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In this paper, we prove some new dynamic inequalities involving 𝐶− monotonic functions on time scales. Themain results will be
proved by employing Hölder’s inequality, integration by parts, and a chain rule on time scales. As a special case when T = R, our
results contain the continuous inequalities proved by Heinig, Maligranda, Pečarić, Perić, and Persson and when T = N, the results
to the best of the authors’ knowledge are essentially new.

1. Introduction

In 1995 Heinig and Maligranda [1] proved that if −∞ ≤ 𝑎 <𝑏 ≤ ∞, 𝑓, 𝑔 ≥ 0, 𝑓 is decreasing on (𝑎, 𝑏) and 𝑔 is increasing
on (𝑎, 𝑏) with 𝑔(𝑎) = 0, then for any 𝛾 ∈ (0, 1]

∫𝑏
𝑎
𝑓 (𝑥) 𝑑𝑔 (𝑥) ≤ (∫𝑏

𝑎
𝑓𝛾 (𝑥) 𝑑 [𝑔𝛾 (𝑥)])1/𝛾 . (1)

Inequality (1) is reversed when 1 ≤ 𝛾 < ∞. Also in [1] they
proved that if 𝑓 is increasing on (𝑎, 𝑏) and 𝑔 is decreasing on(𝑎, 𝑏) with 𝑔(𝑏) = 0, then, for any 𝛾 ∈ (0, 1],

∫𝑏
𝑎
𝑓 (𝑥) 𝑑 [−𝑔 (𝑥)] ≤ (∫𝑏

𝑎
𝑓𝛾 (𝑥) 𝑑 [−𝑔𝛾 (𝑥)])1/𝛾 . (2)

In [1] the authors generalized (1) and proved that if 0 < 𝑝 ≤𝑞 < ∞, and 𝑢, V are positive functions, then there exists a
constant 𝐷 > 0 such that the inequality,

[∫∞
0

𝑢 (𝑥) 𝑓𝑞 (𝑥) 𝑑𝑥]1/𝑞

≤ 𝐷[∫∞
0

V (𝑥) 𝑓𝑝 (𝑥) 𝑑𝑥]1/𝑝 ,
(3)

holds for all nonnegative decreasing function 𝑓 if and only if

[∫𝑡
0
𝑢 (𝑥) 𝑑𝑥]1/𝑞 ≤ 𝐷[∫𝑡

0
V (𝑥) 𝑑𝑥]1/𝑝 , ∀𝑡 > 0. (4)

In [1] it is also proved that inequality (3) holds for all
nonnegative increasing functions 𝑓 and 0 < 𝑝 ≤ 𝑞 < ∞ if
and only if

[∫∞
𝑡

𝑢 (𝑥) 𝑑𝑥]1/𝑞 ≤ 𝐷[∫∞
𝑡

V (𝑥) 𝑑𝑥]1/𝑝 , ∀𝑡 > 0. (5)

In 1997 Pečarić et al. [2] generalized (1) and proved that if 𝑓 is𝐶−decreasing with 𝐶 ≥ 1 and 𝑔 is an increasing function on[𝑎, 𝑏] such that 𝑔(𝑎) = 0, and 𝜑 : [0,∞) → R is a concave,
nonnegative, and differentiable function such that 𝜑(0) = 0,
then

𝜑(𝐶∫𝑏
𝑎
𝑓 (𝑥) 𝑑𝑔 (𝑥))

≤ 𝐶∫𝑏
𝑎
𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] (𝑓 (𝑥) 𝑑𝑔 (𝑥)) .

(6)

The function 𝑓 is said to be 𝐶−decreasing if 𝑠 ≤ 𝑡 implies that𝑓(𝑡) ≤ 𝐶𝑓(𝑠) for 𝐶 > 1. Pečarić et al. [2] also proved that if 𝑓
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is𝐶−increasing with 𝐶 ≥ 1 and 𝑔 is increasing on [𝑎, 𝑏], such
that 𝑔(𝑎) = 0, then

𝜑( 1𝐶 ∫𝑏
𝑎
𝑓 (𝑥) 𝑑𝑔 (𝑥))

≥ 1𝐶 ∫𝑏
𝑎
𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] 𝑓 (𝑥) 𝑑𝑔 (𝑥) .

(7)

The function 𝑓 is said to be 𝐶−increasing if 𝑠 ≤ 𝑡 implies𝑓(𝑠) ≤ 𝐶𝑓(𝑡). Furthermore they also considered the case
when 𝑓 is 𝐶− increasing with 𝐶 ≥ 1 and 𝑔 is decreasing on[𝑎, 𝑏], such that 𝑔(𝑏) = 0, and proved that

𝜑(𝐶∫𝑏
𝑎
𝑓 (𝑥) 𝑑 [−𝑔 (𝑥)])

≤ 𝐶∫𝑏
𝑎
𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] 𝑓 (𝑥) 𝑑 [−𝑔 (𝑥)] .

(8)

Finally they proved that if 𝑓 is 𝐶−decreasing with 𝐶 ≥ 1 and𝑔 is decreasing on [𝑎, 𝑏], such that 𝑔(𝑏) = 0, then
𝜑( 1𝐶 ∫𝑏

𝑎
𝑓 (𝑥) 𝑑 [−𝑔 (𝑥)])

≥ 1𝐶 ∫𝑏
𝑎
𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] 𝑓 (𝑥) 𝑑 [−𝑔 (𝑥)] .

(9)

In the last decades some authors have been interested in
finding some discrete results on 𝑙𝑝(N) analogues to 𝐿𝑝(R)−
bounds in different fields in analysis and as a result this
subject becomes a topic of ongoing research. One reason
for this upsurge of interest in discrete case is also due to
the fact that discrete operators may even behave differently
from their continuous counterparts. In this paper, we obtain
the discrete inequalities as special cases of the results with a
general domain called the time scale T , which is an arbitrary
nonempty closed subset of the real numbers R. These new
results on the time scale T contain the classical continuous
and discrete inequalities as special cases when T = R and
T = N and can be extended to different inequalities on
different time scales such as T = ℎN, ℎ > 0, T = 𝑞N for 𝑞 > 1.

In recent years the study of dynamic inequalities on time
scales has received a lot of attention and has become a major
field in pure and applied mathematics. Formore details about
the dynamic inequalities on time scales, we refer the reader to
the books [3–5] and the papers [6–11].

The natural question now is the following: Is it pos-
sible to prove some new inequalities with 𝐶−monotonic𝑟𝑑−continuous functions defined on a time scale T and as
special cases contain the above results?

Our aim in this paper is to give the answer to this question
and find the relation between the weighted functions which
ensure that the inequality

[∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥]1/𝑞

≤ 𝐷[∫∞
𝑎

ℎ (𝑥) 𝑓𝑝 (𝑥) Δ𝑥]1/𝑝 ,
(10)

holds for all nonnegative decreasing function 𝑓 such that
lim𝑥→∞𝑓(𝑥) = 0,𝐷 > 0, and 0 < 𝑝 ≤ 𝑞 < ∞.Also, we estab-
lish some new dynamic inequalities involving 𝐶−monotonic
functions in the form

𝜑(𝐶∫𝑏
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥)

≤ 𝐶∫𝑏
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] Δ𝑥,

(11)

where 𝜑 : [0,∞) → R is a concave, nonnegative, and
differentiable function such that 𝜑(0) = 0, and 𝑓 is 𝐶−
decreasing with 𝐶 ≥ 1, and 𝑔 is an increasing function on[𝑎, 𝑏]T , such that 𝑔(𝑎) = 0.

