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Let 𝑋1, 𝑋2, 𝑋3 be Banach spaces of measurable functions in 𝐿0(R) and let 𝑚(𝜉, 𝜂) be a locally integrable function in R2. We say
that 𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)

(R) if 𝐵𝑚(𝑓, 𝑔)(𝑥) = ∫
R
∫
R
𝑓(𝜉)𝑔(𝜂)𝑚(𝜉, 𝜂)𝑒2𝜋𝑖<𝜉+𝜂,𝑥>𝑑𝜉𝑑𝜂, defined for 𝑓 and 𝑔 with compactly supported

Fourier transform, extends to a bounded bilinear operator from 𝑋1 × 𝑋2 to 𝑋3. In this paper we investigate some properties of
the classBM(𝑋1,𝑋2,𝑋3)

(R) for general spaces which are invariant under translation, modulation, and dilation, analyzing also the
particular case of r.i. Banach function spaces.We shall give some examples in this class and some procedures to generate newbilinear
multipliers. We shall focus on the case 𝑚(𝜉, 𝜂) = 𝑀(𝜉 − 𝜂) and find conditions for these classes to contain nonzero multipliers in
terms of the Boyd indices for the spaces.

1. Introduction

Throughout the paper 𝐿0(R𝑛) stands for the space of complex
valued measurable functions defined on R𝑛, 𝐶𝑐(R𝑛) and
𝐶0(R𝑛) for the spaces of continuous function with compact
support and vanishing at infinity, respectively, S(R𝑛) for the
Schwartz class on R𝑛, and P(R𝑛) for the set of functions in
S(R𝑛) such that supp𝑓 is compact. The Fourier transform
of 𝑓 ∈ 𝐿1(R𝑛) is defined by F(𝑓)(𝜉) = 𝑓(𝜉) =
∫
R𝑛
𝑓(𝑥)𝑒−2𝜋𝑖⟨𝑥,𝜉⟩𝑑𝑥. For 𝑥 ∈ R𝑛 and 𝜆 > 0, we denote

𝜏𝑥,𝑀𝑥, and 𝐷𝜆 are the translation, modulation, and dilation
operators given by 𝜏𝑥𝑓(𝑦) = 𝑓(𝑦 − 𝑥), by 𝑀𝑥𝑓(𝑦) =
𝑒2𝜋𝑖⟨𝑥,𝑦⟩𝑓(𝑦), and by 𝐷𝜆𝑓(𝑦) = 𝑓(𝜆𝑦) for 𝑦 ∈ R𝑛. We also
recall the notation 𝑓𝑡 = 𝑡−𝑛𝐷1/𝑡𝑓.

Throughout the paper we shall be considering 𝑋 ⊂
𝐿0(R𝑛) such that (𝑋, ‖ ⋅ ‖𝑋) is a Banach space and satisfies

𝜏𝑥𝑓𝑋 = 𝑓𝑋 , 𝑓 ∈ 𝑋, 𝑥 ∈ R
𝑛, (1)

𝑀𝑥𝑓𝑋 = 𝑓𝑋 , 𝑓 ∈ 𝑋, 𝑥 ∈ R
𝑛, (2)

𝐷𝜆𝑓 ∈ 𝑋 ∀𝑓 ∈ 𝑋, 𝜆 > 0. (3)

We denote byB0 the class of Banach spaces 𝑋 satisfying
(1), (2), and (3).

