. Main Results

Wedefine theCLR property for the study of common coupled
fixed point in the following way in metric space.

Definition 15. Mappings 𝑓 : Θ → Θ and 𝑆 : Θ × Θ →𝐶𝐵(Θ) onmetric space (Θ, 𝑑) are to satisfy the common limit
in the range of 𝑓 with respect to 𝑆 (shortly, the (𝐶𝐿𝑅𝑓)-
property with respect to S) if there exist sequences {𝜉𝑛} and{𝜁𝑛} in Θ and Ω1, Ω2 ∈ 𝐶𝐵(Θ) such that, for some 𝑢 ∈ Θ,
we have lim𝑛→∞𝑓𝜉𝑛 = 𝑢 = 𝑓𝜉 ∈ Ω1 = lim𝑛→∞𝑆(𝜉𝑛, 𝜁𝑛),
lim𝑛→∞𝑓𝜁𝑛 = V = 𝑓𝜁 ∈ Ω2 = lim𝑛→∞𝑆(𝜁𝑛, 𝜉𝑛).
Definition 16. Let𝑓, 𝑔 : Θ → Θ and 𝑇, 𝐺 : Θ×Θ → 𝐶𝐵(Θ)
be mappings on metric space (Θ, 𝑑). Then (𝑇, 𝑓) and (𝐺, 𝑔)

have (𝐶𝐿𝑅)-property, if there exist sequences {𝑥𝑛}, {𝑦𝑛}{𝑢𝑛}
and {V𝑛} and 𝐶1, 𝐶2, 𝐷1, 𝐷2 ∈ 𝐶𝐵(Θ) such that

lim
𝑛→∞

𝑇 (𝑥𝑛, 𝑦𝑛) = 𝐶1,
lim
𝑛→∞

𝐺 (𝑢𝑛, V𝑛) = 𝐶2,
lim
𝑛→∞

𝑓𝑥𝑛 = 𝑓𝑧1 ∈ 𝐶1,
lim
𝑛→∞

𝑔𝑢𝑛 = 𝑔𝑧1 ∈ 𝐶2,
lim
𝑛→∞

𝑇 (𝑦𝑛, 𝑥𝑛) = 𝐷1,
lim
𝑛→∞

𝐺 (V𝑛, 𝑢𝑛) = 𝐷2,
lim
𝑛→∞

𝑓𝑦𝑛 = 𝑓𝑧2 ∈ 𝐷1,
lim
𝑛→∞

𝑔V𝑛 = 𝑔𝑧2 ∈ 𝐷2,

(5)

for some 𝑧1, 𝑧2 ∈ Θ.

Example 17. Let Θ = [0,∞) with the usual metric. Define𝑓, 𝑔 : Θ → Θ and 𝐹, 𝐺 : Θ × Θ → 𝐶𝐵(Θ) by 𝑓(𝑥) = 1 + 𝑥,𝑔(𝑥) = 𝑥/2, 𝐹(𝑥, 𝑦) = [1, 2 + 2𝑥 + 𝑦], 𝐺(𝑥, 𝑦) = [1, 2 + (3𝑥 +𝑦)/4], ∀𝑥, 𝑦 ∈ 𝑋.
Consider the sequences {𝑥𝑛} = {1+1/𝑛}, {𝑦𝑛} = {4+1/𝑛},{𝑢𝑛} = {1 − 1/𝑛}, {V𝑛} = {4 − 1/𝑛}.
Clearly lim𝑛→∞𝐹(𝑥𝑛, 𝑦𝑛) = [1, 8], lim𝑛→∞𝑓(𝑥𝑛) = 2 =𝑓(1) ∈ [1, 8], lim𝑛→∞𝐺(𝑢𝑛, V𝑛) = [1, 15/4], lim𝑛→∞𝑔(𝑢𝑛) =1/2 = 𝑔(1) ∈ [1, 15/4]. Further, lim𝑛→∞𝐹(𝑦𝑛, 𝑥𝑛) = [1, 11],

lim𝑛→∞𝑓(𝑦𝑛) = 5 = 𝑓(4) ∈ [1, 11], lim𝑛→∞𝐺(V𝑛, 𝑢𝑛) =[1, 21/4], lim𝑛→∞𝑔(V𝑛) = 2 = 𝑔(4) ∈ [1, 21/4]. Therefore(𝑓, 𝐹) and (𝑔, 𝐺) satisfy CLR property.

Example 18. AssumeΘ = [0, 1) to be endowed through usual
metric and 𝑓, 𝑔 : Θ → Θ, 𝑇, 𝑆 : Θ × Θ → 𝐶𝐵(Θ), define by

𝑓𝑥 = {{{{{
34 if 0 ≤ 𝑥 < 1279100 if 12 ≤ 𝑥 < 1,

𝑔𝑥 = {{{{{
34 if 0 ≤ 𝑥 < 121120 if 12 ≤ 𝑥 < 1,

𝑇 (𝑥, 𝑦) = {{{{{
[12, 34] if 0 ≤ 𝑥, 𝑦 < 12[34 , 45] Otherwise,

𝑆 (𝑥, 𝑦) = {{{{{
[35, 45] if 0 ≤ 𝑥, 𝑦 < 12[12 , 35] Otherwise.

(6)

Let {𝑥𝑛} = {1 − 1/𝑛}, where 𝑛 = 3, 4, 5, 6..., {𝑦𝑛} = {1 − 1/𝑛3},
where 𝑛 = 4, 5, 6... {𝑢𝑛} = {1/9 − 1/2𝑛}, where 𝑛 = 3, 4, 5, 6...,
and {V𝑛} = {1/4 − 1/𝑛}, where 𝑛 = 4, 5, 6....
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Clearly lim𝑛→∞𝑇(𝑥𝑛, 𝑦𝑛) = [3/4, 4/5], lim𝑛→∞𝑓(𝑥𝑛) =79/100 = 𝑓(1/2) ∈ [3/4, 4/5], lim𝑛→∞𝑆(𝑢𝑛, V𝑛) =[3/5, 4/5], lim𝑛→∞𝑔(𝑢𝑛) = 11/20 = 𝑔(1/2) ∈ [3/5, 4/5].
Further, lim𝑛→∞𝑇(𝑦𝑛, 𝑥𝑛) = [3/4, 4/5], lim𝑛→∞𝑓(𝑦𝑛) =79/100 = 𝑓(4/5) ∈ [3/4, 4/5], lim𝑛→∞𝑆(V𝑛, 𝑢𝑛) = [3/5, 4/5],

lim𝑛→∞𝑔(V𝑛) = 11/20 = 𝑔(4/5) ∈ [3/5, 4/5]. Therefore(𝑓, 𝐹) and (𝑔, 𝐺) satisfy CLR property.
Throughout the paper 𝐶𝐵(Θ) denote the set of all closed

and bounded subsets of Θ and

Φ = {𝜑 : R+ → R+, 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔, 𝑢𝑝𝑝𝑒𝑟 𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑡𝑖𝑛𝑒𝑜𝑢𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 lim
𝑠→𝑡+

𝜑 (𝑠) < 𝜑 (𝑡) , 𝜑 (𝑡) < 𝑡, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0} . (7)

Theorem 19. Let 𝑓, 𝑔 : Θ → Θ and 𝑇, 𝐺 : Θ ×Θ → 𝐶𝐵(Θ)
be maps on metric space (Θ, 𝑑). Suppose that (𝑇, 𝑓) and (𝐺, 𝑔)
have (𝐶𝐿𝑅)-property and furthermore assume that

𝜏 + 𝐹 (𝐻𝑝 (𝑇 (𝑥, 𝑦) , 𝐺 (𝑢, V)))
≤ 𝐹 (𝜑 (Θ (𝑥, 𝑦, 𝑢, V))) , (8)

where 𝐻(𝑇(𝑥, 𝑦), 𝐺(𝑢, V)) > 0 and
Θ(𝑥, 𝑦, 𝑢, V)

= 𝛼 [𝑑𝑝 (𝑓𝑥, 𝑔𝑢)]
+ 𝛽[𝑑𝑝 (𝑓𝑦, 𝑇 (𝑦, 𝑥)) 𝑑𝑝 (𝑔V, 𝐺 (V, 𝑢))1 + 𝑑𝑝 (𝑓𝑥, 𝑔𝑢) ]
+ 𝛾 [𝑑𝑝 (𝑓𝑥, 𝑇 (𝑥, 𝑦)) + 𝑑𝑝 (𝑔𝑢, 𝐺 (𝑢, V))]
+ 𝜎 [𝑑𝑝 (𝑓𝑦, 𝑇 (𝑦, 𝑥))] + 𝜂 [𝑑𝑝 (𝑔𝑢,𝐺 (𝑢, V))] .

(9)

Here, 𝜏 ∈ R+, 𝛼 + 𝛽 + 𝛾 + 𝜎 + 𝜂 ≤ 1, 𝑝 ≥ 1, 𝐹 ∈ 𝐹𝑠 and 𝜑 ∈ Φ.
Then the following holds.