Thepaper is organized as follows. In Section 2, we present
some preliminaries concerning the theory of time scales and
prove the basic lemmas that will be needed in the proofs.
In Section 3, we prove the main results by using Hölder’s
inequality, integration by parts, and a chain rule on time
scales. Our results when T = R give inequalities (1), (2), (3),
(6), (7), (8), and (9) proved by Heinig, Maligranda, Pečarić,
Perić, and Persson. When T = N, our results are essentially
new.

2. Preliminaries and Basic Lemmas

In this section, we recall the following concepts related to the
notion of time scales. For more details of time scale analysis
we refer the reader to the two books by Bohner and Peterson
[5, 12] which summarize and organize much of the time scale
calculus. A time scale T is an arbitrary nonempty closed
subset of the real numbersR.The forward jump operator and
the backward jump operator are defined by𝜎(𝑡) fl inf{𝑠 ∈ T :𝑠 > 𝑡}, and 𝜌(𝑡) fl sup{𝑠 ∈ T : 𝑠 < 𝑡}, where sup 0 = inf T . A
point, 𝑡 ∈ T , is said to be left–dense if 𝜌(𝑡) = 𝑡 and 𝑡 > inf T ,
is right-dense if 𝜎(𝑡) = 𝑡, is left–scattered if 𝜌(𝑡) < 𝑡, and is
right–scattered if 𝜎(𝑡) > 𝑡. A function 𝑓 : T → R is said
to be right-dense continuous (rd-continuous) provided 𝑓 is
continuous at right dense points and, at left-dense points in
T , left hand limits exist and are finite. The set of all such rd-
continuous functions is denoted by 𝐶𝑟𝑑(T) = 𝐶𝑟𝑑(T ,R). The
product and quotient rules for the derivative of the product𝑓𝑔 and the quotient 𝑓/𝑔 (where 𝑔𝑔𝜎 ̸= 0, here 𝑔𝜎 = 𝑔 ∘ 𝜎) of
two differentiable functions 𝑓 and 𝑔 are given by

(𝑓𝑔)Δ = 𝑓𝑔Δ + 𝑓Δ𝑔𝜎 = 𝑓Δ𝑔 + 𝑓𝜎𝑔Δ,
(𝑓𝑔)Δ = 𝑓Δ𝑔 − 𝑓𝑔Δ𝑔 𝑔𝜎 . (12)

Let 𝑓 : R → R be continuously differentiable and suppose
that 𝑔 : T → R is delta differentiable. Then 𝑓 ∘ 𝑔 : T → R
is delta differentiable and there exists 𝑑 in the real interval[𝑡, 𝜎(𝑡)] for 𝑡 ∈ T , such that

(𝑓 ∘ 𝑔)Δ (𝑡) = 𝑓 (𝑔 (𝑑)) 𝑔Δ (𝑡) . (13)



Journal of Function Spaces 3

Another shape of the chain rule is the formula

(𝑓 ∘ 𝑔)Δ (𝑡)
= {∫1
0
𝑓 (𝑔 (𝑡) + ℎ𝜇 (𝑡) 𝑔Δ (𝑡)) 𝑑ℎ} 𝑔Δ (𝑡) . (14)

A special case of (14) is

[𝑢𝜆 (𝑡)]Δ = 𝜆∫1
0

[ℎ𝑢𝜎 + (1 − ℎ) 𝑢]𝜆−1 𝑢Δ (𝑡) 𝑑ℎ. (15)

We define the time scale interval [𝑎, 𝑏]T by [𝑎, 𝑏]T fl [𝑎, 𝑏] ∩
T . In this paper, we will use Cauchy (delta) integral which
we can define as follows. If 𝐺Δ(𝑡) = 𝑔(𝑡), then the Cauchy
(delta) integral of 𝑔 is defined by ∫𝑡

𝑎
𝑔(𝑥)Δ𝑥 fl 𝐺(𝑡) − 𝐺(𝑎).

It can be shown (see [5]) that if 𝑔 ∈ 𝐶𝑟𝑑(T), then the Cauchy
integral𝐺(𝑡) fl ∫𝑡

𝑡0
𝑔(𝑥)Δ𝑥 exists, 𝑡0 ∈ T , and satisfies 𝐺Δ(𝑡) =

𝑔(𝑡), 𝑡 ∈ T . In case T = R, we have

𝜎 (𝑡) = 𝜌 (𝑡) = 𝑡,
𝜇 (𝑡) = 0,
𝑓Δ = 𝑓,

∫𝑏
𝑎
𝑓 (𝑡) Δ𝑡 = ∫𝑏

𝑎
𝑓 (𝑡) 𝑑𝑡,

(16)

The integration on discrete time scales is defined by
∫𝑏
𝑎
𝑔(𝑡)Δ𝑡 = ∑𝑡∈[𝑎,𝑏) 𝜇(𝑡)𝑔(𝑡) and then, in case T = Z, we have

𝜎 (𝑡) = 𝑡 + 1,
𝜌 (𝑡) = 𝑡 − 1,
𝜇 (𝑡) = 1,
𝑓Δ = Δ𝑓,

∫𝑏
𝑎
𝑓 (𝑡) Δ𝑡 = 𝑏−1∑

𝑡=𝑎

𝑓 (𝑡) .

(17)

The integration by parts formula on time scales is given by

∫𝑏
𝑎
𝑢Δ (𝑡) V𝜎 (𝑡) Δ𝑡 = 𝑢 (𝑡) V (𝑡)|𝑏𝑎 − ∫𝑏

𝑎
𝑢 (𝑡) VΔ (𝑡) Δ𝑡. (18)

Also, we have, for 𝑓 ∈ 𝐶𝑟𝑑 and 𝑡 ∈ T , that

∫𝜎(𝑡)
𝑡

𝑓 (𝜏) Δ𝜏 = 𝜇 (𝑡) 𝑓 (𝑡) . (19)

The Hölder inequality on time scales is given by

∫𝑏
𝑎
𝑓 (𝑡) 𝑔 (𝑡) Δ𝑡
≤ (∫𝑏
𝑎
𝑓𝛾 (𝑡) Δ𝑡)1/𝛾 (∫𝑏

𝑎
𝑔] (𝑡) Δ𝑡)1/] ,

(20)

where > 1, 1/𝛾 + 1/] = 1, and 𝑓, 𝑔 ∈ 𝐶𝑟𝑑([𝑎, 𝑏]T ,R+).
Inequality (20) is reversed if 0 < 𝛾 < 1 or 𝛾 < 0.

Definition 1. A set 𝐾 ⊂ R is convex if, for all 𝑥, 𝑦 ∈ 𝐾 and𝜆 ∈ [0, 1], we have
𝜆𝑥 + (1 − 𝜆) 𝑦 ∈ 𝐾. (21)

A function 𝐹 : 𝐾 ⊂ R → R is concave if 𝐾 is convex and,
for all 𝑥, 𝑦 ∈ 𝐾 and 𝜆 ∈ [0, 1], we have

𝐹 (𝜆𝑥 + (1 − 𝜆) 𝑦) ≥ 𝜆𝐹 (𝑥) + (1 − 𝜆) 𝐹 (𝑦) . (22)

A function 𝐹 : 𝐾 ⊂ R → R is convex if −𝐹 is concave.