We say that 𝑋 ∈ B0 is homogeneous, to be denoted 𝑋 ∈
Bℎ, whenever 𝐿1(R𝑛) ∩ 𝑋 is dense in 𝑋 and, for any 𝑓 ∈ 𝑋,

the maps 𝑥 → 𝜏𝑥𝑓 and 𝑥 → 𝑀𝑥𝑓 are continuous from R𝑛

into 𝑋.
If 𝑋 ∈ Bℎ then P(R𝑛) is dense in 𝑋. Indeed, using

Minkowski’s inequality, for 𝜙 ∈ 𝐿1(R𝑛) and 𝑓 ∈ 𝑋 one has

𝜙 ∗ 𝑓 = ∫
R𝑛
𝜙 (𝑦) 𝜏𝑦𝑓𝑑𝑦 ∈ 𝑋. (4)

Hence given 𝑓 ∈ 𝑋 we first approximate by 𝑔 ∈ 𝑋 ∩ 𝐿1(R𝑛)
and then, by a standard argument, we approximate by ℎ ∈
P(R𝑛) ∩ 𝑋 using the continuity of the map 𝑥 → 𝜏𝑥𝑔 ∈ 𝑋.

Let𝑋 ∈ B0 and 𝜆 > 0; we write
𝐷𝑋 (𝜆) = sup {𝐷𝜆 (𝑓)𝑋 : 𝑓𝑋 ≤ 1} . (5)

For instance, in the case𝑋 = 𝐿𝑝(R) one has𝐷𝑋(𝜆) = 𝜆1/𝑝
and for 𝑋 = 𝐿Φ(R), where Φ is a submultiplicative Young
functions with Φ(1) = 1, one has 𝐷𝑋(𝜆) = 1/Φ−1(𝜆) (see [1,
Remark 2.6]).

If 𝑋1 and 𝑋2 are Banach spaces in 𝐿0(R𝑛), we denote by
𝑀(𝑋1, 𝑋2) the space of “pointwise” multipliers; that is,

𝑀(𝑋1, 𝑋2) = {𝑓 ∈ 𝐿0 (R𝑛) : 𝑓 ⋅ 𝑔 ∈ 𝑋2, ∀𝑔 ∈ 𝑋1} . (6)

This becomes a Banach space under the norm
𝑓𝑀(𝑋1,𝑋2)

= sup {𝑓 ⋅ 𝑔𝑋2 : 𝑔𝑋1 = 1} . (7)
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For 𝑋2 = 𝐿1(R) one obtains the Köethe dual 𝑋
1 =

𝑀(𝑋1, 𝐿1(R)). Also notice that Hölder’s inequality gives
𝑀(𝐿𝑝1(R), 𝐿𝑝2(R)) = 𝐿𝑝3(R) for 1 ≤ 𝑝1, 𝑝2 < ∞ and
1/𝑝3 = 1/𝑝1 + 1/𝑝2. Also for Orlicz spaces (see [2], [3, page
64]) if Φ𝑖, 𝑖 = 1, 2, 3 is Young functions satisfying

Φ−1
1 (𝑥)Φ−1

2 (𝑥) ≤ Φ−1
3 (𝑥) , 𝑥 ≥ 0 (8)

then𝑀(𝐿Φ1(R), 𝐿Φ2(R)) = 𝐿Φ3(R).
It is straightforward to see that if 𝑋1, 𝑋2 ∈ B0 then

𝑀(𝑋1, 𝑋2) ∈ B0 and that

𝐷𝑀(𝑋1,𝑋2)
(𝜆) ≤ 𝐷𝑋1

(𝜆−1)𝐷𝑋2
(𝜆) . (9)

Given a couple 𝑋1 ∈ Bℎ, 𝑋2 ∈ B0 we shall use
the notation M𝑋1,𝑋2

(R𝑛) for the space of locally integrable
functions𝑀 defined on R𝑛 such that

𝑇𝑀 (𝑓) (𝑥) = ∫
R𝑛
𝑓 (𝜉)𝑀 (𝜉) 𝑒2𝜋𝑖⟨𝑥,𝜉⟩𝑑𝜉, (10)

well defined for 𝑓 ∈ P(R𝑛), satisfying that
𝑇𝑀 (𝑓)𝑋2 ≤ 𝐶 𝑓𝑋1 , ∀𝑓 ∈ P (R𝑛) ∩ 𝑋1. (11)

We endow the space with the norm ‖𝑀‖𝑋1,𝑋2 = ‖𝑇𝑀‖.
The reader should be aware that sometimes M𝑋1 ,𝑋2

(R𝑛)
is defined as the space of distributions 𝑢 ∈ S(R𝑛) such that
𝑢 ∗ 𝑓 ∈ 𝑋2 for all 𝑓 ∈ 𝑋1. We are only restricting to those
distributions such that �̂� ∈ 𝐿1𝑙𝑜𝑐(R𝑛).

