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This paper considers the strong uniform convergence of multivariate density estimators in Besov space 𝐵𝑠𝑝,𝑞(R𝑑) based on size-
biased data. We provide convergence rates of wavelet estimators when the parametric 𝜇 is known or unknown, respectively. It turns
out that the convergence rates coincide with that of Giné and Nickl’s (Uniform Limit Theorems for Wavelet Density Estimators, Ann.
Probab., 37(4), 1605-1646, 2009), when the dimension 𝑑 = 1, 𝑝 = 𝑞 = ∞, and 𝜔(𝑦) ≡ 1.

1. Introduction

Let 𝑌1, 𝑌2, . . . , 𝑌𝑛 be independent and identically distributed
(𝑖.𝑖.𝑑) continuous random variables defined on a probability
space (Ω,F, 𝑃) with the common density function

𝑔 (𝑦) = 𝜔 (𝑦) 𝑓 (𝑦)𝜇 , 𝑦 ∈ R𝑑, (1)

where 𝜔 denotes a known positive function and 𝑓 stands for
an unknown density function of the unobserved continuous
random variable 𝑋 and 𝜇 = 𝐸𝜔(𝑋) = ∫

R𝑑
𝜔(𝑦)𝑓(𝑦)𝑑𝑦 <+∞. In this setup 𝑓 and 𝑔 mean the target density and

weighted density function, respectively, and the resulting
data are size-biased data. Then we want to estimate the
unknown density function 𝑓 from a sequence of biased data𝑌1, 𝑌2, . . . , 𝑌𝑛.

Wavelet methods are of interest in nonparametric statis-
tics thanks to their ability to estimate efficiently a wide
variety of unknown functions, especially for those with
discontinuities or sharp spikes. Hence, wavelet methods have
been widely used for this density estimation model (1).
Ramı́rez and Vidakovic [1] propose a linear wavelet estimator
and show it to be 𝐿2 consistent. Shirazi and Doosti [2] expand
their work tomultivariate case. Chesneau,Dewan, andDoosti
[3] extend the independence to both positively and negatively
associated cases. They show a convergence rate for mean
integrated squared error (MISE). An upper bound of wavelet

estimation on 𝐿𝑝(1 ≤ 𝑝 < +∞) risk in negatively associated
case is given by Liu and Xu [4]. Kou and Guo [5] discuss the
MISE of wavelet estimators in strong mixing case. For the
strong convergence of density estimation, Masry [6] studies
the strong convergence rates over a compact subset in Besov
space 𝐵𝑠𝑝,𝑞(R𝑑), when 𝜔(𝑦) ≡ 1 (the model (1) reduces to the
classical density estimation) and the sample is strong mixing.
Recently, Giné and Nickl [7] investigate the same problem by
wavelet method and obtain the optimal strong convergence
rates in Besov space 𝐵𝑠∞,∞(R), when the data is 𝑖.𝑖.𝑑. To
our knowledge, there does not exist research on the strong
uniform convergence for the model (1).

The aim of this paper is to discuss the strong uniform
convergence rates of wavelet estimators in Besov space𝐵𝑠𝑝,𝑞(R𝑑) based on size-biased data. First of all, we construct
a linear wavelet estimator 𝑓𝑛 when the parametric 𝜇 is known
and give its convergence rate. However, people always do
not know 𝜇 in many practical applications. For this reason,
an estimator 𝜇 of 𝜇 is given. Then we develop a new linear
wavelet estimator 𝑓𝑛 in which the parametric 𝜇 is replaced by𝜇. Finally, we establish the convergence rate of estimator 𝑓𝑛.
2. Wavelets and Besov Spaces

As a central notion in wavelet analysis, Multiresolution
Analysis (MRA, [8]) plays an important role for constructing
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a wavelet basis, which means a sequence of closed subspaces{𝑉𝑗}𝑗∈Z of the square integrable function space 𝐿2(R𝑑) satis-
fying the following properties:

(i) 𝑉𝑗 ⊆ 𝑉𝑗+1, 𝑗 ∈ Z. Here and after, Z denotes the integer
set and N fl {𝑛 ∈ Z, 𝑛 ≥ 0};

(ii) ⋃𝑗∈Z 𝑉𝑗 = 𝐿2(R𝑑). This means the space ⋃𝑗∈Z 𝑉𝑗
being dense in 𝐿2(R𝑑);

(iii) 𝑓(2⋅) ∈ 𝑉𝑗+1 if and only if 𝑓(⋅) ∈ 𝑉𝑗 for each 𝑗 ∈ Z;
(iv) There exists a scaling function 𝜑 ∈ 𝐿2(R𝑑) such

that {𝜑(⋅ − 𝑘), 𝑘 ∈ Z𝑑} forms an orthonormal basis of 𝑉0 =
span{𝜑(⋅ − 𝑘)}.