Definition 2. Assume that T is a time scale, 𝑓 : T → R and𝐶 ≥ 1. If 𝑠 ≤ 𝑡 implies 𝑓(𝑡) ≤ 𝐶𝑓(𝑠), then 𝑓 is 𝐶− decreasing.
If 𝑠 ≤ 𝑡 implies 𝑓(𝑠) ≤ 𝐶𝑓(𝑡), then 𝑓 is 𝐶−increasing. As a
special case when 𝐶 = 1 we get the classical definitions.

Now, we prove the basic lemmas that will be used to prove
our main results. Throughout the paper, we assume that the
functions (without mentioning) are rd-continuous nonneg-
ative and Δ−differentiable functions, locally Δ−integrable on[𝑎,∞)T and the integrals considered are assumed to exist and
finite.

Lemma 3. Assume that T is a time scale with 𝑎 ∈ T and ,𝛽 ∈ 𝐶𝑟𝑑([𝑎,∞)T ,R+). If 𝛾 ≥ 1, then
[∫∞
𝑎

𝛼 (𝑥) (∫𝜎(𝑥)
𝑎

𝛽 (𝜏) Δ𝜏)𝛾 Δ𝑥]1/𝛾

≤ ∫∞
𝑎

𝛽 (𝑥) (∫∞
𝑥

𝛼 (𝑠) Δ𝑠)1/𝛾 Δ𝑥.
(23)

Proof. Let 𝐹(𝑥) = ∫𝑥
𝑎

𝛽(𝜏)Δ𝜏. Then, the left hand side of (23)
can be written in the form

∫∞
𝑎

𝛼 (𝑥) (∫𝜎(𝑥)
𝑎

𝛽 (𝜏) Δ𝜏)𝛾 Δ𝑥
= ∫∞
𝑎

𝛼 (𝑥) [𝐹𝜎 (𝑥)]𝛾−1 𝐹𝜎 (𝑥) Δ𝑥.
(24)

Integrating the right hand side of (24) by parts with

𝑢Δ (𝑥) = 𝛼 (𝑥) [𝐹𝜎 (𝑥)]𝛾−1 ,
]𝜎 (𝑥) = 𝐹𝜎 (𝑥) , (25)

we have that

∫∞
𝑎

𝛼 (𝑥) [𝐹𝜎 (𝑥)]𝛾−1 𝐹𝜎 (𝑥) Δ𝑥
= 𝑢 (𝑥) 𝐹 (𝑥)|∞𝑎 − ∫∞

𝑎
𝑢 (𝑥) 𝛽 (𝑥) Δ𝑥,

(26)

where 𝑢(𝑥) = − ∫∞
𝑥

𝛼(𝑠)[𝐹𝜎(𝑠)]𝛾−1Δ𝑠. Using the facts that
lim𝑥→∞𝑢(𝑥) = 0 and 𝐹(𝑎) = 0, we see that

∫∞
𝑎

𝛼 (𝑥) [𝐹𝜎 (𝑥)]𝛾−1 𝐹𝜎 (𝑥) Δ𝑥
= ∫∞
𝑎

𝛽 (𝑥) (∫∞
𝑥

𝛼 (𝑠) [𝐹𝜎 (𝑠)]𝛾−1 Δ𝑠)Δ𝑥.
(27)
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Substituting (27) into (24), we get that

∫∞
𝑎

𝛼 (𝑥) (∫𝜎(𝑥)
𝑎

𝛽 (𝜏) Δ𝜏)𝛾 Δ𝑥 = ∫∞
𝑎

𝛽 (𝑥)
⋅ (∫∞
𝑥

𝛼 (𝑠) [𝐹𝜎 (𝑠)]𝛾−1 Δ𝑠)Δ𝑥 = ∫∞
𝑎

𝛽 (𝑥)
⋅ (∫∞
𝑥

𝛼1/𝛾 (𝑠) 𝛼(𝛾−1)/𝛾 (𝑠) [𝐹𝜎 (𝑠)]𝛾−1 Δ𝑠)Δ𝑥.

(28)

Applying the Hölder inequality with indices 𝛾 > 1, and 𝛾/(𝛾−1) on the term

∫∞
𝑥

𝛼1/𝛾 (𝑠) 𝛼(𝛾−1)/𝛾 (𝑠) [𝐹𝜎 (𝑠)]𝛾−1 Δ𝑠 (29)

we see that

∫∞
𝑥

𝛼1/𝛾 (𝑠) 𝛼(𝛾−1)/𝛾 (𝑠) [𝐹𝜎 (𝑠)]𝛾−1 Δ𝑠

≤ (∫∞
𝑥

𝛼 (𝑠) Δ𝑠)1/𝛾 (∫∞
𝑥

𝛼 (𝑠) [𝐹𝜎 (𝑠)]𝛾 Δ𝑠)(𝛾−1)/𝛾 .
(30)

Substituting (30) into (28), where 𝛽 is a positive function, we
obtain

∫∞
𝑎

𝛼 (𝑥) (∫𝜎(𝑥)
𝑎

𝛽 (𝜏) Δ𝜏)𝛾 Δ𝑥 ≤ ∫∞
𝑎

𝛽 (𝑥)

⋅ (∫∞
𝑥

𝛼 (𝑠) Δ𝑠)1/𝛾

⋅ (∫∞
𝑥

𝛼 (𝑠) [𝐹𝜎 (𝑠)]𝛾 Δ𝑠)(𝛾−1)/𝛾 Δ𝑥.

(31)

Since 𝑥 ≥ 𝑎 and 𝛼, 𝛽 are positive functions, we see that

∫∞
𝑥

𝛼 (𝑠) [𝐹𝜎 (𝑠)]𝛾 Δ𝑠 ≤ ∫∞
𝑎

𝛼 (𝑠) [𝐹𝜎 (𝑠)]𝛾 Δ𝑠, (32)

and then we have for 𝛾 > 1 (note that (𝛾 − 1)/𝛾 > 0) that

(∫∞
𝑥

𝛼 (𝑠) [𝐹𝜎 (𝑠)]𝛾 Δ𝑠)(𝛾−1)/𝛾

≤ (∫∞
𝑎

𝛼 (𝑠) [𝐹𝜎 (𝑠)]𝛾 Δ𝑠)(𝛾−1)/𝛾 .
(33)

From (31) and (33), we have

∫∞
𝑎

𝛼 (𝑥) (∫𝜎(𝑥)
𝑎

𝛽 (𝜏) Δ𝜏)𝛾 Δ𝑥

≤ (∫∞
𝑎

𝛼 (𝑠) [𝐹𝜎 (𝑠)]𝛾 Δ𝑠)(𝛾−1)/𝛾

⋅ ∫∞
𝑎

𝛽 (𝑥) (∫∞
𝑥

𝛼 (𝑠) Δ𝑠)1/𝛾 Δ𝑥

= [∫∞
𝑎

𝛼 (𝑠) (∫𝜎(𝑠)
𝑎

𝛽 (𝜏) Δ𝜏)𝛾 Δ𝑠](𝛾−1)/𝛾

⋅ ∫∞
𝑎

𝛽 (𝑥) (∫∞
𝑥

𝛼 (𝑠) Δ𝑠)1/𝛾 Δ𝑥,

(34)

and then

[∫∞
𝑎

𝛼 (𝑥) (∫𝜎(𝑥)
𝑎

𝛽 (𝜏) Δ𝜏)𝛾 Δ𝑥]1/𝛾

≤ ∫∞
𝑎

𝛽 (𝑥) (∫∞
𝑥

𝛼 (𝑠) Δ𝑠)1/𝛾 Δ𝑥,
(35)

which is the desired inequality (23). The proof is complete.