For 𝑋1, 𝑋2 ∈ B0 we shall write (𝑋1, 𝑋2) for the space of
“convolution” multipliers; that is,

(𝑋1, 𝑋2) = {𝑔 ∈ 𝐿0 (R𝑛) : 𝑔 ∗ 𝑓 ∈ 𝑋2, ∀𝑓 ∈ 𝑋1} . (12)

This becomes a Banach space under the norm

𝑔(𝑋1,𝑋2) = sup {𝑔 ∗ 𝑓𝑋2 : 𝑓𝑋1 = 1} . (13)

Of course F((𝑋1, 𝑋2) ∩ 𝐿1(R𝑛)) ⊆ M𝑋1,𝑋2
(R𝑛), i.e., 𝑔 ∈

M𝑋1,𝑋2
(R𝑛) for any 𝑔 ∈ (𝑋1, 𝑋2) ∩ 𝐿1(R𝑛) and ‖𝑔‖𝑋1 ,𝑋2 ≤‖𝑔‖(𝑋1,𝑋2).

Using that (𝜏𝑥𝑓) ∗ 𝑔 = 𝜏𝑥(𝑓 ∗ 𝑔), (𝑀𝑥𝑓) ∗ 𝑔 = 𝑀𝑥(𝑓 ∗
𝑀−𝑥𝑔), and (𝐷𝜆𝑓) ∗ 𝑔 = (1/𝜆)𝐷𝜆(𝑓 ∗ 𝐷1/𝜆𝑔) one obtains
that B0 is stable under convolution; that is, (𝑋1, 𝑋2) ∈ B0

whenever 𝑋1, 𝑋2 ∈ B0. Moreover,

𝐷(𝑋1,𝑋2)
(𝜆) ≤ 1

𝜆𝐷𝑋2
(𝜆)𝐷𝑋1

(1𝜆) . (14)

On the other hand Young’s inequality gives 𝐿𝑝3(R𝑛) ⊆
(𝐿𝑝1(R𝑛), 𝐿𝑝2(R𝑛)) for 1 ≤ 𝑝1, 𝑝2 < ∞ with 1/𝑝1 + 1/𝑝2 ≥ 1
and 1/𝑝3 +1 = 1/𝑝1+1/𝑝2. Also for Orlicz spaces (see [2], [3,
page 64]) we have that if Φ𝑖, 𝑖 = 1, 2, 3 are Young functions
satisfying

Φ−1
1 (𝑥)Φ−1

2 (𝑥) ≤ 𝑥Φ−1
3 (𝑥) , 𝑥 ≥ 0 (15)

then 𝐿Φ3(R𝑛) ⊆ (𝐿Φ1(R𝑛), 𝐿Φ2(R𝑛)).

From (4) we see that 𝐿1(R𝑛) ⊆ (𝑋,𝑋) for any 𝑋 ∈
Bℎ. Actually, using approximations of the identity, one has
(𝐿1(R𝑛),𝑋) = 𝑋 whenever 𝑋 ∈ Bℎ.

With the notation M𝑝,𝑞(R𝑛) for 𝑋1 = 𝐿𝑝(R𝑛) and
𝑋2 = 𝐿𝑞(R𝑛) and 1 ≤ 𝑝, 𝑞 ≤ ∞, we recall some well-
knownproperties of the space of linearmultipliers (see [4, 5]):
M𝑝,𝑞(R𝑛) = {0} whenever 𝑞 < 𝑝,M𝑝,𝑞(R𝑛) = M𝑞 ,𝑝(R𝑛) for
1 < 𝑝 ≤ 𝑞 < ∞ and for 1 ≤ 𝑝 ≤ 2,

M1,1 (R𝑛) ⊂ M𝑝,𝑝 (R𝑛) ⊂ M2,2 (R𝑛) ,
M2,2 (R𝑛) = 𝐿∞ (R𝑛) ,

(𝐿1 (R𝑛) , 𝐿𝑞 (R𝑛)) = 𝐿𝑞 (R𝑛) , 1 ≤ 𝑞 < ∞.
M1,1 (R𝑛) = {𝜇 : 𝜇 ∈ 𝑀(R𝑛)} .