When 𝑑 = 1, there is a simple way to define an
orthonormal wavelet basis. Examples include the Daubechies
wavelets with compact supports. For 𝑑 ≥ 2, the tensor
product method gives an MRA {𝑉𝑗} of 𝐿2(R𝑑) from one-
dimensional MRA. In fact, with a scaling function 𝜑 of
tensor products, we find 𝑀 = 2𝑑 − 1 wavelet functions𝜓ℓ(ℓ = 1, 2, . . . ,𝑀) such that, for each 𝑓 ∈ 𝐿2(R𝑑), the
decomposition

𝑓 = ∑
𝑘∈Z𝑑

𝛼𝑗0,𝑘𝜑𝑗0,𝑘 +
∞∑
𝑗=𝑗0

𝑀∑
ℓ=1

∑
𝑘∈Z𝑑

𝛽ℓ𝑗,𝑘𝜓ℓ𝑗,𝑘 (2)

holds in𝐿2(R𝑑) sense, where𝛼𝑗0 ,𝑘 = ⟨𝑓, 𝜑𝑗0,𝑘⟩,𝛽ℓ𝑗,𝑘 = ⟨𝑓, 𝜓ℓ𝑗,𝑘⟩,
and

𝜑𝑗0 ,𝑘 (𝑦) = 2𝑗0𝑑/2𝜑 (2𝑗0𝑦 − 𝑘) ,
𝜓ℓ𝑗,𝑘 (𝑦) = 2𝑗𝑑/2𝜓ℓ (2𝑗𝑦 − 𝑘) .

(3)

Let𝑃𝑗 be the orthogonal projection operator from 𝐿2(R𝑑)
onto the space 𝑉𝑗 with the orthonormal basis {𝜑𝑗,𝑘(⋅) =2𝑗𝑑/2𝜑(2𝑗 ⋅ −𝑘), 𝑘 ∈ Z𝑑}. Then for 𝑓 ∈ 𝐿2(R𝑑), 𝑃𝑗𝑓 =∑𝑘∈Z𝑑 𝛼𝑗,𝑘𝜑𝑗,𝑘.

If a scaling function 𝜑 satisfies Condition (𝜃), i.e.,
∑
𝑘∈Z𝑑

𝜑 (𝑦 − 𝑘) ∈ 𝐿∞ (R𝑑) , (4)

then the function 𝜑 ∈ 𝐿(R𝑑) ⋂𝐿∞(R𝑑)(so that 𝜑 ∈ 𝐿𝑝 for1 ≤ 𝑝 ≤ ∞) and∑𝑘∈Z𝑑 𝜑(𝑥−𝑘)𝜑(𝑦 − 𝑘) converges absolutely
almost everywhere. It can be shown that, for𝑓 ∈ 𝐿𝑝(R𝑑) (1 ≤𝑝 ≤ ∞),

𝑃𝑗𝑓 (𝑦) = ∑
𝑘∈Z𝑑

𝛼𝑗,𝑘𝜑𝑗,𝑘 (𝑦) (5)

holds almost everywhere on R𝑑 [9]. In this paper, we
also need another concept, which is a little stronger than
Condition (𝜃).

A function 𝜑 is said to satisfy Condition (𝑆), if there exists
a bounded and radical nonincreasing function Φ such that

𝜑 (𝑦) ≤ Φ (𝑦) (𝑎.𝑒.)
and ∫

R𝑑
Φ(𝑦) 𝑑𝑦 < ∞. (6)

Condition (𝑆) is not very restrictive. Examples include
bounded and compactly supported measurable functions.
Daubechies scaling functions satisfy Condition (𝑆).