(𝐴1) (𝑔, 𝐺) have coupled coincidence point.
(𝐴2) (𝑓, 𝑇) have coupled coincidence point.
(𝐴3) If 𝑔 is 𝐺− weakly commuting at (𝑤1, 𝑤2) and 𝑔2𝑤1 =𝑔𝑤1, 𝑔2𝑤2 = 𝑔𝑤2 for (𝑤1, 𝑤2) ∈ 𝐶(𝐺, 𝑔), then 𝐺 and𝑔 have a common coupled fixed point.

(𝐴4) If 𝑓 is 𝑇− weakly commuting at (𝑧1, 𝑧2) and 𝑓2𝑧1 =𝑓𝑧1, 𝑓2𝑧2 = 𝑓𝑧2 for (𝑧1, 𝑧2) ∈ 𝐶(𝑇, 𝑓). Then 𝑇 and 𝑓
have a common coupled fixed point.

(𝐴5) 𝑇, 𝐺, 𝑓, and 𝑔 have common coupled fixed point if (𝐴3)
and (𝐴4) are true.

Proof. Since (𝑇, 𝑓) and (𝐺, 𝑔) have (𝐶𝐿𝑅)-property, there-
fore there exist sequences {𝑥𝑛}, {𝑦𝑛} {𝑢𝑛} and {V𝑛} and𝐶1, 𝐶2, 𝐷1, 𝐷2 ∈ 𝐶𝐵(Θ) such that

lim
𝑛→∞

𝑇 (𝑥𝑛, 𝑦𝑛) = 𝐶1,
lim
𝑛→∞

𝐺 (𝑢𝑛, V𝑛) = 𝐶2,
lim
𝑛→∞

𝑓𝑥𝑛 = 𝑓𝑧1 ∈ 𝐶1,
lim
𝑛→∞

𝑔𝑢𝑛 = 𝑔𝑧1 ∈ 𝐶2,
lim
𝑛→∞

𝑇 (𝑦𝑛, 𝑥𝑛) = 𝐷1,
lim
𝑛→∞

𝐺 (V𝑛, 𝑢𝑛) = 𝐷2,
lim
𝑛→∞

𝑓𝑦𝑛 = 𝑓𝑧2 ∈ 𝐷1,
lim
𝑛→∞

𝑔V𝑛 = 𝑔𝑧2 ∈ 𝐷2.

(10)

Putting 𝑥 = 𝑥𝑛, 𝑦 = 𝑦𝑛, 𝑢 = 𝑢𝑛, V = V𝑛 in inequality (8), we
have

𝜏 + 𝐹 (𝐻𝑝 (𝑇 (𝑥𝑛, 𝑦𝑛) , 𝐺 (𝑢𝑛, V𝑛)))
≤ 𝐹 (𝜑 (Θ (𝑥𝑛, 𝑦𝑛, 𝑢𝑛, V𝑛))) , (11)

where

Θ (𝑥𝑛, 𝑦𝑛, 𝑢𝑛, V𝑛)
= 𝛼 [𝑑𝑝 (𝑓𝑥𝑛, 𝑔𝑢𝑛)]

+ 𝛽 [𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) 𝑑𝑝 (𝑔V𝑛, 𝐺 (V𝑛, 𝑢𝑛))1 + 𝑑𝑝 (𝑓𝑥𝑛, 𝑔𝑢𝑛) ]
+ 𝛾 [𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) + 𝑑𝑝 (𝑔𝑢𝑛, 𝐺 (𝑢𝑛, V𝑛))]
+ 𝜎 [𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛))]
+ 𝜂 [𝑑𝑝 (𝑔𝑢𝑛, 𝐺 (𝑢𝑛, V𝑛))] .

(12)

Applying limit to Θ, we have
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lim
𝑛→∞

Θ(𝑥𝑛, 𝑦𝑛, 𝑢𝑛, V𝑛)
= 𝛼 [𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1)]

+ 𝛽 [𝑑𝑝 (𝑓𝑧2, 𝐷1) 𝑑𝑝 (𝑔𝑧2, 𝐷2)1 + 𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1) ]
+ 𝛾 [𝑑𝑝 (𝑓𝑧1, 𝐶1) + 𝑑𝑝 (𝑔𝑧1, 𝐶2)]
+ 𝜎 [𝑑𝑝 (𝑓𝑧2, 𝐷1)] + 𝜂 [𝑑𝑝 (𝑔𝑧1, 𝐶2)] ,

(13)

which implies that

lim
𝑛→∞

Θ(𝑥𝑛, 𝑦𝑛, 𝑢𝑛, V𝑛) = 𝛼 (𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1)) . (14)

Applying limit to (11) and using (14), we have

𝜏 + 𝐹 (𝐻𝑝 (𝐶1, 𝐶2)) ≤ 𝐹 (𝜑 (𝛼 (𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1)))) , (15)

which implies that

𝐹 (𝐻𝑝 (𝐶1, 𝐶2)) ≤ 𝐹 (𝜑 (𝛼 (𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1)))) . (16)

Using definitions of 𝐹 and 𝜑, we have
𝐻𝑝 (𝐶1, 𝐶2) ≤ 𝛼 (𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1)) . (17)

But 𝛼 ≤ 1 and using Lemma 11

𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1) ≤ 𝐻𝑝 (𝐶1, 𝐶2) < 𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1) , (18)

which is contradiction. Hence, 𝑑𝑝(𝑓𝑧1, 𝑔𝑧1) = 0. Therefore

𝑓𝑧1 = 𝑔𝑧1. (19)

Putting 𝑥 = 𝑦𝑛, 𝑦 = 𝑥𝑛, 𝑢 = V𝑛, V = 𝑢𝑛 in inequality (8), we
have

𝜏 + 𝐹 (𝐻𝑝 (𝑇 (𝑦𝑛, 𝑥𝑛) , 𝐺 (V𝑛, 𝑢𝑛)))
≤ 𝐹 (𝜑 (Θ (𝑦𝑛, 𝑥𝑛, V𝑛, 𝑢𝑛))) , (20)

where

Θ(𝑦𝑛, 𝑥𝑛, V𝑛, 𝑢𝑛)
= 𝛼 [𝑑𝑝 (𝑓𝑦𝑛, 𝑔V𝑛)]

+ 𝛽 [𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) 𝑑𝑝 (𝑔𝑢𝑛, 𝐺 (𝑢𝑛, V𝑛))1 + 𝑑𝑝 (𝑓𝑦𝑛, 𝑔V𝑛) ]
+ 𝛾 [𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) + 𝑑𝑝 (𝑔V𝑛, 𝐺 (V𝑛, 𝑢𝑛))]
+ 𝜎 [𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛))]
+ 𝜂 [𝑑𝑝 (𝑔V𝑛, 𝐺 (V𝑛, 𝑢𝑛))] .

(21)

Applying limit to Θ, we have

lim
𝑛→∞

Θ(𝑦𝑛, 𝑥𝑛, V𝑛, 𝑢𝑛)
= 𝛼 [𝑑𝑝 (𝑓𝑧2, 𝑔𝑧2)]

+ 𝛽 [𝑑𝑝 (𝑓𝑧1, 𝐶1) 𝑑𝑝 (𝑔𝑧1, 𝐶2)1 + 𝑑𝑝 (𝑓𝑧2, 𝑔𝑧2) ]
+ 𝛾 [𝑑𝑝 (𝑓𝑧2, 𝐷1) + 𝑑𝑝 (𝑔𝑧2, 𝐷2)]
+ 𝜎 [𝑑𝑝 (𝑓𝑧1, 𝐶1)] + 𝜂 [𝑑𝑝 (𝑔𝑧2, 𝐷2)] .

(22)

lim
𝑛→∞

Θ(𝑦𝑛, 𝑥𝑛, V𝑛, 𝑢𝑛) = 𝛼 (𝑑𝑝 (𝑓𝑧2, 𝑔𝑧2)) . (23)

Applying limit to (20) and using (23), we have

𝑓𝑧2 = 𝑔𝑧2. (24)

Putting 𝑥 = 𝑦𝑛, 𝑦 = 𝑥𝑛, 𝑢 = 𝑧1, V = 𝑧2 in inequality (8), we
have

𝜏 + 𝐹 (𝐻𝑝 (𝑇 (𝑥𝑛, 𝑦𝑛) , 𝐺 (𝑧1, 𝑧2)))
≤ 𝐹 (𝜑 (Θ (𝑥𝑛, 𝑦𝑛, 𝑧1, 𝑧2))) , (25)

where

Θ(𝑥𝑛, 𝑦𝑛, 𝑧1, 𝑧2)
= 𝛼 [𝑑𝑝 (𝑓𝑥𝑛, 𝑔𝑧1)]

+ 𝛽 [𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))1 + 𝑑𝑝 (𝑓𝑥𝑛, 𝑔𝑧1) ]
+ 𝛾 [𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) + 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))]
+ 𝜎 [𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛))]
+ 𝜂 [𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))] .