(16)

In this paper we shall be concerned with the bilinear
analogues and extensions of the above formulas for general
function spaces. We shall extend several results shown by the
author in the setting of Lebesgue andOrlicz spaces ([1, 6]).We
present now the definition of a bilinear multiplier we shall be
dealing with.

Definition 1. Let 𝑚(𝜉, 𝜂) be a locally integrable function on
R𝑛 ×R𝑛. Define

𝐵𝑚 (𝑓, 𝑔) (𝑥)
= ∫

R𝑛
∫
R𝑛
𝑓 (𝜉) 𝑔 (𝜂)𝑚 (𝜉, 𝜂) 𝑒2𝜋𝑖⟨𝜉+𝜂,𝑥⟩𝑑𝜉 𝑑𝜂 (17)

for 𝑓, 𝑔 ∈ P(R𝑛).
Let 𝑋1, 𝑋2 ∈ Bℎ and 𝑋3 ∈ B0. A locally integrable

function 𝑚 is said to be a bilinear multiplier on R𝑛 of type
(𝑋1, 𝑋2, 𝑋3) if there exists 𝐶 > 0 such that

𝐵𝑚 (𝑓, 𝑔)𝑋3 ≤ 𝐶 𝑓𝑋1 𝑔𝑋2 (18)

for any 𝑓 ∈ P(R𝑛) ∩ 𝑋1 and 𝑔 ∈ P(R𝑛) ∩ 𝑋2.
We write BM(𝑋1,𝑋2,𝑋3)

(R𝑛) for such a space and
‖𝑚‖𝑋1,𝑋2,𝑋3 = ‖𝐵𝑚‖ where ‖𝐵𝑚‖ stands for the norm of the
bounded bilinear map 𝐵𝑚 : 𝑋1 × 𝑋2 → 𝑋3.

The theory of multilinear multipliers acting on Lebesgue
spaces for “nice” symbols was originated in the work by R.
Coiffman and C. Meyer [7] in the eighties and continued by
L. Grafakos and R. Torres [8] and many others (see [9, 10]).
The theory was retaken and pushed in the nineties after
the celebrated result by M. Lacey and C. Thiele, solving the
old standing conjecture of Calderón on the boundedness
of the bilinear Hilbert transform (see [11, 12]). The bilinear
versions of several classical linear operators appearing in
Harmonic Analysis, such as the Hilbert transform or the
fractional integral, are the motivation for the class of bilinear
multipliers that we shall analyze in the paper. Recall that the
bilinear Hilbert transform and the bilinear fractional integral
are defined by

𝐻(𝑓, 𝑔) (𝑥) = lim
𝜀→0

1
𝜋 ∫|𝑦|>𝜀

𝑓 (𝑥 − 𝑦) 𝑔 (𝑥 + 𝑦)
𝑦 𝑑𝑦, (19)



Journal of Function Spaces 3

and

𝐼𝛼 (𝑓, 𝑔) (𝑥) = ∫
R

𝑓 (𝑥 − 𝑦) 𝑔 (𝑥 + 𝑦)
𝑦1−𝛼

𝑑𝑦,

0 < 𝛼 < 1
(20)

where 𝑓, 𝑔 ∈ S(R).
It is easy to see that (19) and (20) correspond to the

bilinear multipliers given by the symbols𝑚(𝜉, 𝜂) = sign(𝜉−𝜂)
and𝑚(𝜉, 𝜂) = |2𝜋(𝜉 − 𝜂)|−𝛼, respectively; i.e.,