A wavelet basis can be used to characterize Besov spaces.
The next lemma provides equivalent definitions for those
spaces, for which we need one more notation: a scaling
function 𝜑 is called𝑚-regular, if 𝜑 ∈ 𝐶𝑚(R𝑑) and |𝐷𝛼𝜑(𝑦)| ≤𝑐(1+|𝑦|2)−ℓ for each ℓ ∈ Z and each multi-index 𝛼 ∈ N𝑑 with|𝛼| ≤ 𝑚.
Lemma 1 ([8]). Let 𝜑 be 𝑚-regular, 𝜓ℓ (ℓ = 1, 2, . . . ,𝑀,𝑀 =2𝑑−1) be the corresponding wavelets and 𝑓 ∈ 𝐿𝑝(R𝑑). If 𝛼𝑗,𝑘 =⟨𝑓, 𝜑𝑗,𝑘⟩, 𝛽ℓ𝑗,𝑘 = ⟨𝑓, 𝜓ℓ𝑗,𝑘⟩, 𝑝, 𝑞 ∈ [1, +∞], and 0 < 𝑠 < 𝑚, then
the following assertions are equivalent:

(1) 𝑓 ∈ 𝐵𝑠𝑝,𝑞(R𝑑);
(2) {2𝑗𝑠‖𝑃𝑗𝑓 − 𝑓‖𝑝} ∈ 𝑙𝑞;
(3) ‖(𝛼𝑗0)‖𝑝 + ‖(2𝑗(𝑠−𝑑/𝑝+𝑑/2)‖𝛽𝑗‖𝑝)𝑗≥𝑗0‖𝑞 < +∞.
The Besov norm of 𝑓 can be defined by

𝑓𝐵𝑠𝑝,𝑞 fl (𝛼𝑗0)𝑝 +
(2𝑗(𝑠−𝑑/𝑝+𝑑/2)

𝛽𝑗𝑝)𝑗≥𝑗0
𝑞 (7)

with ‖(𝛼𝑗0)‖𝑝𝑝 = ∑𝑘∈Z𝑑 |𝛼𝑗0,𝑘|𝑝 and ‖𝛽𝑗‖𝑝𝑝 = ∑𝑀ℓ=1∑𝑘∈Z𝑑 |𝛽ℓ𝑗,𝑘|𝑝.
We also need the following classical inequality in the

proof of our theorems.
Bernstein’s inequality. Let 𝑌1, . . . , 𝑌𝑛 be independent ran-

dom variables such that 𝐸𝑌𝑖 = 0, |𝑌𝑖| ≤ 𝑀, and 𝐸𝑌2𝑖 = 𝜎2.
Then for each V ≥ 0,

P{1𝑛

𝑛∑
𝑖=1

𝑌𝑖
 ≥ V} ≤ 2 ⋅ exp{− 𝑛V22 (𝜎2 + V𝑀/3)} . (8)

3. Estimation with Known 𝜇
In this paper, we require supp Yi ⊆ [0, 1]𝑑 in the model
(1). This is similar to Chesneau, Dewan, and Doosti [3], Liu
and Xu [4], and Kou and Guo [5]. We choose 𝑑-dimensional
scaling function

𝜑 (𝑦) = 𝜑 (𝑦1, . . . , 𝑦𝑑) fl 𝐷2𝑁 (𝑦1) ⋅ ⋅ ⋅ 𝐷2𝑁 (𝑦𝑑) (9)

with 𝐷2𝑁(⋅) being the one-dimensional Daubechies scaling
function. Then 𝜑 is 𝑚-regular (𝑚 > 0) when 𝑁 gets large
enough. Note that 𝐷2𝑁 has compact support [0, 2𝑁 − 1] and
the corresponding wavelet has compact support [−𝑁+1,𝑁].
Then for 𝑓 ∈ 𝐿2(R𝑑) with supp 𝑓 ⊆ [0, 1]𝑑 and𝑀 = 2𝑑 − 1,
𝑓 (𝑦) = ∑

𝑘∈Λ 𝑗0

𝛼𝑗0,𝑘𝜑𝑗0 ,𝑘 (𝑦) +
∞∑
𝑗=𝑗0

𝑀∑
ℓ=1

∑
𝑘∈Λ j

𝛽ℓ𝑗,𝑘𝜓ℓ𝑗,𝑘 (𝑦) , (10)

where Λ 𝑗0 = {1 − 2𝑁, 2 − 2𝑁, . . . , 2𝑗0}𝑑, Λ 𝑗 = {−𝑁, −𝑁 +1, . . . , 2𝑗 + 𝑁 − 1}𝑑, and
𝛼𝑗0,𝑘 = ∫

[0,1]𝑑
𝑓 (𝑦) 𝜑𝑗0,𝑘 (𝑦) 𝑑𝑦,

𝛽ℓ𝑗,𝑘 = ∫
[0,1]𝑑

𝑓 (𝑦) 𝜓ℓ𝑗,𝑘 (𝑦) 𝑑𝑦.
(11)
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A linear wavelet estimator is defined by