(26)

Applying limit to Θ, we have

lim
𝑛→∞

Θ(𝑥𝑛, 𝑦𝑛, 𝑧1, 𝑧2)
= 𝛼 [𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1)]

+ 𝛽 [𝑑𝑝 (𝑓𝑧2, 𝐷1) 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))1 + 𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1) ]
+ 𝛾 [𝑑𝑝 (𝑓𝑧1, 𝐶1) + 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))]
+ 𝜎 [𝑑𝑝 (𝑓𝑧2, 𝐷1)] + 𝜂 [𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))] ,

(27)

which implies that

lim
𝑛→∞

Θ (𝑥𝑛, 𝑦𝑛, 𝑧1, 𝑧2)
= 𝛾 [𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))]

+ 𝜂 [𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))] ,
(28)



6 Journal of Function Spaces

and we get

lim
𝑛→∞

Θ(𝑥𝑛, 𝑦𝑛, 𝑧1, 𝑧2)
= (𝛾 + 𝜂) (𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))) . (29)

Applying limit to (25) and using (29), we get

𝜏 + 𝐹 (𝐻𝑝 (𝐶1, 𝐺 (𝑧1, 𝑧2)))
≤ 𝐹 (𝜑 ((𝛾 + 𝜂) (𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))))) , (30)

which implies that

𝐹 (𝐻𝑝 (𝐶1, 𝐺 (𝑧1, 𝑧2)))
≤ 𝐹 (𝜑 ((𝛾 + 𝜂) (𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))))) . (31)

Using definitions of 𝐹 and 𝜑 and using Lemma 9, we have

𝐻𝑝 (𝐶1, 𝐺 (𝑧1, 𝑧2)) ≤ (𝛾 + 𝜂) (𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))) , (32)

which implies that

𝑔𝑧1 ∈ 𝐺 (𝑧1, 𝑧2) . (33)

Putting 𝑥 = 𝑦𝑛, 𝑦 = 𝑥𝑛, 𝑢 = 𝑧2, V = 𝑧1 in inequality (8),
we have

𝜏 + 𝐹 (𝐻𝑝 (𝑇 (𝑦𝑛, 𝑥𝑛) , 𝐺 (𝑧2, 𝑧1)))
≤ 𝐹 (𝜑 (Θ (𝑦𝑛, 𝑥𝑛, 𝑧2, 𝑧1))) , (34)

where

Θ(𝑦𝑛, 𝑥𝑛, 𝑧2, 𝑧1)
= 𝛼 [𝑑𝑝 (𝑓𝑦𝑛, 𝑔𝑧2)]

+ 𝛽 [𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))1 + 𝑑𝑝 (𝑓𝑦𝑛, 𝑔𝑧2) ]
+ 𝛾 [𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) + 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))]
+ 𝜎 [𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛))]
+ 𝜂 [𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))] .

(35)

Applying limit to Θ, we have

lim
𝑛→∞

Θ(𝑦𝑛, 𝑥𝑛, 𝑧2, 𝑧1)
= 𝛼 [𝑑𝑝 (𝑓𝑧2, 𝑔𝑧2)]

+ 𝛽 [𝑑𝑝 (𝑓𝑧1, 𝐶1) 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))1 + 𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1) ]
+ 𝛾 [𝑑𝑝 (𝑓𝑧1, 𝐶1) + 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))]
+ 𝜎 [𝑑𝑝 (𝑓𝑧1, 𝐶1)] + 𝜂 [𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))] ,

(36)

which implies that

lim
𝑛→∞

Θ(𝑦𝑛, 𝑥𝑛, 𝑧2, 𝑧1)
= 𝛾 [𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))]

+ 𝜂 [𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))] ,
(37)

lim
𝑛→∞

Θ(𝑦𝑛, 𝑥𝑛, 𝑧2, 𝑧1)
= (𝛾 + 𝜂) (𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))) . (38)

Applying limit to (25) and using (38), we get

𝜏 + 𝐹 (𝐻𝑝 (𝐶1, 𝐺 (𝑧2, 𝑧1)))
≤ 𝐹 (𝜑 ((𝛾 + 𝜂) (𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))))) , (39)

which implies that

𝐹 (𝐻𝑝 (𝐶1, 𝐺 (𝑧2, 𝑧1)))
≤ 𝐹 (𝜑 ((𝛾 + 𝜂) (𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))))) . (40)

Using definitions of 𝐹 and 𝜑 and using Lemma 9, we have

𝐻𝑝 (𝐶1, 𝐺 (𝑧2, 𝑧1)) ≤ (𝛾 + 𝜂) (𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))) , (41)

and we obtained

𝑔𝑧2 ∈ 𝐺 (𝑧2, 𝑧1) . (42)

Similarly by putting 𝑥 = 𝑧1, 𝑦 = 𝑧2 and 𝑢 = 𝑢𝑛, V = V𝑛 and𝑥 = 𝑧2, 𝑦 = 𝑧1 and 𝑢 = V𝑛, V = 𝑢𝑛 we can obtained

𝑓𝑧1 ∈ 𝑇 (𝑧1, 𝑧2) (43)

and

𝑓𝑧2 ∈ 𝑇 (𝑧2, 𝑧1) . (44)

Since 𝑔 and 𝐺-weakly are commuting then 𝑔2𝑧1 ∈𝐺(𝑓𝑧1, 𝑔𝑧2), 𝑔2𝑧2 ∈ 𝐺(𝑓𝑧2, 𝑓𝑧1). Since 𝑔2𝑧1 = 𝑔𝑧1, 𝑔2𝑧2 =𝑔𝑧2. Thus (𝑔𝑧1, 𝑔𝑧2) is a common fixed point. A similar
argument proves (𝐴4). Then using (𝐴3) and (𝐴4), (𝐴5) hold
immediately.

Theorem 20. Let 𝑓, 𝑔 : Θ → Θ and 𝑇,𝐺 : Θ×Θ → 𝐶𝐵(Θ)
are mapping on metric space (Θ, 𝑑). Furthermore assume that(𝑇, 𝑓) and (𝐺, 𝑔) have (𝐶𝐿𝑅)-property and

𝜏 + 𝐹 (𝐻𝑝 (𝑇 (𝑥, 𝑦) , 𝐺 (𝑢, V)))
≤ 𝐹 (𝜑 (Θ (𝑥, 𝑦, 𝑢, V))) , (45)

where 𝐻(𝑇(𝑥, 𝑦), 𝐺(𝑢, V)) > 0 and
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Θ(𝑥, 𝑦, 𝑢, V) = max{𝑑𝑝 (𝑓𝑥, 𝑇 (𝑥, 𝑦)) ,
𝑑𝑝 (𝑔𝑢,𝐺 (𝑢, V)) , 𝑑𝑝 (𝑓𝑥, 𝑔𝑢) ,
𝑑𝑝 (𝑓𝑥, 𝑇 (𝑥, 𝑦)) + 𝑑𝑝 (𝑔𝑢, 𝐺 (𝑢, V))2 ,
𝑑𝑝 (𝑓𝑦, 𝑇 (𝑦, 𝑥)) 𝑑𝑝 (𝑔V, 𝐺 (V, 𝑢))1 + 𝑑𝑝 (𝑓𝑥, 𝑔𝑢) ,
𝑑𝑝 (𝑔V, 𝐺 (V, 𝑢)) 𝑑𝑝 (𝑓𝑦, 𝑇 (𝑦, 𝑥))1 + 𝑑𝑝 (𝑓𝑥, 𝑓𝑢) ,
𝑑𝑝 (𝑓𝑥, 𝑇 (𝑥, 𝑦)) 𝑑𝑝 (𝑔𝑢,𝐺 (𝑢, V))1 + 𝐷𝑝 (𝑇 (𝑥, 𝑦) , 𝐺 (𝑢, V)) } .

(46)

Here, 𝜏 ∈ R+, 𝑝 ≥ 1, 𝐹 ∈ 𝐹𝑠, and 𝜑 ∈ Φ. Then the following
holds.

(𝐴1) (𝑔, 𝐺) have coupled coincidence point.
(𝐴2) (𝑓, 𝑇) have coupled coincidence point.
(𝐴3) If 𝑔 is 𝐺 weakly commuting at (𝑤1, 𝑤2) and 𝑔2𝑤1 =𝑔𝑤1, 𝑔2𝑤2 = 𝑔𝑤2 for (𝑤1, 𝑤2) ∈ 𝐶(𝐺, 𝑔), then 𝐺 and𝑔 have a common coupled fixed point.

(𝐴4) If𝑓 is 𝑇 weakly commuting at (𝑧1, 𝑧2) and 𝑓2𝑧1 = 𝑓𝑧1,𝑓2𝑧2 = 𝑓𝑧2 for (𝑧1, 𝑧2) ∈ 𝐶(𝑇, 𝑓), then 𝑇 and 𝑓 have
a common coupled fixed point.