𝐻(𝑓, 𝑔) (𝑥)
= ∫

R

∫
R

𝑓 (𝜉) 𝑔 (𝜂) sign (𝜉 − 𝜂) 𝑒2𝜋𝑖(𝜉+𝜂)𝑥𝑑𝜉 𝑑𝜂. (21)

𝐼𝛼 (𝑓, 𝑔) (𝑥) = ∫
R

∫
R

𝑓 (𝜉) 𝑔 (𝜂)2𝜋 (𝜉 − 𝜂)𝛼
𝑒2𝜋𝑖(𝜉+𝜂)𝑥𝑑𝜉 𝑑𝜂. (22)

This motivates the following particular class of bilinear
multipliers.

Definition 2. We denote by M(𝑋1,𝑋2,𝑋3)
(R𝑛) the space of

measurable functions 𝑀 : R𝑛 → C such that 𝑚(𝜉, 𝜂) =
𝑀(𝜉 − 𝜂) ∈ BM(𝑋1,𝑋2,𝑋3)

(R𝑛). We keep the notation
‖𝑀‖𝑋1,𝑋2,𝑋3 = ‖𝐵𝑀‖.

The boundedness results on 𝐿𝑝-spaces for the bilinear 𝐻
and 𝐼𝛼 took long time to be achieved. In particular it was
shown that 𝑀(𝜉) = sign(𝜉) ∈ M(𝐿𝑝1 ,𝐿𝑝3 ,𝐿𝑝3 )(R𝑛) for 1 <
𝑝1, 𝑝2 < ∞, 1/𝑝3 = 1/𝑝1 + 1/𝑝2, and 2/3 < 𝑝3 < ∞; i.e.,
there exists 𝐶 > 0 such that

𝐻 (𝑓, 𝑔)𝑝3 ≤ 𝐶 𝑓𝑝1 𝑔𝑝2 (23)

(Lacey-Thiele, [11–13]) and that 𝑀(𝜉) = 1/|𝜉|𝛼 ∈
M(𝐿𝑝1 ,𝐿𝑝2 ,𝐿𝑞)(R𝑛) for 1 < 𝑝1, 𝑝2 < ∞, 0 < 𝛼 < 1/𝑝1 + 1/𝑝2,
and 1/𝑞 = 1/𝑝1 + 1/𝑝2 − 𝛼; i.e., there exists 𝐶 > 0 such that

𝐼𝛼 (𝑓, 𝑔)𝑞 ≤ 𝐶 𝑓𝑝1 𝑔𝑝2 (24)

(Kenig-Stein [10], Grafakos-Kalton [9]).
The case of more general nonsmooth symbols was also

analyzed by J. Gilbert and A. Namod (see [14, 15]).
The study of bilinear multipliers acting on other function

spaces has been addressed in the literature. Lorentz spaces
have been studied mainly by O. Blasco and F. Villarroya (see
[16, 17]), weighted Lebesgue spaces or Lebesgue spaces with
variable exponent by T. Gürkanli andO. Kulak [9], rearrange-
ment invariant quasi-Banach spaces by S. Rodriguez-López
[18], and more recently Orlicz spaces by O. Blasco and A.
Osancliol [1].

Our objective is to study the basic properties of the
classesBM(𝑋1,𝑋2,𝑋3)

(R) andM𝑋1,𝑋2,𝑋3
(R), to find examples

of bilinear multipliers in these classes, and to get methods to
produce new ones. We shall restrict ourselves to rearrange-
ment Banach function spaces to recover some known results
under some conditions on the Boyd indices. The results
presented in what follows could be formulated for any 𝑛 ∈ N,
but we shall write our results only for 𝑛 = 1 for simplicity.