As in the proof of Lemma 3, we can easily prove the
following dual lemma.

Lemma 4. Assume that T is a time scale with 𝑎 ∈ T and ,𝛽 ∈ 𝐶𝑟𝑑([𝑎,∞)T ,R+). If 𝛾 ≥ 1, then
[∫∞
𝑎

𝛼 (𝑥) (∫∞
𝑥

𝛽 (𝜏) Δ𝜏)𝛾 Δ𝑥]1/𝛾

≤ ∫∞
𝑎

𝛽 (𝑥) (∫𝜎(𝑥)
𝑎

𝛼 (𝑠) Δ𝑠)1/𝛾 Δ𝑥.
(36)

3. Main Results

In this section, we state and prove our main results and for
simplicity, wewill assume that𝑤, ℎ are positive rd-continuous
functions on [𝑎,∞)T and 𝜑 : [0,∞) → [0,∞) is a concave
and differentiable function such that 𝜑(0) = 0.We begin with
the time scale version of (3).

Theorem 5. Assume that T is a time scale with 𝑎 ∈ T , 0 <𝑝 ≤ 𝑞 < ∞. Furthermore assume that 𝑓 is nonnegative and
decreasing function such that lim𝑠→∞𝑓(𝑠) = 0 and

∫∞
𝑎

ℎ (𝑥) 𝑓𝑝 (𝑥) Δ𝑥 < ∞. (37)

If there exists a constant 𝐷 > 0 such that
(∫𝜎(𝑥)
𝑎

𝑤 (𝜏)Δ𝜏)1/𝑞 ≤ 𝐷(∫𝜎(𝑥)
𝑎

ℎ (𝜏) Δ𝜏)1/𝑝 ,
∀𝑥 ∈ [𝑎,∞)T ,

(38)
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then

[∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥]1/𝑞

≤ 𝐷[∫∞
𝑎

ℎ (𝑥) 𝑓𝑝 (𝑥) Δ𝑥]1/𝑝 .
(39)

Proof. Integrating the term

∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥, (40)

by parts formula with 𝑢(𝑥) = 𝑓𝑞(𝑥) and VΔ(𝑥) = 𝑤(𝑥), we
have that

∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥 = 𝑓𝑞 (𝑥) V (𝑥)∞𝑎
− ∫∞
𝑎

[𝑓𝑞 (𝑥)]Δ V𝜎 (𝑥) Δ𝑥,
(41)

where V(𝑥) = ∫𝑥
𝑎

𝑤(𝜏)Δ𝜏. Using the facts that V(𝑎) = 0 and
lim𝑥→∞𝑓(𝑥) = 0, we obtain

∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥 = ∫∞
𝑎

[−𝑓𝑞 (𝑥)]Δ V𝜎 (𝑥) Δ𝑥
= ∫∞
𝑎

[−𝑓𝑞 (𝑥)]Δ (∫𝜎(𝑥)
𝑎

𝑤 (𝜏) Δ𝜏)Δ𝑥,
(42)

and then

(∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥)𝑝/𝑞

= [∫∞
𝑎

[−𝑓𝑞 (𝑥)]Δ (∫𝜎(𝑥)
𝑎

𝑤 (𝜏)Δ𝜏)Δ𝑥]𝑝/𝑞 .
(43)

Substituting (38) into (43), we see (note 𝑓 is decreasing) that

(∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥)𝑝/𝑞

≤ 𝐷𝑝 [∫∞
𝑎

[−𝑓𝑞 (𝑥)]Δ (∫𝜎(𝑥)
𝑎

ℎ (𝜏) Δ𝜏)𝑞/𝑝 Δ𝑥]
𝑝/𝑞

.
(44)

Applying (23) with 𝛾 = 𝑞/𝑝, 𝛼(𝑥) = [−𝑓𝑞(𝑥)]Δ and 𝛽(𝜏) =ℎ(𝜏) on the right side of (44), we see that

[∫∞
𝑎

[−𝑓𝑞 (𝑥)]Δ (∫𝜎(𝑥)
𝑎

ℎ (𝜏) Δ𝜏)𝑞/𝑝 Δ𝑥]
𝑝/𝑞

≤ ∫∞
𝑎

ℎ (𝑥) (∫∞
𝑥

[−𝑓𝑞 (𝑠)]Δ Δ𝑠)𝑝/𝑞 Δ𝑥.
(45)

Using the assumption that lim𝑥→∞𝑓(𝑥) = 0, we get
[∫∞
𝑎

[−𝑓𝑞 (𝑥)]Δ (∫𝜎(𝑥)
𝑎

ℎ (𝜏) Δ𝜏)𝑞/𝑝 Δ𝑥]
𝑝/𝑞

≤ ∫∞
𝑎

ℎ (𝑥) 𝑓𝑝 (𝑥) Δ𝑥.
(46)

Substituting (46) into (44), we have

(∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥)𝑝/𝑞 ≤ 𝐷𝑝 ∫∞
𝑎

ℎ (𝑥) 𝑓𝑝 (𝑥) Δ𝑥, (47)

and then

(∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥)1/𝑞

≤ 𝐷(∫∞
𝑎

ℎ (𝑥) 𝑓𝑝 (𝑥) Δ𝑥)1/𝑝 ,
(48)

which is the desired inequality (39). The proof is complete.

Remark 6. Suppose that the inequality

[∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥]1/𝑞

≤ 𝐷[∫∞
𝑎

ℎ (𝑥) 𝑓𝑝 (𝑥) Δ𝑥]1/𝑝 ,
(49)

holds for all nonnegative decreasing functions 𝑓. Then it
holds when

𝑓 (𝑥) = {{{
1, if 𝑥 ∈ [𝑎, 𝜎 (𝑡)]T ,
0, if 𝑥 ∉ [𝑎, 𝜎 (𝑡)]T , (50)

for any fixed number 𝑡 ∈ [𝑎,∞)T and becomes

[∫𝜎(𝑡)
𝑎

𝑤 (𝑥) Δ𝑥]1/𝑞 ≤ 𝐷[∫𝜎(𝑡)
𝑎

ℎ (𝑥) Δ𝑥]1/𝑝 . (51)

This proves the necessary condition of Theorem 5.

From Theorem 5 and Remark 6, we have the following
corollary.

Corollary 7. Assume that T is a time scale with 𝑎 ∈ T , 0 <𝑝 ≤ 𝑞 < ∞. If 𝑓 is nonnegative and decreasing function such
that lim𝑠→∞𝑓(𝑠) = 0, and

∫∞
𝑎

ℎ (𝑥) 𝑓𝑝 (𝑥) Δ𝑥 < ∞, (52)

then there exists a constant 𝐷 > 0 such that the inequality
[∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥]1/𝑞

≤ 𝐷[∫∞
𝑎

ℎ (𝑥) 𝑓𝑝 (𝑥) Δ𝑥]1/𝑝 ,
(53)

holds if and only if

(∫𝜎(𝑥)
𝑎

𝑤 (𝜏)Δ𝜏)1/𝑞 ≤ 𝐷(∫𝜎(𝑥)
𝑎

ℎ (𝜏) Δ𝜏)1/𝑝 ,
∀𝑥 ∈ [𝑎,∞)T .