(𝐴5) 𝑇, 𝐺, 𝑓, and 𝑔 have common coupled fixed point if (𝐴3)
and (𝐴4) are true.

Proof. Since (𝑇, 𝑓) and (𝐺, 𝑔) have (𝐶𝐿𝑅)-property, there-
fore there exist sequences {𝑥𝑛}, {𝑦𝑛} {𝑢𝑛} and {V𝑛} and𝐶1, 𝐶2, 𝐷1, 𝐷2 ∈ 𝐶𝐵(Θ) such that

lim
𝑛→∞

𝑇 (𝑥𝑛, 𝑦𝑛) = 𝐶1,
lim
𝑛→∞

𝐺 (𝑢𝑛, V𝑛) = 𝐶2,
lim
𝑛→∞

𝑓𝑥𝑛 = 𝑓𝑧1 ∈ 𝐶1,
lim
𝑛→∞

𝑔𝑢𝑛 = 𝑔𝑧1 ∈ 𝐶2,
lim
𝑛→∞

𝑇 (𝑦𝑛, 𝑥𝑛) = 𝐷1,
lim
𝑛→∞

𝐺 (V𝑛, 𝑢𝑛) = 𝐷2,
lim
𝑛→∞

𝑓𝑦𝑛 = 𝑓𝑧2 ∈ 𝐷1,
lim
𝑛→∞

𝑔V𝑛 = 𝑔𝑧2 ∈ 𝐷2.

(47)

Putting 𝑥 = 𝑥𝑛, 𝑦 = 𝑦𝑛, 𝑢 = 𝑢𝑛, V = V𝑛 in inequality (45), we
get

𝜏 + 𝐹 (𝐻𝑝 (𝑇 (𝑥𝑛, 𝑦𝑛) , 𝐺 (𝑢𝑛, V𝑛)))
≤ 𝐹 (𝜑 (Θ (𝑥𝑛, 𝑦𝑛, 𝑢𝑛, V𝑛))) , (48)

where

Θ(𝑥𝑛, 𝑦𝑛, 𝑢𝑛, V𝑛) = max{𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) ,
𝑑𝑝 (𝑔𝑢𝑛, 𝐺 (𝑢𝑛, V𝑛)) , 𝑑𝑝 (𝑓𝑥𝑛, 𝑔𝑢𝑛) ,
𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) + 𝑑𝑝 (𝑔𝑢𝑛, 𝐺 (𝑢𝑛, V𝑛))2 ,
𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) 𝑑𝑝 (𝑔V𝑛, 𝐺 (V𝑛, 𝑢𝑛))1 + 𝑑𝑝 (𝑓𝑥𝑛, 𝑔𝑢𝑛) ,
𝑑𝑝 (𝑔V𝑛, 𝐺 (V𝑛, 𝑢𝑛)) 𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛))1 + 𝑑𝑝 (𝑓𝑥𝑛, 𝑓𝑢𝑛) ,
𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) 𝑑𝑝 (𝑔𝑢𝑛, 𝐺 (𝑢𝑛, V𝑛))1 + 𝐷𝑝 (𝑇 (𝑥𝑛, 𝑦𝑛) , 𝐺 (𝑢𝑛, V𝑛)) } .

(49)

Applying limit to Θ, we have

lim
𝑛→∞

Θ(𝑥𝑛, 𝑦𝑛, 𝑢𝑛, V𝑛) = max{𝑑𝑝 (𝑓𝑧1, 𝐶1) ,
𝑑𝑝 (𝑔𝑧2, 𝐶2) , 𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1) ,
𝑑𝑝 (𝑓𝑧1, 𝐶1) + 𝑑𝑝 (𝑔𝑧1, 𝐶2)2 ,
𝑑𝑝 (𝑓𝑧2, 𝐷1) 𝑑𝑝 (𝑔𝑧2, 𝐷2)1 + 𝑑𝑝 (𝑓𝑧1, 𝑔𝑧2) ,
𝑑𝑝 (𝑔𝑧2, 𝐷2) 𝑑𝑝 (𝑓𝑧2, 𝐷1)1 + 𝑑𝑝 (𝑓𝑧1, 𝑔𝑧2) ,
𝑑𝑝 (𝑓𝑧1, 𝐶1) 𝑑𝑝 (𝑔𝑧2, 𝐶2)1 + 𝐷𝑝 (𝐶1, 𝐶2) } .

(50)

lim
𝑛→∞

Θ(𝑥𝑛, 𝑦𝑛, 𝑢𝑛, V𝑛) = 𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1) . (51)

Applying limit to (48) and using (51) we can deduce that

𝜏 + 𝐹 (𝐻𝑝 (𝐶1, 𝐶2))
≤ 𝐹 ( lim
𝑛→∞

𝜑 (Θ (𝑥𝑛, 𝑦𝑛, 𝑢𝑛, V𝑛))) , (52)

which implies that

𝐹 (𝐻𝑝 (𝐶1, 𝐶2)) ≤ 𝐹 (𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1)) . (53)

Using definitions of 𝐹 and 𝜑, we have
𝐻𝑝 (𝐶1, 𝐶2) ≤ 𝜑 (𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1)) . (54)

Using Lemma 11, we have

𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1) ≤ 𝐻𝑝 (𝐶1, 𝐶2) ≤ 𝜑 (𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1)) . (55)

Thus, we have

𝑓𝑧1 = 𝑔𝑧1. (56)
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Similarly by taking 𝑥 = 𝑦𝑛, 𝑦 = 𝑥𝑛, 𝑢 = V𝑛, V = 𝑢𝑛 in
inequality (45) we get

𝜏 + 𝐹 (𝐻𝑝 (𝑇 (𝑦𝑛, 𝑥𝑛) , 𝐺 (V𝑛, 𝑢𝑛)))
≤ 𝐹 (𝜑 (Θ (𝑦𝑛, 𝑥𝑛, V𝑛, 𝑢𝑛))) , (57)

where

Θ(𝑦𝑛, 𝑥𝑛, V𝑛, 𝑢𝑛) = max{𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) ,
𝑑𝑝 (𝑔V𝑛, 𝐺 (V𝑛, 𝑢𝑛)) , 𝑑𝑝 (𝑓𝑦𝑛, 𝑔V𝑛) ,
𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) + 𝑑𝑝 (𝑔V𝑛, 𝐺 (V𝑛, 𝑢𝑛))2 ,
𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) 𝑑𝑝 (𝑔𝑢𝑛, 𝐺 (𝑢𝑛, V𝑛))1 + 𝑑𝑝 (𝑓𝑦𝑛, 𝑔V𝑛) ,
𝑑𝑝 (𝑔𝑢𝑛, 𝐺 (𝑢𝑛, V𝑛)) 𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)))1 + 𝑑𝑝 (𝑓𝑦𝑛, 𝑓V𝑛) ,
𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) 𝑑𝑝 (𝑔V𝑛, 𝐺 (V𝑛, 𝑢𝑛)1 + 𝐷𝑝 (𝑇 (𝑦𝑛, 𝑥𝑛) , 𝐺 (V𝑛, 𝑢𝑛)) } .

(58)

Applying limit to Θ we have

lim
𝑛→∞

Θ (𝑦𝑛, 𝑥𝑛, V𝑛, 𝑢𝑛) = max{𝑑𝑝 (𝑓𝑧2, 𝐷1) ,
𝑑𝑝 (𝑔𝑧2, 𝐷2) , 𝑑𝑝 (𝑓𝑧2, 𝑔𝑧2) ,
𝑑𝑝 (𝑓𝑧2, 𝐷1) + 𝑑𝑝 (𝑔𝑧2, 𝐷2)2 ,
𝑑𝑝 (𝑓𝑧1, 𝐶1) 𝑑𝑝 (𝑔𝑧2, 𝐶2)1 + 𝑑𝑝 (𝑓𝑧2, 𝑔𝑧2) ,
𝑑𝑝 (𝑔𝑧2, 𝐶2) 𝑑𝑝 (𝑓𝑧1, 𝐶1)1 + 𝑑𝑝 (𝑓𝑧2, 𝑔𝑧2) ,
𝑑𝑝 (𝑓𝑧2, 𝐷1) 𝑑𝑝 (𝑔𝑧2, 𝐷2)1 + 𝐷𝑝 (𝐷1, 𝐷2) } ,

(59)

lim
𝑛→∞

Θ (𝑦𝑛, 𝑥𝑛, V𝑛, 𝑢𝑛) = 𝑑𝑝 (𝑓𝑧2, 𝑔𝑧2) . (60)

Applying limit to (57) and using (60) we can deduce that

𝑓𝑧2 = 𝑔𝑧2. (61)

By taking 𝑥 = 𝑥𝑛, 𝑦 = 𝑦𝑛, 𝑢 = 𝑧1, V = 𝑧2 in inequality
(45), we get

𝜏 + 𝐹 (𝐻𝑝 (𝑇 (𝑥𝑛, 𝑦𝑛) , 𝐺 (𝑧1, 𝑧2)))
≤ 𝐹 (𝜑 (Θ (𝑥𝑛, 𝑦𝑛, 𝑧1, 𝑧2))) , (62)

where

Θ(𝑥𝑛, 𝑦𝑛, 𝑧1, 𝑧2) = max{𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) ,
𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2)) , 𝑑𝑝 (𝑓𝑥𝑛, 𝑔𝑧1) ,
𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) + 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))2 ,
𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))1 + 𝑑𝑝 (𝑓𝑥𝑛, 𝑔𝑧1) ,
𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1)) 𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛))1 + 𝑑𝑝 (𝑓𝑥𝑛, 𝑓𝑧1) ,
𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))1 + 𝐷𝑝 (𝑇 (𝑥𝑛, 𝑦𝑛) , 𝐺 (𝑧1, 𝑧2)) } .