2. Bilinear Multipliers: The Basics

Throughout this section 𝑋1, 𝑋2 ∈ Bℎ and 𝑋3 ∈ B0.
Let us start with some elementary properties of the bilinear
multipliers when composing with translations, modulations,
and dilations. Next result, already established in [6] for
Lebesgue spaces and in [1] for Orlicz spaces, follows easily
from the basic formulas

(̂𝜏𝑦𝑓) (𝜉) = 𝑀−𝑦𝑓 (𝜉) ,
(̂𝑀𝑥𝑓) (𝜉) = 𝜏𝑥𝑓 (𝜉) ,
(̂𝐷𝜆𝑓) (𝜉) = 𝑓𝜆 (𝜉) .

(25)

Proposition 3. Let𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)
(R).

(a) 𝜏(𝜉0,𝜂0)𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)
(R) for each (𝜉0, 𝜂0) ∈ R2 and

𝜏(𝜉0,𝜂0)𝑚𝑋1,𝑋2,𝑋3 = ‖𝑚‖𝑋1,𝑋2 ,𝑋3 . (26)

(b) 𝑀(𝜉0,𝜂0)
𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)

(R) for each (𝜉0, 𝜂0) ∈ R2

and 𝑀(𝜉0,𝜂0)
𝑚𝑋1,𝑋2,𝑋3 = ‖𝑚‖𝑋1,𝑋2,𝑋3 . (27)

(c) 𝐷𝑡𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)
(R) for each 𝑡 > 0 and

𝐷𝑡𝑚(𝑋1,𝑋2,𝑋3)
≤ 𝐷𝑋3

(1𝑡 )𝐷𝑋1
(𝑡) 𝐷𝑋2

(𝑡) ‖𝑚‖(𝑋1,𝑋2,𝑋3) .
(28)

Proof. (a) Let (𝜉0, 𝜂0) ∈ R2. It is easily seen that

𝐵𝜏(𝜉0,𝜂0)𝑚 (𝑓, 𝑔) = 𝑀𝜉0+𝜂0
𝐵𝑚 (𝑀−𝜉0

𝑓,𝑀−𝜂0
𝑔) . (29)

Hence 𝜏(𝜉0,𝜂0)𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)
(R) and

𝜏(𝜉0,𝜂0)𝑚𝑋1,𝑋2,𝑋3 = ‖𝑚‖𝑋1,𝑋2 ,𝑋3 . (30)

(b) If (𝜉0, 𝜂0) ∈ R2 then one has

𝐵𝑀(𝜉0,𝜂0)𝑚 (𝑓, 𝑔) = 𝐵𝑚 (𝜏−𝜉0𝑓, 𝜏−𝜂0𝑔) . (31)

Therefore,𝑀(𝜉0,𝜂0)
𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)

(R) and
𝑀(𝜉0,𝜂0)

𝑚𝑋1,𝑋2,𝑋3 = ‖𝑚‖𝑋1,𝑋2,𝑋3 . (32)

(c) Let 𝑡 > 0. We first observe that

𝐵𝐷𝑡𝑚 (𝑓, 𝑔) = 𝐷1/𝑡𝐵𝑚 (𝐷𝑡𝑓,𝐷𝑡𝑔) (33)

for each 𝑓, 𝑔 ∈ P(R). Indeed,
𝐵𝑚 (𝐷𝑡𝑓,𝐷𝑡𝑔) (𝑥)

= ∫
R2

1
𝑡 𝑓(

𝜉
𝑡 )

1
𝑡 𝑔 (

𝜂
𝑡 )𝑚 (𝜉, 𝜂) 𝑒2𝜋𝑖(𝜉+𝜂)𝑥𝑑𝜉𝑑𝜂

= ∫
R2
𝑓 (𝜉) 𝑔 (𝜂)𝑚 (𝑡𝜉, 𝑡𝜂) 𝑒2𝜋𝑖(𝜉+𝜂)𝑡𝑥𝑑𝜉𝑑𝜂

= 𝐷𝑡𝐵𝐷𝑡𝑚 (𝑓, 𝑔) (𝑥) .