(54)
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Remark 8. As a special case of Corollary 7 when T = R,
we get the integral inequality (3) proved by Heinig and
Maligranda [1].

Remark 9. As a special case of Corollary 7 when T = N and𝑎 = 1, we see that the inequality
[∞∑
𝑛=1

𝑤𝑛𝑓𝑞𝑛]
1/𝑞 ≤ 𝐷[∞∑

𝑛=1

ℎ𝑛𝑓𝑝𝑛 ]
1/𝑝 , (55)

holds if and only if

( 𝑛∑
𝑘=1

𝑤𝑘)
1/𝑞

≤ 𝐷( 𝑛∑
𝑘=1

ℎ𝑘)
1/𝑝

, ∀𝑛 ∈ N, (56)

and 0 < 𝑝 ≤ 𝑞 < ∞, for nonnegative and decreasing
sequences 𝑓 when lim𝑛→∞𝑓(𝑛) = 0.
Theorem 10. Assume thatT is a time scalewith𝑎 ∈ T , 0 < 𝑝 ≤𝑞 < ∞. Furthermore assume that 𝑓 is a nonnegative bounded
and increasing function such that 𝑓(𝑎) = 0 and

∫∞
𝑎

ℎ (𝑥) [𝑓𝜎 (𝑥)]𝑝 Δ𝑥 < ∞. (57)

If there exists a constant 𝐷 > 0 such that
[∫∞
𝑥

𝑤 (𝜏) Δ𝜏]1/𝑞 ≤ 𝐷[∫∞
𝑥

ℎ (𝜏) Δ𝜏]1/𝑝 ,
∀𝑥 ∈ [𝑎,∞)T ,

(58)

then

[∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥]1/𝑞

≤ 𝐷[∫∞
𝑎

ℎ (𝑥) [𝑓𝜎 (𝑥)]𝑝 Δ𝑥]1/𝑝 .
(59)

Proof. Applying the integration by parts on the term∫∞
𝑎

𝑤(𝑥)𝑓𝑞(𝑥)Δ𝑥 with 𝑢(𝑥) = 𝑓𝑞(𝑥) and VΔ(𝑥) = 𝑤(𝑥), we
have

∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥 = 𝑓𝑞 (𝑥) V (𝑥)∞𝑎
− ∫∞
𝑎

[𝑓𝑞 (𝑥)]Δ V𝜎 (𝑥) Δ𝑥,
(60)

where V(𝑥) = − ∫∞
𝑥

𝑤(𝜏)Δ𝜏. Using the facts that
lim𝑥→∞V(𝑥) = 0, 𝑓 is bounded, and 𝑓(𝑎) = 0, we
get

∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥 = ∫∞
𝑎

[−𝑓𝑞 (𝑥)]Δ V𝜎 (𝑥) Δ𝑥
= ∫∞
𝑎

[𝑓𝑞 (𝑥)]Δ (∫∞
𝜎(𝑥)

𝑤 (𝜏) Δ𝜏)Δ𝑥.
(61)

Since 𝑓 is increasing, we obtain

∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥
≤ ∫∞
𝑎

[𝑓𝑞 (𝑥)]Δ (∫∞
𝑥

𝑤 (𝜏) Δ𝜏)Δ𝑥.
(62)

From (58) and (62), we see (note that 𝑓 is increasing) that

∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥
≤ 𝐷𝑞 ∫∞

𝑎
[𝑓𝑞 (𝑥)]Δ [∫∞

𝑥
ℎ (𝜏) Δ𝜏]𝑞/𝑝 Δ𝑥,

(63)

and then

(∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥)𝑝/𝑞

≤ 𝐷𝑝 (∫∞
𝑎

[𝑓𝑞 (𝑥)]Δ [∫∞
𝑥

ℎ (𝜏) Δ𝜏]𝑞/𝑝 Δ𝑥)𝑝/𝑞 .
(64)

Applying (36) with 𝛾 = 𝑞/𝑝, 𝛼(𝑥) = [𝑓𝑞(𝑥)]Δ and 𝛽(𝜏) = ℎ(𝜏)
on the term

(∫∞
𝑎

[𝑓𝑞 (𝑥)]Δ [∫∞
𝑥

ℎ (𝜏) Δ𝜏]𝑞/𝑝 Δ𝑥)𝑝/𝑞 , (65)

we have

(∫∞
𝑎

[𝑓𝑞 (𝑥)]Δ [∫∞
𝑥

ℎ (𝜏) Δ𝜏]𝑞/𝑝 Δ𝑥)𝑝/𝑞

≤ ∫∞
𝑎

ℎ (𝑥) [∫𝜎(𝑥)
𝑎

[𝑓𝑞 (𝑠)]Δ Δ𝑠]𝑝/𝑞 Δ𝑥.
(66)

Substituting (66) into (64), we see (note that 𝑓(𝑎) = 0) that
(∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥)𝑝/𝑞

≤ 𝐷𝑝 ∫∞
𝑎

ℎ (𝑥) [∫𝜎(𝑥)
𝑎

[𝑓𝑞 (𝑠)]Δ Δ𝑠]𝑝/𝑞 Δ𝑥
= 𝐷𝑝 ∫∞

𝑎
ℎ (𝑥) [𝑓𝜎 (𝑥)]𝑝 Δ𝑥,

(67)

and then

(∫∞
𝑎

𝑤 (𝑥) 𝑓𝑞 (𝑥) Δ𝑥)1/𝑞

≤ 𝐷(∫∞
𝑎

ℎ (𝑥) [𝑓𝜎 (𝑥)]𝑝 Δ𝑥)1/𝑝 ,
(68)

which is the desired inequality (59). The proof is complete.
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Theorem 11. Assume that T is a time scale with , 𝑏 ∈ T . If 𝑓
is 𝐶−decreasing on [𝑎, 𝑏]T for 𝐶 ≥ 1 and 𝑔 is increasing on[𝑎, 𝑏]T , such that 𝑔(𝑎) = 0, then

𝜑(𝐶∫𝑏
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥)

≤ 𝐶∫𝑏
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] Δ𝑥.

(69)

Proof. Denote

𝐹 (𝑡) fl 𝜑(𝐶∫𝑡
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥)

− 𝐶∫𝑡
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] Δ𝑥,

(70)

and

𝐺 (𝑡) fl 𝐶∫𝑡
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥. (71)

Therefore, we have from (70) and (71) that

𝐹 (𝑡) fl 𝜑 (𝐺 (𝑡))
− 𝐶∫𝑡
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] Δ𝑥. (72)

Since 𝑓 is 𝐶- decreasing, then we have, for 𝑡 ≥ 𝑥, that 𝑓(𝑡) ≤𝐶𝑓(𝑥), and then we obtain (note 𝑔 is increasing and 𝑔(𝑎) = 0)
that

∫𝑡
𝑎
𝐶𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥 ≥ ∫𝑡

𝑎
𝑓 (𝑡) 𝑔Δ (𝑥) Δ𝑥

= 𝑓 (𝑡) ∫𝑡
𝑎
𝑔Δ (𝑥) Δ𝑥

= [𝑔 (𝑡) − 𝑔 (𝑎)] 𝑓 (𝑡)
= 𝑓 (𝑡) 𝑔 (𝑡) .