𝑓𝑛 (𝑦) = ∑
𝑘∈Λ 𝑗0

�̃�𝑗0,𝑘𝜑𝑗0,𝑘 (𝑦) , (12)

where

�̃�𝑗0,𝑘 = 𝜇𝑛
𝑛∑
𝑖=1

𝜑𝑗0 ,𝑘 (𝑌𝑖)𝜔 (𝑌𝑖) . (13)

It follows from (1) that

𝐸[𝜇𝑛
𝑛∑
𝑖=1

𝜑𝑗0,𝑘 (𝑌𝑖)𝜔 (𝑌𝑖) ] = 𝐸[
𝜇𝜑𝑗0 ,𝑘 (𝑌𝑖)𝜔 (𝑌𝑖) ]

= ∫
[0,1]𝑑

𝜇𝜑𝑗0 ,𝑘 (𝑦)𝜔 (𝑦) 𝑔 (𝑦) 𝑑𝑦
= ∫
[0,1]𝑑

𝜑𝑗0 ,𝑘 (𝑦) 𝑓 (𝑦) 𝑑𝑦 = 𝛼𝑗0 ,𝑘.

(14)

Thismeans𝛼𝑗0 ,𝑘 is an unbiased estimate of𝛼𝑗0 ,𝑘.The following
notations are needed to state our theorems. 𝐴 ≲ 𝐵 denotes𝐴 ≤ 𝑐𝐵 for some constant 𝑐 > 0; 𝐴 ≳ 𝐵means 𝐵 ≲ 𝐴; 𝐴 ∼ 𝐵
stands for both 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴.
Theorem 2. Consider the problem (1) with 𝜔(𝑦) ∼ 1. Let𝑓 ∈ 𝐵𝑠𝑝,𝑞(R𝑑)(𝑝, 𝑞 ∈ [1,∞], 𝑠 > 𝑑/𝑝) and supp 𝑓 ⊆ [0, 1]𝑑.
Then the linear wavelet estimator 𝑓𝑛 defined in (12) with 2𝑗0 ∼(𝑛/ ln 𝑛)1/(2(𝑠−𝑑/𝑝)+𝑑) satisfies

sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝑓 (𝑦)
= 𝑂𝑎.𝑠. ( ln 𝑛𝑛 )

(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) .
(15)

Remark 3. When𝜔(𝑦) ≡ 1, ourmodel reduces to the classical
nonparametric density estimation. Then our result is same as
the convergence rate inMasry [6]. On the other hand, we find
that

sup
𝑦∈[0,1]

𝑓𝑛 (𝑦) − 𝑓 (𝑦) = 𝑂𝑎.𝑠. ( ln 𝑛𝑛 )
𝑠/(2𝑠+1)

(16)

with 𝑑 = 1 and 𝑝 = 𝑞 = ∞. This coincides with the
convergence rate in Theorem 3 of Giné and Nickl [7].

Proof. It is easy to see that

sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝑓 (𝑦)
≤ sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦)
+ sup
𝑦∈[0,1]𝑑

𝐸𝑓𝑛 (𝑦) − 𝑓 (𝑦) .
(17)

By 𝑠 > 𝑑/𝑝, 𝐵𝑠𝑝,𝑞(R𝑑) ⊆ 𝐵𝑠−𝑑/𝑝∞,∞ (R𝑑). Then it follows from (14)
and Lemma 1 (𝑝 = ∞) that

sup
𝑦∈[0,1]𝑑

𝐸𝑓𝑛 (𝑦) − 𝑓 (𝑦) ≤ sup
𝑦∈R𝑑

𝐸𝑓𝑛 (𝑦) − 𝑓 (𝑦)
= 𝑃𝑗0𝑓 − 𝑓∞ ≲ 2−𝑗0(𝑠−𝑑/𝑝).