(63)

Applying limit to Θ, we have

lim
𝑛→∞

Θ(𝑥𝑛, 𝑦𝑛, 𝑧1, 𝑧2) = max{𝑑𝑝 (𝑓𝑧1, 𝐶1) ,
𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2)) , 𝑑𝑝 (𝑓𝑧1, 𝑔𝑧1) ,
𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) + 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))2 ,
𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))1 + 𝑑𝑝 (𝑓𝑥𝑛, 𝑔𝑧1) ,
𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1)) 𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛))1 + 𝑑𝑝 (𝑓𝑥𝑛, 𝑓𝑧1) ,
𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))1 + 𝐷𝑝 (𝑇 (𝑥𝑛, 𝑦𝑛) , 𝐺 (𝑧1, 𝑧2)) } ,

(64)

lim
𝑛→∞

Θ(𝑥𝑛, 𝑦𝑛, 𝑧1, 𝑧2) = 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2)) . (65)

Applying limit to (62) using (65), we have

𝑔𝑧1 ∈ 𝐺 (𝑧1, 𝑧2) . (66)

By taking 𝑥 = 𝑦𝑛, 𝑦 = 𝑥𝑛, 𝑢 = 𝑧2, V = 𝑧1 in inequality (45) we
get

𝜏 + 𝐹 (𝐻𝑝 (𝑇 (𝑦𝑛, 𝑥𝑛) , 𝐺 (𝑧2, 𝑧1)))
≤ 𝐹 (𝜑 (Θ (𝑦𝑛, 𝑥𝑛, 𝑧2, 𝑧1))) (67)

where
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Θ(𝑦𝑛, 𝑥𝑛, 𝑧2, 𝑧1) = max{𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) ,
𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1)) , 𝑑𝑝 (𝑓𝑦𝑛, 𝑔𝑧2) ,
𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) + 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))2 ,
𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛)) 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))1 + 𝑑𝑝 (𝑓𝑦𝑛, 𝑔𝑧2) ,
𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2)) 𝑑𝑝 (𝑓𝑥𝑛, 𝑇 (𝑥𝑛, 𝑦𝑛))1 + 𝑑𝑝 (𝑓𝑦𝑛, 𝑓𝑧2) ,
𝑑𝑝 (𝑓𝑦𝑛, 𝑇 (𝑦𝑛, 𝑥𝑛)) 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))1 + 𝐷𝑝 (𝑇 (𝑦𝑛, 𝑥𝑛) , 𝐺 (𝑧2, 𝑧1)) } .

(68)

Applying limit to Θ, we have

lim
𝑛→∞

Θ(𝑦𝑛, 𝑥𝑛, 𝑧2, 𝑧2) = max{𝑑𝑝 (𝑓𝑧2, 𝐶2) ,
𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1)) , 𝑑𝑝 (𝑓𝑧2, 𝑔𝑧2) ,
𝑑𝑝 (𝑓𝑧2, 𝐶2) + 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))2 ,
𝑑𝑝 (𝑓𝑧1, 𝐶1) 𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2))1 + 𝑑𝑝 (𝑓𝑧2, 𝑔𝑧2) ,
𝑑𝑝 (𝑔𝑧1, 𝐺 (𝑧1, 𝑧2)) 𝑑𝑝 (𝑓𝑧1, 𝐶1)1 + 𝑑𝑝 (𝑓𝑧2, 𝑓𝑧2) ,
𝑑𝑝 (𝑓𝑧2, 𝐶2) 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1))1 + 𝐷𝑝 (𝐶2, 𝐺 (𝑧1, 𝑧2)) } ,

(69)

lim
𝑛→∞

Θ(𝑥𝑛, 𝑦𝑛, 𝑧1, 𝑧2) = 𝑑𝑝 (𝑔𝑧2, 𝐺 (𝑧2, 𝑧1)) . (70)

Applying limit to (67) using (70), we have

𝑔𝑧2 ∈ 𝐺 (𝑧2, 𝑧1) . (71)

Following the similar line of Theorem 19 we can obtain that𝑇,𝐺, 𝑓, and 𝑔 have common coupled fixed point.

Example 21. Let Θ = (−10, 10) with the usual metric. Define𝑇,𝐺 : Θ × Θ → 𝐶𝐵(Θ), 𝑓, 𝑔 : Θ → Θ, 𝜑 : R+ → R+

and 𝐹 : R+ → R by 𝑇(𝑥, 𝑦) = [−5, 1 + 𝛼𝑥/4], 𝐺(𝑥, 𝑦) =[−5, 1 + (𝛼/6)𝑥], 𝑓(𝑥) = 𝑥/2, 𝑔(𝑥) = 𝑥/3 ∀𝑥, 𝑦 ∈ Θ, 𝜑(𝑡) =𝛼𝑡, 0 < 𝛼 < 1 and 𝐹 = ln(𝑥).
Consider the sequences {𝑥𝑛} = {1+1/𝑛}, {𝑦𝑛} = {2−3/𝑛2},{𝑢𝑛} = {1 − 1/𝑛}, {V𝑛} = {2 − 2/𝑛}.
Now,

lim
𝑛→∞

𝑇 (𝑥𝑛, 𝑦𝑛) = [−5, 1 + 𝛼4 ] ,
lim
𝑛→∞

𝑓 (𝑥𝑛) = 12 = 𝑓 (1) ∈ [−5, 1 + 𝛼4 ] .
lim
𝑛→∞

𝐺 (𝑢𝑛, V𝑛) = [−5, 1 + 𝛼6 ] ,
lim
𝑛→∞

𝑔 (𝑢𝑛) = 13 = 𝑔 (1) ∈ [−5, 1 + 𝛼6 ] .
lim
𝑛→∞

𝑇 (𝑦𝑛, 𝑥𝑛) = [−5, 1 + 𝛼2 ] ,
lim
𝑛→∞

𝑓 (𝑦𝑛) = 1 = 𝑓 (2) ∈ [−5, 1 + 𝛼2 ] ,
lim
𝑛→∞

𝐺 (V𝑛, 𝑢𝑛) = [−5, 1 + 𝛼3 ] ,
lim
𝑛→∞

𝑔 (V𝑛) = 23 = 𝑔 (2) ∈ [−5, 1 + 𝛼3 ] .

(72)

Therefore (𝑓, 𝑇) and (𝑔, 𝐺) satisfy CLR property. Now,

𝐻(𝑇 (𝑥, 𝑦) , 𝐺 (𝑢, V)) = 𝐻([−5, 1 + 𝛼𝑥4 ] , [−5, 1
+ 𝛼𝑢6 ])
= max {𝑑 ([−5, 1 + 𝛼𝑥4 ] , [−5, 1 + 𝛼𝑢6 ]) ,
𝑑 ([−5, 1 + 𝛼𝑥6 ] , [−5, 1 + 𝛼𝑢4 ])} ,
= max {𝛼𝑥6 − 𝛼𝑢4

 , 0} , = 𝛼2 𝑑 (𝑔𝑥, 𝑓𝑢) = 12
⋅ 𝜑 (𝑑 (𝑔𝑥, 𝑓𝑢)) ≤ 12𝜑 (Θ (𝑥, 𝑦, 𝑢, V))
≤ 𝑒−1/6𝜑 (Θ (𝑥, 𝑦, 𝑢, V)) .

(73)

Taking logarithm on both sides and 𝑝 = 1, we conclude that
all the other conditions ofTheorem 19 are satisfied. Therefore𝑇,𝑓 and 𝐺, 𝑔 have common coupled fixed point.

Example 22. Let Θ = (−1,∞) with the usual metric. Define𝑇,𝐺 : Θ × Θ → 𝐶𝐵(Θ), 𝑓, 𝑔 : Θ → Θ, 𝜑 : R+ → R+, 𝐹 :
R+ → R by𝑇(𝑥, 𝑦) = [−0.5, 12+𝛼𝑥2],𝐺(𝑥, 𝑦) = [−0.5, 12+(3𝛼/2)𝑥2], 𝑓(𝑥) = 2𝑥2, 𝑔(𝑥) = 3𝑥2 ∀𝑥, 𝑦 ∈ Θ, 𝜑(𝑡) = 𝛼𝑡,0 < 𝛼 < 1 and 𝐹 = ln(𝑥).