(73)

Substituting (71) into (73), we have

𝐺 (𝑡) ≥ 𝑓 (𝑡) 𝑔 (𝑡) . (74)

Applying the chain rule formula (13) on the term 𝜑(𝐺(𝑡)), we
see that there exists 𝜁 ∈ [𝑡, 𝜎(𝑡)], such that

𝜑Δ (𝐺 (𝑡)) = 𝜑 (𝐺 (𝜁)) 𝐺Δ (𝑡) . (75)

From (71), we obtain (note 𝑔 is increasing) that

𝐺Δ (𝑡) = 𝐶𝑓 (𝑡) 𝑔Δ (𝑡) ≥ 0, (76)

and then 𝐺(𝑡) is increasing on [𝑎, 𝑏]T and then we have, for𝜁 ≥ 𝑡, that
𝐺 (𝜁) ≥ 𝐺 (𝑡) . (77)

Since 𝜑 is concave on [0,∞), then 𝜑 < 0 (𝜑 is decreasing
on [0,∞)) and, then, we observe from (77) that

𝜑 (𝐺 (𝜁)) ≤ 𝜑 (𝐺 (𝑡)) . (78)

Substituting (76) and (78) into (75), we get

𝜑Δ (𝐺 (𝑡)) ≤ 𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝐺 (𝑡)) . (79)

From (74), we have that 𝜑(𝐺(𝑡)) ≤ 𝜑(𝑓(𝑡)𝑔(𝑡)), and then we
get (note 𝑓 is positive and 𝑔 is increasing) that

𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝐺 (𝑡)) ≤ 𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝑓 (𝑡) 𝑔 (𝑡)) , (80)

and thus we obtain from (79) that

𝜑Δ (𝐺 (𝑡)) ≤ 𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝑓 (𝑡) 𝑔 (𝑡)) . (81)

From (72), we have

𝐹Δ (𝑡) = 𝜑Δ (𝐺 (𝑡)) − 𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 [𝑓 (𝑡) 𝑔 (𝑡)] . (82)

Substituting (81) into (82), we see that 𝐹Δ(𝑡) ≤ 0, and
therefore 𝐹 is decreasing on [𝑎, 𝑏]T . Since 𝑏 > 𝑎, we see that𝐹(𝑏) ≤ 𝐹(𝑎). Since 𝜑(0) = 0, we have from (70) that

𝐹 (𝑎) = 𝜑 (0) = 0, (83)

and then 𝐹(𝑏) ≤ 0, and then we have from (70), by sitting𝑡 = 𝑏, that
𝜑(𝐶∫𝑏

𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥)

≤ 𝐶∫𝑏
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] Δ𝑥,

(84)

which is the desired inequality (69). The proof is complete.

Remark 12. As a special case of Theorem 11 when T = R, we
get the integral inequality (6) proved by Pečarić et al. [2].

Remark 13. As a special case of Theorem 11 when T = R, 𝐶 =1, 𝜑(𝑡) = 𝑡𝑝, and 0 < 𝑝 ≤ 1, we obtain the integral inequality
(1) proved by Heinig and Maligranda [1].

Remark 14. As a special case of Theorem 11 when T = N and𝑎 = 1, we see that the discrete inequality
𝜑(𝐶 𝑁∑
𝑘=1

𝑓𝑘Δ𝑔𝑘) ≤ 𝐶 𝑁∑
𝑘=1

(𝑓𝑘Δ𝑔𝑘) (𝜑 [𝑓𝑘𝑔𝑘]) , (85)

holds for the 𝐶−decreasing sequence 𝑓 and the increasing
sequence 𝑔 with 𝑔(𝑎) = 0.
Theorem 15. Assume that T is a time scale with , 𝑏 ∈ T . If 𝑓 is𝐶−increasing on [𝑎, 𝑏]T , 𝐶 ≥ 1 and 𝑔 is increasing on [𝑎, 𝑏]T ,
such that 𝑔(𝑎) = 0, then

𝜑( 1𝐶 ∫𝑏
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥)

≥ 1𝐶 ∫𝑏
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓𝜎 (𝑥) 𝑔𝜎 (𝑥)] Δ𝑥.

(86)
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Proof. Denote

𝐹 (𝑡) fl 𝜑( 1𝐶 ∫𝑡
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥)

− 1𝐶 ∫𝑡
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓𝜎 (𝑥) 𝑔𝜎 (𝑥)] Δ𝑥,

(87)

and

𝐺 (𝑡) fl 1𝐶 ∫𝑡
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥. (88)

Therefore, we have from (87) and (88) that

𝐹 (𝑡) = 𝜑 (𝐺 (𝑡))
− 1𝐶 ∫𝑡

𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓𝜎 (𝑥) 𝑔𝜎 (𝑥)] Δ𝑥. (89)

Since 𝑓 is 𝐶− increasing, then we have, for 𝑥 ≤ 𝜎(𝑡), that𝑓(𝑥) ≤ 𝐶𝑓𝜎(𝑡), and then we get (note 𝑔 is increasing and𝑔(𝑎) = 0) that
∫𝜎(𝑡)
𝑎

𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥 ≤ ∫𝜎(𝑡)
𝑎

𝐶𝑓𝜎 (𝑡) 𝑔Δ (𝑥) Δ𝑥
= 𝐶𝑓𝜎 (𝑡) ∫𝜎(𝑡)

𝑎
𝑔Δ (𝑥) Δ𝑥

= 𝐶𝑓𝜎 (𝑡) [𝑔𝜎 (𝑡) − 𝑔 (𝑎)]
= 𝐶𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡) ,

(90)

and thus

1𝐶 ∫𝜎(𝑡)
𝑎

𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥 ≤ 𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡) . (91)

From (88), inequality (91) becomes

𝐺𝜎 (𝑡) ≤ 𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡) . (92)

Applying the chain rule formula (13) on the term 𝜑(𝐺(𝑡)), we
see that there exists 𝜁 ∈ [𝑡, 𝜎(𝑡)], such that

𝜑Δ (𝐺 (𝑡)) = 𝜑 (𝐺 (𝜁)) 𝐺Δ (𝑡) . (93)

From (88), we obtain (note 𝑔 is increasing) that

𝐺Δ (𝑡) = 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) ≥ 0; (94)

then 𝐺(𝑡) is increasing on [𝑎, 𝑏]T , and then we have, for 𝜁 ≤𝜎(𝑡), that
𝐺 (𝜁) ≤ 𝐺𝜎 (𝑡) . (95)

Since 𝜑 is concave on [0,∞), then 𝜑 < 0 (𝜑 is decreasing
on [0,∞)) and then we observe from (95) that

𝜑 (𝐺 (𝜁)) ≥ 𝜑 (𝐺𝜎 (𝑡)) . (96)

Substituting (94) and (96) into (93), we get

𝜑Δ (𝐺 (𝑡)) ≥ 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝐺𝜎 (𝑡)) . (97)

From (92), we have that 𝜑(𝐺𝜎(𝑡)) ≥ 𝜑(𝑓𝜎(𝑡)𝑔𝜎(𝑡)), and then
we get (note 𝑓 is positive and 𝑔 is increasing) that