(18)

This with the choice 2𝑗0 ∼ (𝑛/ ln 𝑛)1/(2(𝑠−𝑑/𝑝)+𝑑) leads to
sup
𝑦∈[0,1]𝑑

𝐸𝑓𝑛 (𝑦) − 𝑓 (𝑦) ≲ ( ln 𝑛𝑛 )
(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) . (19)

To estimate the other term of (17), by splitting the interval[0, 1] equally into
𝐿𝑛 = ⌈(𝑛2𝑗0(3𝑑+2)ln 𝑛 )1/2⌉ (20)

(⌈𝑥⌉ standing for the smallest integer greater than or equal
to 𝑥) subintervals, one receives 𝐿𝑑𝑛 sub-cubes 𝐼(ℓ)(ℓ =1, 2, . . . , 𝐿𝑑𝑛) of [0, 1]𝑑. Clearly, the side length 𝑙𝑛 of 𝐼(ℓ) satisfies
that

𝑙𝑛 ≲ (𝑛2𝑗0(3𝑑+2)ln 𝑛 )−1/2 . (21)

Note that

sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦)
= max
1≤ℓ≤𝐿𝑑𝑛

sup
𝑦∈𝐼(ℓ)

𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦) .
(22)

Then with the center point 𝑦(ℓ) of 𝐼(ℓ),
sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦) ≤ 𝑄1 + 𝑄2 + 𝑄3, (23)

where

𝑄1 fl max
1≤ℓ≤𝐿𝑑𝑛

sup
𝑦∈𝐼(ℓ)

𝑓𝑛 (𝑦) − 𝑓𝑛 (𝑦(ℓ)) ,
𝑄2 fl max

1≤ℓ≤𝐿𝑑𝑛

𝑓𝑛 (𝑦(ℓ)) − 𝐸𝑓𝑛 (𝑦(ℓ)) ,
𝑄3 fl max

1≤ℓ≤𝐿𝑑𝑛

sup
𝑦∈𝐼(ℓ)

𝐸𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦(ℓ)) .
(24)

By the definition of 𝑓𝑛(𝑦),
𝑄1 ≤ max

1≤ℓ≤𝐿𝑑𝑛

sup
𝑦∈𝐼(ℓ)

∑
𝑘∈Λ 𝑗0

�̃�𝑗0 ,𝑘 𝜑𝑗0,𝑘 (𝑦) − 𝜑𝑗0 ,𝑘 (𝑦(ℓ)) . (25)

Since 𝜔(𝑦) ∼ 1 the properties of 𝜑 imply |�̃�𝑗0,𝑘| ≲ 2𝑗0𝑑/2.
On the other hand, the Daubechies function 𝐷2𝑁 satisfies
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Lipschitz condition (|𝐷2𝑁(𝑥) − 𝐷2𝑁(𝑦)| ≲ |𝑥 − 𝑦|) for larger𝑁. Then for 𝜑(𝑦) = ∏𝑑𝑖=1𝐷2𝑁(𝑦𝑖),
𝜑 (𝑥) − 𝜑 (𝑦)
≤ 𝑑 𝐷2𝑁𝑑−1∞ sup

1≤𝑖≤𝑑

𝐷2𝑁 (𝑥𝑖) − 𝐷2𝑁 (𝑦𝑖)
≲ sup
1≤𝑖≤𝑑

𝑥𝑖 − 𝑦𝑖 .
(26)

Hence, for any 𝑦 ∈ 𝐼(ℓ),
𝜑𝑗0,𝑘 (𝑦) − 𝜑𝑗0,𝑘 (𝑦(ℓ)) ≲ 2𝑗0𝑑/2 sup

1≤𝑖≤𝑑

2𝑗0 𝑦𝑖 − 𝑦(ℓ)𝑖 
≲ 2𝑗0(𝑑/2+1)ℓ𝑛.

(27)

Combining this with (25) and |Λ 𝑖0 | ≲ 2𝑗0𝑑, one finds that
𝑄1 ≲ 2𝑗0(2𝑑+1)ℓ𝑛. (28)

Recalling that 𝑙𝑛 ≲ (𝑛2𝑗0(3𝑑+2)/ ln 𝑛)−1/2 and 2𝑗0 ∼(𝑛/ ln 𝑛)1/(2(𝑠−𝑑/𝑝)+𝑑), then
𝑄1 ≲ ( ln 𝑛𝑛 )

(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) . (29)

By |𝑋| ≤ 𝑀, |𝐸𝑋| ≤ �̃�. Furthermore, it follows from the
proof of (29) that

𝑄3 = max
1≤ℓ≤𝐿𝑑𝑛

sup
𝑦∈𝐼(ℓ)

𝐸𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦(ℓ))
= max
1≤ℓ≤𝐿𝑑𝑛

sup
𝑦∈𝐼(ℓ)

𝐸 [𝑓𝑛 (𝑦) − 𝑓𝑛 (𝑦(ℓ))]
≲ ( ln 𝑛𝑛 )