Consider the sequences {𝑥𝑛} = {1+1/𝑛}, {𝑦𝑛} = {2−3/𝑛2},{𝑢𝑛} = {1 − 1/𝑛}, {V𝑛} = {2 − 2/𝑛}.
Now,
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lim
𝑛→∞

𝑇 (𝑥𝑛, 𝑦𝑛) = [−0.5, 12 + 𝛼] ,
lim
𝑛→∞

𝑓 (𝑥𝑛) = 2 = 𝑓 (1) ∈ [−0.5, 12 + 𝛼] .
lim
𝑛→∞

𝐺 (𝑢𝑛, V𝑛) = [−0.5, 12 + 32𝛼] ,
lim
𝑛→∞

𝑔 (𝑢𝑛) = 3 = 𝑔 (1) ∈ [−0.5, 12 + 32𝛼] .
lim
𝑛→∞

𝑇 (𝑦𝑛, 𝑥𝑛) = [−0.5, 12 + 4𝛼] ,
lim
𝑛→∞

𝑓 (𝑦𝑛) = 8 = 𝑓 (2) ∈ [−0.5, 12 + 4𝛼] ,
lim
𝑛→∞

𝐺 (V𝑛, 𝑢𝑛) = [−0.5, 12 + 6𝛼] ,
lim
𝑛→∞

𝑔 (V𝑛) = 12 = 𝑔 (2) ∈ [−0.5, 12 + 6𝛼] .

(74)

Therefore (𝑓, 𝑇) and (𝑔, 𝐺) satisfy CLR property. Now,

𝐻(𝑇 (𝑥, 𝑦) , 𝐺 (𝑢, V)) = 𝐻([−0.5, 12 + 𝛼𝑥2] ,
[−0.5, 12 + 3𝛼2 𝑢2]) = max {𝑑 ([−0.5, 12 + 𝛼𝑥2] ,
[−0.5, 12 + 3𝛼2 𝑢2]) , 𝑑 ([−0.5, 12 + 3𝛼2 𝑥2] ,
[−0.5, 12 + 𝛼𝑢2])} , = max {3𝛼2 𝑢2 − 𝛼𝑥2 , 0} ,
= 𝛼2 𝑑 (𝑔𝑢, 𝑓𝑥) = 12𝜑 (𝑑 (𝑔𝑢, 𝑓𝑥)) ≤ 12𝜑 (Θ (𝑥, 𝑦,
𝑢, V)) ≤ 𝑒−1/6𝜑 (Θ (𝑥, 𝑦, 𝑢, V)) .

(75)

Taking logarithm on both sides and 𝑝 = 1, we conclude that
all the other conditions ofTheorem 19 are satisfied. Therefore,𝑇,𝑓 and 𝐺, 𝑔 have common coupled fixed point.

Remark 23. From the above examples the following is clear.

(i) Theorem 13 is not applicable to Example 21 because𝑓(Θ) = (−5, 5) nor 𝑔(Θ) = (−10/3, 10/3) are closed.
(ii) Theorem 14 is not applicable to Example 22, because

neither 𝑇(Θ × Θ) ⊆ 𝑓(Θ) nor 𝐺 : (Θ × Θ) ⊆ 𝑔(Θ).
(iii) Similarly the main results of [43] Theorem 2.1 and

Theorem 2.6 are not applicable to the above examples

Next, we explain Example 27 of [27] to which our
Theorem 19 is also applicable.

Example 24. Let Θ = [0, 1], equipped with the metric 𝑑 :Θ × Θ → [0,∞) define by
𝑑 (𝑥, 𝑦) = {{{

max {𝑥, 𝑦} , for all 𝑥 ̸= 𝑦 ∈ Θ
𝑑 (𝑥, 𝑦) = 0, for all 𝑥 = 𝑦 ∈ Θ. (76)

Define 𝑇, 𝐺 : Θ × Θ → 𝐶𝐵(Θ), 𝑓, 𝑔 : Θ → Θ, 𝜑 : R+ →
R+ and 𝐹 : R+ → R by

𝑇 (𝑥, 𝑦) = {{{{{{{
{0} , if 𝑥, 𝑦 = 1
[0, 𝑥2 + 𝑦24 ] if 𝑥, 𝑦 ∈ [0, 1) ,

𝐺 (𝑥, 𝑦) = {{{{{
{0} , if 𝑥, 𝑦 = 1
[0, 𝑥 + 𝑦8 ] if 𝑥, 𝑦 ∈ [0, 1) ,

𝑓 (𝑥) = {{{{{
𝑥2, if 𝑥 ̸= 132 , if 𝑥 = 1,

𝑔 (𝑥) = {{{
𝑥2 , if 𝑥 ̸= 1
1, if 𝑥 = 1,

𝜑 (𝑡) = 𝑡2 .

(77)

And

𝐹 = ln(𝑥3) (78)

Consider the sequences {𝑥𝑛} = {1/𝑛}, {𝑦𝑛} = {3/𝑛2}, {𝑢𝑛} ={1/𝑛2}, {V𝑛} = {2/𝑛}.
Now,

lim
𝑛→∞

𝑇 (𝑥𝑛, 𝑦𝑛) = {0} ,
lim
𝑛→∞

𝑓 (𝑥𝑛) = 0 = 𝑓 (0) ∈ {0} .
lim
𝑛→∞

𝐺 (𝑢𝑛, V𝑛) = {0} ,
lim
𝑛→∞

𝑔 (𝑢𝑛) = 0 = 𝑔 (0) ∈ {0} .
lim
𝑛→∞

𝑇 (𝑦𝑛, 𝑥𝑛) = {0} ,
lim
𝑛→∞

𝑓 (𝑦𝑛) = 0 = 𝑓 (0) ∈ {0} ,
lim
𝑛→∞

𝐺 (V𝑛, 𝑢𝑛) = {0} ,
lim
𝑛→∞

𝑔 (V𝑛) = 0 = 𝑔 (0) ∈ {0} .

(79)

Therefore (𝑓, 𝑇) and (𝑔, 𝐺) satisfy CLR property.
Now for 𝑥, 𝑦, 𝑢, V ∈ [0, 1), we discuss the following cases.

Case 1. If (𝑥2 + 𝑦2)/4 = (𝑢 + V)/8, then
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13𝐻 (𝑇 (𝑥, 𝑦) , 𝐺 (𝑢, V)) = 13 𝑢 + V8
≤ 13 14 [max {𝑥2, 𝑢2} +max { V2 , 𝑢 + V8 }]
= 13 ((1/2) 𝑑 (𝑓𝑥, 𝑔𝑢) + (1/2) 𝑑 (𝑔V, 𝐺 (𝑢, V))2
= 13𝜑 (12 𝑑 (𝑓𝑥, 𝑔𝑢) + 12𝑑 (𝑔V, 𝐺 (𝑢, V))
= 13𝜑 (Θ (𝑥, 𝑦, 𝑢, V))
≈ 𝑒−0.000000001 13𝜑 (Θ (𝑥, 𝑦, 𝑢, V)) .

(80)

Case 2. If (𝑥2 +𝑦2)/4 ̸= (𝑢+ V)/8 and (𝑥2 +𝑦2)/4 < (𝑢+ V)/8,
then

13𝐻 (𝑇 (𝑥, 𝑦) , 𝐺 (𝑢, V)) = 13 𝑢 + V8
≤ 13 14 [max {𝑥2, 𝑢2 } +max {V2 , 𝑢 + V8 }]
= 13 ((1/2) 𝑑 (𝑓𝑥, 𝑔𝑢) + (1/2) 𝑑 (𝑔V, 𝐺 (𝑢, V))2
= 13𝜑 (12 𝑑 (𝑓𝑥, 𝑔𝑢) + 12𝑑 (𝑔V, 𝐺 (𝑢, V))
= 13𝜑 (Θ (𝑥, 𝑦, 𝑢, V))
≈ 𝑒−0.000000001 13𝜑 (Θ (𝑥, 𝑦, 𝑢, V)) .

(81)

Case 3. If (𝑥2 + 𝑦2)/4 > (𝑢 + V)/8, then
13𝐻 (𝑇 (𝑥, 𝑦) , 𝐺 (𝑢, V)) = 13 𝑥2 + 𝑦24

≤ 13 14 [max {𝑥2, 𝑢2 } +max{𝑦2, 𝑥2 + 𝑦24 }]
= 13 ((1/2) 𝑑 (𝑓𝑥, 𝑔𝑢) + (1/2) 𝑑 (𝑓𝑦, 𝑇 (𝑦, 𝑥))2
= 13𝜑 (12 𝑑 (𝑓𝑥, 𝑔𝑢) + 12𝑑 (𝑔V, 𝐺 (𝑢, V))
= 13𝜑 (Θ (𝑥, 𝑦, 𝑢, V))
≈ 𝑒−0.000000001 13𝜑 (Θ (𝑥, 𝑦, 𝑢, V)) ,

(82)

Similarly it is easy to show the same result for 𝑥, 𝑦 ∈ [0, 1) and𝑢, V = 1 and for 𝑥, 𝑦, 𝑢, V = 1. Taking logarithm on both sides
and 𝑝 = 1. we conclude that all conditions of ourTheorem 19
are satisfied. Therefore 𝑇, 𝑓 and 𝐺, 𝑔 have common coupled
fixed point.