1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝐺𝜎 (𝑡))
≥ 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡)) ;

(98)

thus we obtain from (97) that

𝜑Δ (𝐺 (𝑡)) ≥ 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡)) . (99)

From (89), we have

𝐹Δ (𝑡) = 𝜑Δ (𝐺 (𝑡)) − 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 [𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡)] . (100)

Substituting (99) into (100), we see that 𝐹Δ(𝑡) ≥ 0, and
therefore 𝐹 is increasing on [𝑎, 𝑏]T . Since 𝑏 > 𝑎, we see that𝐹(𝑏) ≥ 𝐹(𝑎). Since 𝜑(0) = 0, we have from (87) that

𝐹 (𝑎) = 𝜑 (0) = 0; (101)

then 𝐹(𝑏) ≥ 0, and then we have, from (87) by sitting 𝑡 = 𝑏,
that

𝜑( 1𝐶 ∫𝑏
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) Δ𝑥)

≥ 1𝐶 ∫𝑏
𝑎
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓𝜎 (𝑥) 𝑔𝜎 (𝑥)] Δ𝑥,

(102)

which is the desired inequality (86). The proof is complete.

Remark 16. As a special case of Theorem 15 when T = R and𝜎(𝑥) = 𝑥, we get the integral inequality (7) proved by Pečarić
et al. [2].

Remark 17. As a special case of Theorem 15 when T = N,𝜎(𝑛) = 𝑛 + 1, and 𝑎 = 1, we see that the discrete inequality
𝜑( 1𝐶

𝑁∑
𝑘=1

𝑓𝑘Δ𝑔𝑘) ≥ 1𝐶
𝑁∑
𝑘=1

(𝑓𝑘Δ𝑔𝑘) 𝜑 [𝑓𝑘+1𝑔𝑘+1] , (103)

holds for the 𝐶−increasing sequence 𝑓 and the increasing
sequence 𝑔 with 𝑔(𝑎) = 0.
Theorem 18. Assume that T is a time scale with 𝑎, 𝑏 ∈ T . If𝑓 is 𝐶−increasing on [𝑎, 𝑏]T , 𝐶 ≥ 1, and 𝑔 is decreasing on[𝑎, 𝑏]T , such that 𝑔(𝑏) = 0, then

𝜑(𝐶∫𝑏
𝑎
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥)

≤ 𝐶∫𝑏
𝑎
𝑓 (𝑥) [−𝑔 (𝑥)]Δ 𝜑 [𝑓𝜎 (𝑥) 𝑔𝜎 (𝑥)] Δ𝑥.

(104)
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Proof. Denote

𝐹 (𝑡) fl −𝜑(𝐶∫𝑏
𝑡
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥)

− 𝐶∫𝑏
𝑡
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓𝜎 (𝑥) 𝑔𝜎 (𝑥)] Δ𝑥,

(105)

and

𝐺∗ (𝑡) fl 𝐶∫𝑏
𝑡
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥. (106)

Therefore, we have from (105) and (106) that

𝐹 (𝑡) = −𝜑 (𝐺∗ (𝑡))
− 𝐶∫𝑏
𝑡
𝑓 (𝑥) 𝑔Δ (𝑥) 𝜑 [𝑓𝜎 (𝑥) 𝑔𝜎 (𝑥)] Δ𝑥. (107)

Since 𝑓 is 𝐶- increasing, then we have, for 𝜎(𝑡) ≤ 𝑥, that𝑓𝜎(𝑡) ≤ 𝐶𝑓(𝑥), and then we obtain (note 𝑔 is decreasing and𝑔(𝑏) = 0) that
𝐶∫𝑏
𝜎(𝑡)

𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥
≥ ∫𝑏
𝜎(𝑡)

𝑓𝜎 (𝑡) [−𝑔 (𝑥)]Δ Δ𝑥
= 𝑓𝜎 (𝑡) ∫𝑏

𝜎(𝑡)
[−𝑔 (𝑥)]Δ Δ𝑥

= 𝑓𝜎 (𝑡) [𝑔𝜎 (𝑡) − 𝑔 (𝑏)] = 𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡) .

(108)

Substituting (106) into (108), we observe that

𝐺∗ (𝜎 (𝑡)) ≥ 𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡) . (109)

By applying the chain rule formula (13) on the term 𝜑(𝐺∗(𝑡)),
we see that there exists 𝜁 ∈ [𝑡, 𝜎(𝑡)], such that

𝜑Δ (𝐺∗ (𝑡)) = 𝜑 (𝐺∗ (𝜁)) [𝐺∗ (𝑡)]Δ . (110)

From (106), we obtain (note 𝑔 is decreasing) that

[𝐺∗ (𝑡)]Δ = 𝐶𝑓 (𝑡) 𝑔Δ (𝑡) ≤ 0; (111)

then 𝐺∗(𝑡) is decreasing on [𝑎, 𝑏]T , and then we have for 𝜁 ≤𝜎(𝑡) that
𝐺∗ (𝜁) ≥ 𝐺∗ (𝜎 (𝑡)) . (112)

Since 𝜑 is concave on [0,∞), then 𝜑 < 0 (𝜑 is decreasing
on [0,∞)) and then we observe from (112) that

𝜑 (𝐺∗ (𝜁)) ≤ 𝜑 (𝐺∗ (𝜎 (𝑡))) . (113)

Substituting (111) and (113) into (110), we get

𝜑Δ (𝐺∗ (𝑡)) ≥ 𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝐺∗ (𝜎 (𝑡))) . (114)

From (109), we have that 𝜑(𝐺∗(𝜎(𝑡))) ≤ 𝜑(𝑓𝜎(𝑡)𝑔𝜎(𝑡)), and
then we get (note 𝑓 is positive and 𝑔 is decreasing) that

𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝐺∗ (𝜎 (𝑡)))
≥ 𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡)) , (115)

and thus we obtain from (114) that

𝜑Δ (𝐺∗ (𝑡)) ≥ 𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡)) , (116)

and then

−𝜑Δ (𝐺∗ (𝑡)) ≤ −𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡)) . (117)

From (107), we have

𝐹Δ (𝑡) = −𝜑Δ (𝐺∗ (𝑡))
+ 𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 [𝑓𝜎 (𝑡) 𝑔𝜎 (𝑡)] . (118)

Substituting (117) into (118), we see that 𝐹Δ(𝑡) ≤ 0, and
therefore 𝐹 is decreasing on [𝑎, 𝑏]T . Since 𝑏 > 𝑎, we see that𝐹(𝑏) ≤ 𝐹(𝑎). Since 𝜑(0) = 0, we have from (105) that

𝐹 (𝑏) = −𝜑 (0) = 0; (119)

then 𝐹(𝑎) ≥ 0, and then we have, from (105) by sitting 𝑡 = 𝑎,
that

𝜑(𝐶∫𝑏
𝑎
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥)

≤ 𝐶∫𝑏
𝑎
𝑓 (𝑥) [−𝑔 (𝑥)]Δ 𝜑 [𝑓𝜎 (𝑥) 𝑔𝜎 (𝑥)] Δ𝑥,

(120)

which is the desired inequality (104). The proof is complete.

Remark 19. As a special case of Theorem 18 when T = R and𝜎(𝑥) = 𝑥, we get the integral inequality (8) proved by Pečarić
et al. [2].