(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) .
(30)

The main work for the proof of Theorem 2 is to estimate

𝑄2 = max
1≤ℓ≤𝐿𝑑𝑛

𝑓𝑛 (𝑦(ℓ)) − 𝐸𝑓𝑛 (𝑦(ℓ)) . (31)

Set 𝜂𝑛 fl (ln 𝑛/𝑛)(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) and 𝑐∗ > 0 is constant
which will be chosen later. Then note that

P {𝑄2 ≥ 𝑐∗𝜂𝑛}
= P{ max

1≤ℓ≤𝐿𝑑𝑛

𝑓𝑛 (𝑦(ℓ)) − 𝐸𝑓𝑛 (𝑦(ℓ)) ≥ 𝑐∗𝜂𝑛}

≤ 𝐿
𝑑
𝑛∑
ℓ=1

P {𝑓𝑛 (𝑦(ℓ)) − 𝐸𝑓𝑛 (𝑦(ℓ)) ≥ 𝑐∗𝜂𝑛}
≤ 𝐿𝑑𝑛 sup
𝑦∈[0,1]𝑑

P {𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦) ≥ 𝑐∗𝜂𝑛} .

(32)

According to the definition of 𝑓𝑛(𝑦), one concludes
𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦) = ∑

𝑘∈Λ 𝑗0

(�̃�𝑗0,𝑘 − 𝐸�̃�𝑗0 ,𝑘) 𝜑𝑗0,𝑘 (𝑦) = 1𝑛
⋅ 𝑛∑
𝑖=1

∑
𝑘∈Λ 𝑗0

[𝜇𝜑𝑗0,𝑘 (𝑌𝑖)𝜔 (𝑌𝑖) − 𝐸(𝜇𝜑𝑗0 ,𝑘 (𝑌𝑖)𝜔 (𝑌𝑖) )]
⋅ 𝜑𝑗0,𝑘 (𝑦) .

(33)

Denote

𝑍𝑖 (𝑦)
fl ∑
𝑘∈Λ 𝑗0

[𝜇𝜑𝑗0,𝑘 (𝑌𝑖)𝜔 (𝑌𝑖) − 𝐸(𝜇𝜑𝑗0 ,𝑘 (𝑌𝑖)𝜔 (𝑌𝑖) )]𝜑𝑗0 ,𝑘 (𝑦) (34)

for 𝑖 = 1, 2, . . . , 𝑛. Then 𝑍1, 𝑍2, . . . , 𝑍𝑛 are 𝑖.𝑖.𝑑, 𝐸(𝑍𝑖) = 0. By𝜔(𝑦) ∼ 1 and Condition (𝜃), |𝑍𝑖(𝑦)| ≲ 2𝑗0𝑑 and
𝐸 (𝑍𝑖)2 = var[

[
∑
𝑘∈Λ 𝑗0

𝜇𝜑𝑗0 ,𝑘 (𝑌𝑖)𝜔 (𝑌𝑖) 𝜑𝑗0,𝑘 (𝑦)]]
≤ 𝐸[

[
∑
𝑘∈Λ 𝑗0

𝜇𝜑𝑗0 ,𝑘 (𝑌𝑖)𝜔 (𝑌𝑖) 𝜑𝑗0,𝑘 (𝑦)]]
2

≲ ∫
[0,1]𝑑

 ∑𝑘∈Λ 𝑗0𝜑𝑗0 ,𝑘 (𝑥) 𝜑𝑗0,𝑘 (𝑦)

2

𝑔 (𝑥) 𝑑𝑥
≲ 2𝑗0𝑑.

(35)

This with Bernstein’s inequality (Härdle et al., 1998) and 𝜂𝑛 =(ln 𝑛/𝑛)(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) leads to

P {𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦) ≥ 𝑐∗𝜂𝑛} = P{
1𝑛
𝑛∑
𝑖=1

𝑍𝑖
 ≥ 𝑐∗𝜂𝑛} ≤ 2 exp{−

𝑛 (𝑐∗𝜂𝑛)22 (2𝑗0𝑑 + 2𝑗0𝑑𝑐∗𝜂𝑛/3)}

≤ 2 exp{− 𝑛𝑐2∗ (ln 𝑛/𝑛)2(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑)2 [(𝑛/ ln 𝑛)𝑑/(2(𝑠−𝑑/𝑝)+𝑑) + (1/3) 𝑐∗ (𝑛/ ln 𝑛)𝑑/(2(𝑠−𝑑/𝑝)+𝑑)]}
≤ 2 exp {−𝑐2∗ ln 𝑛/ (2 + (1/3) 𝑐∗)} = 2𝑛−𝑐2∗/(2+(1/3)𝑐∗).