Remark 25. (i) From Example 24 it is clear that all conditions
of our Theorem 19 are satisfied for Example 27 of [27] and
hence the corresponding conclusions hold.

3. Applications to System
of Functional Equations

In this section, we discuss common solution for two coupled
functional equations with the help of Theorem 19. Through-
out this unit 𝑍 and �̂� stand for Banach spaces, the state space
is 𝐸 ⊂ 𝑍, the decision space is 𝐹 ⊂ �̂�, and the space of all
bounded real-valued functions on 𝐸 is Θ = 𝐵(𝐸) which is
Banach space.

Define 𝑑 : Θ × Θ → R+, by

𝑑 (�́�1, �́�2) = sup
𝑥∈𝐸

�́�1 (𝑥) − �́�2 (𝑥) = �́�1 − �́�2 . (83)

Here,

‖�́�‖ = sup {|�́� (𝑥)| : 𝜅11 ∈ 𝐸} ∀�́� ∈ 𝐵 (𝐸) . (84)

Consider the following system

𝑔1 (𝜅11) = sup𝜅22∈𝐹 {𝜇 (𝜅11, 𝜅22)
+ Ψ1 (𝜅11, 𝜅22, 𝑔1 (𝑏1 (𝜅11, 𝜅22))) ,
𝑔2 (𝑏2 (𝜅11, 𝜅22)))} ∀𝜅11 ∈ 𝐸,

𝑔2 (𝜅11) = sup𝜅22∈𝐹 {𝜇 (𝜅11, 𝜅22)
+ Ψ2 (𝜅11, 𝜅22, 𝑔2 (𝑏2 (𝜅11, 𝜅22))) ,
𝑔1 (𝑏1 (𝜅11, 𝜅22)))} ∀𝜅11 ∈ 𝐸,

(85)

where 𝜇 : 𝐸 × 𝐹 → R, 𝑏𝑖 : 𝐸 × 𝐹 → 𝐸, Ψ𝑖 : 𝐸 × 𝐹 ×R → R

for 𝑖 = 1, 2 and 𝜅11, 𝜅22 denote the state vectors and decision
vectors, respectively, 𝑏1, 𝑏2 signify the transformations of
the process, and 𝑔1(𝜅11), 𝑔2(𝜅11) symbolized the sup return
functions under the initial state 𝜅11.

Let 𝑇, 𝐺 : 𝐵(𝐸) × 𝐵(𝐸) → 𝐵(𝐸), defined by

𝑇 (𝑔1, 𝑔2) (𝜅11) = sup𝜅22∈𝐹 {𝜇 (𝜅11, 𝜅22)
+ Ψ1 (𝜅11, 𝜅22, 𝑔1 (𝑏1 (𝜅11, 𝜅22))) ,
𝑔2 (𝑏2 (𝜅11, 𝜅22)))} ,

𝐺 (𝑔1, 𝑔2) (𝜅11) = sup𝜅22∈𝐹 {𝜇 (𝜅11, 𝜅22)
+ Ψ2 (𝜅11, 𝜅22, 𝑔2 (𝑏2 (𝜅11, 𝜅22))) ,
𝑔1 (𝑏1 (𝜅11, 𝜅22)))} .

(86)

Theorem 26. Assume 𝑇, 𝐺 : 𝐵(𝐸)×𝐵(𝐸) → 𝐵(𝐸) to be maps
given by (86) which holds the following conditions.

(1) 𝜇 and Ψ𝑖, for 𝑖 = 1, 2, are bounded.
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(2) For (𝜅11, 𝜅22) ∈ 𝐸 × 𝐹 and 𝑔1, 𝑔1, 𝑔2, 𝑔2 ∈ 𝐵(𝐸)
Ψ1 (𝜅11, 𝜅22, 𝑔1 (𝑏1 (𝜅11, 𝜅22))) , 𝑔2 (𝑏2 (𝜅11, 𝜅22)))

− Ψ2 (𝜅11, 𝜅22, 𝑔2 (𝑏2 (𝜅11, 𝜅22))) ,
𝑔1 (𝑏1 (𝜅11, 𝜅22))) ≤ 𝑒−𝜏𝜑 (Θ (𝑥, 𝑦, 𝑢, V)) .

(87)

Here,

Θ(𝑥, 𝑦, 𝑢, V)
= 𝛼 [𝑑𝑝 (𝑥, 𝑢)]

+ 𝛽 [𝑑𝑝 (𝑦, 𝑇 (𝑦, 𝑥)) 𝑑𝑝 (V, 𝐺 (V, 𝑢))1 + 𝑑𝑝 (𝑥, 𝑢) ]
+ 𝛾 [𝑑𝑝 (𝑥, 𝑇 (𝑥, 𝑦)) + 𝑑𝑝 (𝑢, 𝐺 (𝑢, V))]
+ 𝜎 [𝑑𝑝 (𝑥, 𝑇 (𝑥, 𝑦))] + 𝜂 [𝑑𝑝 (𝑢, 𝐺 (𝑢, V))] .

(88)

Then, system (85) has a common solution in 𝐵(𝐸).
Proof. Let 𝜆 be an arbitrary positive real number and there
exist 𝑔1, 𝑔1, 𝑔2, 𝑔2 ∈ 𝐵(𝐸), for arbitrary 𝜅11 ∈ 𝐸, 𝜅22 ∈ 𝐹 such
that

𝑇 (𝑔1, 𝑔2) (𝜅11) ≤ 𝜇 (𝜅11, 𝜅22)
+ Ψ1 (𝜅11, 𝜅22, 𝑔1 (𝑏1 (𝜅11, 𝜅22))) , 𝑔2 (𝑏2 (𝜅11, 𝜅22)))
+ 𝜆,

(89)

𝐺(𝑔1, 𝑔2) (𝜅11) ≤ 𝜇 (𝜅11, 𝜅22)
+ Ψ2 (𝜅11, 𝜅22, 𝑔2 (𝑏2 (𝜅11, 𝜅22))) , 𝑔1 (𝑏1 (𝜅11, 𝜅22)))
+ 𝜆.

(90)

From definition of 𝑇 and 𝐺 we have

𝑇 (𝑔1, 𝑔2) (𝜅11) > 𝜇 (𝜅11, 𝜅22)
+ Ψ1 (𝜅11, 𝜅22, 𝑔1 (𝑏1 (𝜅11, 𝜅22))) ,
𝑔2 (𝑏2 (𝜅11, 𝜅22))) ,

(91)

𝐺 (𝑔1, 𝑔2) (𝜅11) > 𝜇 (𝜅11, 𝜅22)
+ Ψ2 (𝜅11, 𝜅22, 𝑔2 (𝑏2 (𝜅11, 𝜅22))) ,
𝑔1 (𝑏1 (𝜅11, 𝜅22))) .

(92)

Next, from (89) and (92) we have

𝑇 (𝑔1, 𝑔2) (𝜅11) − 𝐺 (𝑔1, 𝑔2) (𝜅11) ≤ 𝜇 (𝜅11, 𝜅22)
+ Ψ1 (𝜅11, 𝜅22, 𝑔1 (𝑏1 (𝜅11, 𝜅22))) , 𝑔2 (𝑏2 (𝜅11, 𝜅22)))
− 𝜇 (𝜅11, 𝜅22) − Ψ2 (𝜅11, 𝜅22, 𝑔2 (𝑏2 (𝜅11, 𝜅22))) ,
𝑔1 (𝑏1 (𝜅11, 𝜅22))) + 𝜆
≤ Ψ1 (𝜅11, 𝜅22, 𝑔1 (𝑏1 (𝜅11, 𝜅22))) ,
𝑔2 (𝑏2 (𝜅11, 𝜅22)))}
− Ψ2 (𝜅11, 𝜅22, 𝑔2 (𝑏2 (𝜅11, 𝜅22))) ,
𝑔1 (𝑏1 (𝜅11, 𝜅22))) + 𝜆 ≤ 𝑒−𝜏𝜑 (Θ (𝑥, 𝑦, 𝑢, V)) + 𝜆.