Remark 20. As a special case of Theorem 18 when T = R,𝜎(𝑛) = 𝑛, 𝐶 = 1, 𝜑(𝑡) = 𝑡𝑝, and 0 < 𝑝 ≤ 1, we obtain the
integral inequality (2) proved by Heinig and Maligranda [1].

Remark 21. As a special case of Theorem 18 when T = N,𝜎(𝑛) = 𝑛 + 1, and 𝑎 = 1, we see that the discrete inequality
𝜑(𝐶 𝑁∑
𝑘=1

𝑓𝑘Δ [−𝑔𝑘])

≤ 𝐶 𝑁∑
𝑘=1

(𝑓𝑘Δ [−𝑔𝑘]) 𝜑 [𝑓𝑘+1𝑔𝑘+1] ,
(121)

holds for the 𝐶−increasing sequence 𝑓 and the decreasing
sequence 𝑔 with 𝑔(𝑏) = 0.
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Theorem 22. Assume that T is a time scale with 𝑎, 𝑏 ∈ T . If𝑓 is 𝐶−decreasing on [𝑎, 𝑏]T , 𝐶 ≥ 1, and 𝑔 is decreasing on[𝑎, 𝑏]T , such that 𝑔(𝑏) = 0, then
𝜑( 1𝐶 ∫𝑏

𝑎
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥)

≥ 1𝐶 ∫𝑏
𝑎
𝑓 (𝑥) [−𝑔 (𝑥)]Δ 𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] Δ𝑥.

(122)

Proof. Denote

𝐹 (𝑡) fl −𝜑( 1𝐶 ∫𝑏
𝑡
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥)

+ 1𝐶 ∫𝑏
𝑡
𝑓 (𝑥) [−𝑔 (𝑥)]Δ 𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] Δ𝑥,

(123)

and

𝐺∗ (𝑡) fl 1𝐶 ∫𝑏
𝑡
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥. (124)

Therefore, we have from (123) and (124) that

𝐹 (𝑡) = −𝜑 (𝐺∗ (𝑡))
+ 1𝐶 ∫𝑏

𝑡
𝑓 (𝑥) [−𝑔 (𝑥)]Δ 𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] Δ𝑥. (125)

Since 𝑓 is 𝐶−decreasing, then we have, for 𝑥 ≥ 𝑡, that 𝑓(𝑥) ≤𝐶𝑓(𝑡), and then we obtain (note 𝑔 is decreasing and 𝑔(𝑏) = 0)
that

∫𝑏
𝑡
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥 ≤ ∫𝑏

𝑡
𝐶𝑓 (𝑡) [−𝑔 (𝑥)]Δ Δ𝑥

= 𝐶𝑓 (𝑡) ∫𝑏
𝑡
[−𝑔 (𝑥)]Δ Δ𝑥 = 𝐶𝑓 (𝑡) [𝑔 (𝑡) − 𝑔 (𝑏)]

= 𝐶𝑓 (𝑡) 𝑔 (𝑡) ,
(126)

and then

1𝐶 ∫𝑏
𝑡
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥 ≤ 𝑓 (𝑡) 𝑔 (𝑡) . (127)

Substituting (124) into (127), we get

𝐺∗ (𝑡) ≤ 𝑓 (𝑡) 𝑔 (𝑡) . (128)

By applying the chain rule formula (13) on the term 𝜑(𝐺∗(𝑡)),
we see that there exists 𝑑 ∈ [𝑡, 𝜎(𝑡)], such that

𝜑Δ (𝐺∗ (𝑡)) = 𝜑 (𝐺∗ (𝑑)) [𝐺∗ (𝑡)]Δ . (129)

From (124), we obtain (note 𝑔 is decreasing) that

[𝐺∗ (𝑡)]Δ = 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) ≤ 0; (130)

then 𝐺∗(𝑡) is decreasing on [𝑎, 𝑏]T , and then we have, for 𝑑 ≥𝑡, that
𝐺∗ (𝑑) ≤ 𝐺∗ (𝑡) . (131)

Since 𝜑 is concave on [0,∞), then 𝜑 < 0 (𝜑 is decreasing
on [0,∞)) and then, we observe from (131) that

𝜑 (𝐺∗ (𝑑)) ≥ 𝜑(𝐺∗ (𝑡) . (132)

Substituting (130) and (132) into (129), we get

𝜑Δ (𝐺∗ (𝑡)) ≤ 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑(𝐺∗ (𝑡) . (133)

From (128), we have that 𝜑(𝐺∗(𝑡)) ≥ 𝜑(𝑓(𝑡)𝑔(𝑡)), and then
we get (note 𝑓 is positive and 𝑔 is decreasing) that

1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝐺∗ (𝑡))
≤ 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝑓 (𝑡) 𝑔 (𝑡)) ;

(134)

thus we obtain from (133) that

𝜑Δ (𝐺∗ (𝑡)) ≤ 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝑓 (𝑡) 𝑔 (𝑡)) , (135)

and then

−𝜑Δ (𝐺∗ (𝑡)) ≥ − 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 (𝑓 (𝑡) 𝑔 (𝑡)) . (136)

From (125), we have

𝐹Δ (𝑡) = −𝜑Δ (𝐺∗ (𝑡))
+ 1𝐶𝑓 (𝑡) 𝑔Δ (𝑡) 𝜑 [𝑓 (𝑡) 𝑔 (𝑡)] . (137)

Substituting (136) into (137), we see that 𝐹Δ(𝑡) ≥ 0, and
therefore 𝐹 is increasing on [𝑎, 𝑏]T . Since 𝑏 > 𝑎, we see that𝐹(𝑏) ≥ 𝐹(𝑎). Since 𝜑(0) = 0, we have from (123) that

𝐹 (𝑏) = −𝜑 (0) = 0; (138)

then 𝐹(𝑎) ≤ 0, and then we have, from (123) by sitting 𝑡 = 𝑎,
that

− 𝜑( 1𝐶 ∫𝑏
𝑎
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥)

+ 1𝐶 ∫𝑏
𝑎
𝑓 (𝑥) [−𝑔 (𝑥)]Δ 𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] Δ𝑥

≤ 0,
(139)

and thus

𝜑( 1𝐶 ∫𝑏
𝑎
𝑓 (𝑥) [−𝑔 (𝑥)]Δ Δ𝑥)

≥ 1𝐶 ∫𝑏
𝑎
𝑓 (𝑥) [−𝑔 (𝑥)]Δ 𝜑 [𝑓 (𝑥) 𝑔 (𝑥)] Δ𝑥,

(140)

which is the desired inequality (122). The proof is complete.



Journal of Function Spaces 11

Remark 23. As a special case of Theorem 22 when T = R, we
get the integral inequality (9) proved by Pečarić et al. [2].

Remark 24. As a special case ofTheorem 22 when T = N and𝑎 = 1, we see that the discrete inequality
𝜑( 1𝐶

𝑁∑
𝑘=1

𝑓𝑘Δ [−𝑔𝑘]) ≥ 1𝐶
𝑁∑
𝑘=1

𝑓𝑘Δ [−𝑔𝑘] 𝜑 [𝑓𝑘𝑔𝑘] , (141)

holds for the 𝐶−decreasing sequence 𝑓 and the decreasing
sequence 𝑔 with 𝑔(𝑏) = 0.
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