(36)
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It follows from (32), (36), 2𝑗0 ∼ (𝑛/ ln 𝑛)1/(2(𝑠−𝑑/𝑝)+𝑑), and
the definition of 𝐿𝑛 that

P {𝑄2 ≥ 𝑐∗𝜂𝑛}
≤ 𝐿𝑑𝑛 sup
𝑦∈[0,1]𝑑

P {𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦) ≥ 𝑐∗𝜂𝑛}

≤ (𝑛2𝑗0(3𝑑+2)
ln 𝑛 )𝑑/2 2𝑛−𝑐2∗/(2+(1/3)𝑐∗)

≤ 2𝑛𝑑(𝑠−𝑑/𝑝+2𝑑+1)/(2(𝑠−𝑑/𝑝)+𝑑)−𝑐2∗/(2+(1/3)𝑐∗).

(37)

Obviously, there exists sufficiently large 𝑐∗ > 0 such that𝑛𝑑(𝑠−𝑑/𝑝+2𝑑+1)/(2(𝑠−𝑑/𝑝)+𝑑)−𝑐2∗/(2+(1/3)𝑐∗) ≤ 2𝑛−2. Then P{𝑄2 ≥𝑐∗𝜂𝑛} ≤ 2𝑛−2 and
∞∑
𝑛=1

P {𝑄2 ≥ 𝑐∗𝜂𝑛} < +∞. (38)

Hence,

𝑄2 = max
1≤ℓ≤𝐿𝑑𝑛

𝑓𝑛 (𝑦(ℓ)) − 𝐸𝑓𝑛 (𝑦(ℓ))
= 𝑂𝑎.𝑠. ( ln 𝑛𝑛 )

(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑)
(39)

thanks to Borel-Cantelli lemma.This with (23), (29), and (30)
shows

sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦)
= 𝑂𝑎.𝑠. ( ln 𝑛𝑛 )

(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) .
(40)

Combining this with (17) and (19), one knows that

sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝑓 (𝑦)
= 𝑂𝑎.𝑠. ( ln 𝑛𝑛 )

(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) .
(41)

A careful observation of (12) shows the construction of𝑓𝑛(𝑦) strictly depends on 𝜇, which needs 𝜇 known. However,
the parametric 𝜇 is always unknown in many practical
applications. So we will deal with the unknown case in the
following section.

4. Estimation with Unknown 𝜇
In this section, we provide a strong convergence rate of
wavelet estimator for themodel (1) with unknown parametric𝜇. A first step is to give an estimator of 𝜇 from the given data𝑌1, 𝑌2, . . . , 𝑌𝑛. Similar to Chesneau, Dewan, and Doosti [3]
and Liu and Xu [4], we introduce

𝜇𝑛 = [1𝑛
𝑛∑
𝑖=1

1𝜔 (𝑌𝑖)]
−1 . (42)

By (1),

𝐸( 1̂𝜇𝑛) = 𝐸[
1𝑛
𝑛∑
𝑖=1

1𝜔 (𝑌𝑖)] = 𝐸[
1𝜔 (𝑌𝑖)]

= ∫
[0,1]𝑑

𝑔 (𝑦)
𝜔 (𝑦)𝑑𝑦 = 1𝜇 ∫[0,1]𝑑 𝑓 (𝑦) 𝑑𝑦 =

1𝜇 .
(43)

Now, we define a practical linear wavelet estimator

𝑓𝑛 (𝑦) = ∑
𝑘∈Λ 𝑗0

�̂�𝑗0,𝑘𝜑𝑗0,𝑘 (𝑦) (44)

with

�̂�𝑗0 ,𝑘 = 𝜇𝑛𝑛
𝑛∑
𝑖=1

𝜑𝑗0,𝑘 (𝑌𝑖)𝜔 (𝑌𝑖) . (45)