(93)

Similarly from (90) and (91) we get

𝐺 (𝑔1, 𝑔2) (𝜅11) − 𝑇 (𝑔1, 𝑔2) (𝜅11)
≤ 𝑒−𝜏𝜑 (Θ (𝑥, 𝑦, 𝑢, V)) + 𝜆. (94)

Combining (93) and (94) we conclude that𝐺 (𝑔1, 𝑔2) (𝜅11) − 𝑇 (𝑔1, 𝑔2) (𝜅11)
≤ 𝑒−𝜏𝜑 (Θ (𝑥, 𝑦, 𝑢, V)) + 𝜆. (95)

By taking 𝑓(𝑥) = 𝑔(𝑥) = 𝑥, 𝐹 = ln(𝑥) and 𝑝 = 1 in
Theorem 19. Then we deduce that the mappings 𝑇, 𝐺 have a
common coupled fixed point in 𝐵(𝐸); that is the system (85)
has a solution.

4. Applications to Matrix Equations

In this section, we study the nonlinear matrix equations with
the help of Theorem 20.

Δ 1 = 𝑄 + 𝑚∑
𝑖=1

𝐴∗𝑖𝐺1 (Δ 1) 𝐴 𝑖 − 𝑘∑
𝑗=1

𝐵∗𝑗𝐾1 (Δ 1) 𝐵𝑗, (96)

Δ 2 = 𝑄 + 𝑚∑
𝑖=1

𝐴∗𝑖𝐺2 (Δ 1) 𝐴 𝑖 − 𝑘∑
𝑗=1

𝐵∗𝑗𝐾2 (Δ 1) 𝐵𝑗. (97)

Here 𝑄 is a positive definite matrix, 𝐴 𝑖, 𝐵𝑗 are arbitrary𝑛 × 𝑛 matrices, and continuous order preserving maps are𝐺1, 𝐺2, 𝐾1, 𝐾2 defined fromH(𝑛) into P(𝑛) such that 𝐺1(0) =𝐺2(0) = 𝐾1(0) = 𝐾2(0) = 0.
In this unit we will use the following notations:
M(𝑛) symbolizes the set of all 𝑛 × 𝑛 complex matrices,

H(𝑛) ⊂ M(𝑛) the set of all 𝑛 × 𝑛 Hermitian matrices, and
P(𝑛) ⊂ H(𝑛) is the set of all 𝑛 × 𝑛 positive definite matrices.
As a replacement for of Δ 1 ∈ P(𝑛) we will also write Δ 1 > 0.
Similarly, positive semidefinite matrix Δ 1 is denoted by Δ 1 ≥0. We also signify by ‖.‖ the spectral norm, i.e.,

‖𝐵‖ = √𝜆+ (𝐵∗𝐵)), (98)

where the biggest eigenvalue of 𝐵∗𝐵 is 𝜆+(𝐵∗𝐵). We will use
the metric induced by the trace norm ‖.‖1 defined by ‖𝐵‖1 =
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∑𝑛𝑞=1 𝑆𝑞(𝐵), where 𝑆𝑞(𝐵), 𝑞 = 1, . . . , 𝑛 are the singular values
of 𝐵. The set H(𝑛) is a complete metric space endowed with
this norm.

The following lemma which is taken from [6] will be
useful in the study of the matrix equations.

Lemma 27. Let 𝐴 ≥ 0 and 𝐵 ≥ 0 be 𝑛 × 𝑛 matrices; then0 ≤ 𝑡𝑟(𝐴𝐵) ≤ ‖𝐴‖𝑡𝑟(𝐵).
In this section, we define the mapping 𝑇, 𝐺 : H(𝑛) ×

H(𝑛) → H(𝑛) by

𝑇 (Δ 1, Δ 2) = 𝑄 + 𝑚∑
𝑖=1

𝐴∗𝑖𝐺1 (Δ 1) 𝐴 𝑖
− 𝑘∑
𝑗=1

𝐵∗𝑗𝐾1 (Δ 2) 𝐵𝑗,
(99)

𝐺(Δ 1, Δ 2) = 𝑄 + 𝑚∑
𝑖=1

𝐴∗𝑖𝐺2 (Δ 1) 𝐴 𝑖
− 𝑘∑
𝑗=1

𝐵∗𝑗𝐾2 (Δ 2) 𝐵𝑗.
(100)

Here 𝑄 ∈ P(𝑛), 𝐴 𝑖, 𝐵𝑗 ∈ 𝑀(𝑛), and 𝐺1, 𝐺2, 𝐾1, 𝐾2 are
continuous order-preserving maps. In the following theorem
we first discuss the existence of common coupled fixed point
of 𝑇 and 𝐺 in H(𝑛) × H(𝑛).
Theorem 28. Let 𝑄 ∈ P(𝑛) such that

(1) for every (Δ 1, Δ 2), (Δ 3, Δ 4) ∈ H(𝑛) × H(𝑛), and
𝑡𝑟 (𝐺1 (Δ 3) − 𝐺2 (Δ 1)) ≤ 𝑒−𝜏 𝑡𝑟 (Δ 3 − Δ 1) , (101)

and

𝑡𝑟 (𝐾1 (Δ 2) − 𝐾2 (Δ 4)) ≤ 𝑒−𝜏 𝑡𝑟 (Δ 2 − Δ 4) , (102)

(2) ‖Δ 2 − Δ 4‖ ≤ ‖Δ 3 − Δ 1‖,
(3) ‖∑𝑚𝑖=1 𝐴 𝑖𝐴∗𝑖 ‖ < 1/4 and ‖∑𝑘𝑗=1 𝐵𝑗𝐵∗𝑗 ‖ < 1/4.

Then, there exist Δ∗1, Δ∗2 ∈ H(𝑛) such that 𝑇(Δ∗1, Δ∗2) = Δ∗1 and𝑇(Δ∗2, Δ∗1) = Δ∗2. 𝐺(Δ∗1, Δ∗2) = Δ∗1 and 𝐺(Δ∗2, Δ∗1) = Δ∗2.

Proof. Let (Δ 1, Δ 2), (Δ 3, Δ 4) ∈ H(𝑛) × H(𝑛); then
𝑇 (Δ 3, Δ 4) − 𝐺 (Δ 1, Δ 2)1

= (𝑡𝑟 (𝑇 (Δ 3 , Δ 4) − 𝐺 (Δ 1, Δ 2))
= 𝑚∑
𝑖=1

𝑡𝑟 (𝐴∗𝑖 (𝐺1 (Δ 3) − 𝐺2 (Δ 1)) 𝐴 𝑖)
+ 𝑘∑
𝑗=1

𝑡𝑟 (𝐵∗𝑗 (𝐾1 (Δ 2) − 𝐾2 (Δ 4)) 𝐵𝑗)
= 𝑚∑
𝑖=1

𝑡𝑟 (𝐴 𝑖𝐴∗𝑖 (𝐺1 (Δ 3) − 𝐺2 (Δ 1)))
+ 𝑘∑
𝑗=1

𝑡𝑟 (𝐵𝑗𝐵∗𝑗 (𝐾1 (Δ 2) − 𝐾2 (Δ 4)))

= 𝑡𝑟( 𝑚∑
𝑖=1

𝐴 𝑖𝐴∗𝑖)(𝐺1 (Δ 3) − 𝐺2 (Δ 1)))

+ 𝑡𝑟( 𝑘∑
𝑗=1

𝐵𝑗𝐵∗𝑗) (𝐾1 (Δ 2) − 𝐾2 (Δ 4)))
≤ 
𝑚∑
𝑖=1

𝐴 𝑖𝐴∗𝑖

𝑡𝑟 (𝐺1 (Δ 3) − 𝐺2 (Δ 1))

+ 

𝑘∑
𝑗=1

𝐵𝑗𝐵∗𝑗
 𝑡𝑟 (𝐾1 (Δ 2) − 𝐾2 (Δ 4))


≤ 
𝑚∑
𝑖=1

𝐴 𝑖𝐴∗𝑖
 𝑒
−𝜏 Δ 3 − Δ 11 +


𝑘∑
𝑗=1

𝐵𝑗𝐵∗𝑗
 𝑒
−𝜏 Δ 2

− Δ 41 ≤

𝑚∑
𝑖=1

𝐴 𝑖𝐴∗𝑖
 𝑒
−𝜏 Δ 3 − Δ 11 +


𝑘∑
𝑗=1

𝐵𝑗𝐵∗𝑗


⋅ 𝑒−𝜏 Δ 3 − Δ 11 ≤ 12𝑒−𝜏 Δ 3 − Δ 11 ,
≤ 𝑒−𝜏𝜑 (Θ (Δ 1, Δ 2 , Δ 3, Δ 4)) .

(103)

Thus, the contractive condition of Theorem 20 is satisfied for
all (Δ 1, Δ 2), (Δ 3, Δ 4) ∈ H(𝑛)×H(𝑛). By taking 𝑓(𝑥) = 𝑔(𝑥) =𝑥, 𝜑(𝑡) = (1/2)𝑡, 𝐹 = ln(𝑥) and 𝑝 = 1 in Theorem 20. From
Theorem 20, 𝑇 and 𝐺 have a common coupled fixed point.
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