Theorem 4 investigates the strong uniform convergence
rate of practical wavelet estimator 𝑓𝑛(𝑦).
Theorem 4. Consider the problem (1) with 𝜔(𝑦) ∼ 1. Let𝑓 ∈ 𝐵𝑠𝑝,𝑞(R𝑑)(𝑝, 𝑞 ∈ [1,∞], 𝑠 > 𝑑/𝑝) and supp 𝑓 ⊆ [0, 1]𝑑.
Then the linear wavelet estimator 𝑓𝑛 defined in (44) with 2𝑗0 ∼(𝑛/ ln 𝑛)1/(2(𝑠−𝑑/𝑝)+𝑑) satisfies

sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝑓 (𝑦)
= 𝑂𝑎.𝑠. ( ln 𝑛𝑛 )

(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) .
(46)

Remark 5. Note that the convergence rate of wavelet esti-
mator 𝑓𝑛(𝑦) in Theorem 4 remains same as that of 𝑓𝑛(𝑦) in
Theorem 2.However, the estimator𝑓𝑛(𝑦) does not depend on
the parametric 𝜇, which means it is more practical.

Proof. By the definition of �̂�𝑗0,𝑘 and �̃�𝑗0,𝑘,
�̂�𝑗0,𝑘 = 𝜇𝑛𝜇 �̃�𝑗0 ,𝑘

and 𝑓𝑛 (𝑦) = 𝜇𝑛𝜇 𝑓𝑛 (𝑦) .
(47)

Then one observes that

sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝑓 (𝑦) = sup
𝑦∈[0,1]𝑑


𝜇𝑛𝜇 𝑓𝑛 (𝑦) − 𝑓 (𝑦)


≤ 𝑇1 + 𝑇2 + 𝑇3

(48)

where

𝑇1 fl sup
𝑦∈[0,1]𝑑


𝜇𝑛𝜇 [𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦)]

 ,

𝑇2 fl sup
𝑦∈[0,1]𝑑

(
𝜇𝑛𝜇 − 1)𝐸𝑓𝑛 (𝑦)

 ,
𝑇3 fl sup

𝑦∈[0,1]𝑑

𝑓 (𝑦) − 𝐸𝑓𝑛 (𝑦) .
(49)
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It follows from (19) that

𝑇3 = sup
𝑦∈[0,1]𝑑

𝑓 (𝑦) − 𝐸𝑓𝑛 (𝑦)
≲ ( ln 𝑛𝑛 )

(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) .
(50)

According to 𝜔(𝑦) ∼ 1 and the definition of 𝜇𝑛 in (42), one
gets |𝜇𝑛/𝜇| ≲ 1 and

sup
𝑦∈[0,1]𝑑


𝜇𝑛𝜇 [𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦)]


≲ sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝐸𝑓𝑛 (𝑦) .
(51)

Then it is easy to see from (40) that

𝑇1 = 𝑂𝑎.𝑠. ( ln 𝑛𝑛 )
(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) . (52)

Finally, one estimate 𝑇2. Since 𝜔(𝑦) ∼ 1, |𝜇𝑛| ≲ 1. On the
other hand,𝐸|𝑓𝑛(𝑦)| ≲ 1 thanks toCondition (𝑆) and Lemma
3.3 in Liu and Xu [10]. Hence,

𝑇2 = sup
𝑦∈[0,1]𝑑

(
𝜇𝑛𝜇 − 1)𝐸𝑓𝑛 (𝑦)


≤ sup
𝑦∈[0,1]𝑑

𝜇𝑛 
1̂𝜇𝑛 −

1𝜇
 𝐸
𝑓𝑛 (𝑦) ≲


1̂𝜇𝑛 −

1𝜇


= 
1𝑛
𝑛∑
𝑖=1

( 1𝜔 (𝑌𝑖) −
1𝜇)
 .

(53)

Take𝑊𝑖 = 1/𝜔(𝑌𝑖)−1/𝜇.Then𝑊1,𝑊2, . . . ,𝑊𝑛 is 𝑖.𝑖.𝑑 and𝐸𝑊𝑖 = 0 (see (43)). By 𝜔(𝑦) ∼ 1, |𝑊𝑖| ≲ 1 and 𝐸(𝑊𝑖)2 ≲ 1.
Similar to the arguments of (39),

𝑇2 = 𝑂𝑎.𝑠. ( ln 𝑛𝑛 )
(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) . (54)

This with (48), (50), and (52) shows

sup
𝑦∈[0,1]𝑑

𝑓𝑛 (𝑦) − 𝑓 (𝑦)
= 𝑂𝑎.𝑠. ( ln 𝑛𝑛 )

(𝑠−𝑑/𝑝)/(2(𝑠−𝑑/𝑝)+𝑑) .
(55)
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