(34)
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This gives

𝐵𝐷𝑡𝑚 (𝑓, 𝑔)𝑋3 ≤ 𝐷𝑋3
(1𝑡 )

(𝐵𝑚 (𝐷𝑡𝑓,𝐷𝑡𝑔)𝑋3
≤ 𝐷𝑋3

(1𝑡 ) ‖𝑚‖(𝑋1,𝑋2,𝑋3)
𝐷𝑡𝑓𝑋1 𝐷𝑡𝑔𝑋2

≤ 𝐷𝑋3
(1𝑡 ) ‖𝑚‖(𝑋1,𝑋2,𝑋3)𝐷𝑋1

(𝑡) 𝑓𝑋1 𝐷𝑋2
(𝑡)

⋅ 𝑔𝑋2 ,

(35)

which shows that 𝐷𝑡𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)
(R) and the desired

estimate for the norm.

We start presenting an elementary example of bilinear
multipliers. Recall that if 𝜇 is a Borel regular measure in
R then 𝜇(𝜉) = ∫

R
𝑒−2𝜋𝑖𝑥𝜉𝑑𝜇(𝑥) is a bounded measurable

function in R.

Proposition 4. Let 𝜇 ∈ 𝑀(R) be a Borel regular measure
in R, (𝛼, 𝛽) ∈ R2, and set 𝑚(𝜉, 𝜂) = 𝜇(𝛼𝜉 + 𝛽𝜂). If
𝑋1 ⊆ 𝑀(𝑋2, 𝑋3) with norm 𝐴 then 𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)

(R).
Moreover, ‖𝑚‖𝑋1 ,𝑋2,𝑋3 ≤ 𝐴‖𝜇‖1.
Proof. Let us first rewrite the value 𝐵𝑚(𝑓, 𝑔) as follows:

𝐵𝑚 (𝑓, 𝑔) (𝑥) = ∫
R2
𝑓 (𝜉) 𝑔 (𝜂) 𝜇 (𝛼𝜉 + 𝛽𝜂)

⋅ 𝑒2𝜋𝑖(𝜉+𝜂)𝑥𝑑𝜉 𝑑𝜂 = ∫
R2
𝑓 (𝜉) 𝑔 (𝜂)

⋅ (∫
R

𝑒−2𝜋𝑖(𝛼𝜉+𝛽𝜂)𝑡𝑑𝜇 (𝑡)) 𝑒2𝜋𝑖(𝜉+𝜂)𝑥𝑑𝜉 𝑑𝜂

= ∫
R

(∫
R2
𝑓 (𝜉) 𝑔 (𝜂)

⋅ 𝑒2𝜋𝑖(𝑥−𝛼𝑡)𝜉𝑒2𝜋𝑖(𝑥−𝛽𝑡)𝜂𝑑𝜉 𝑑𝜂)𝑑𝜇 (𝑡)

= ∫
R

𝑓 (𝑥 − 𝛼𝑡) 𝑔 (𝑥 − 𝛽𝑡) 𝑑𝜇 (𝑡) .

(36)

Hence, using Minkowski’s inequality, one has

𝐵𝑚 (𝑓, 𝑔)𝑋3 ≤ ∫
R

𝑓 (⋅ − 𝛼𝑡) 𝑔 (⋅ − 𝛽𝑡)𝑋3 𝑑 𝜇 (𝑡)

≤ ∫
R

𝑓 (⋅ − 𝛼𝑡)𝑀(𝑋2,𝑋3)
𝑔 (⋅ − 𝛽𝑡)𝑋2 𝑑 𝜇 (𝑡)

≤ ∫
R

𝐴𝑓 (⋅ − 𝛼𝑡)𝑋1 𝑔 (⋅ − 𝛽𝑡)𝑋2 𝑑 𝜇 (𝑡)

= 𝐴 𝑓𝑋1 𝑔𝑋2 ∫
R

𝑑 𝜇 (𝑡)
= 𝜇1 𝐴𝑓𝑋1 𝑔𝑋2 .

(37)

This completes the proof.

Remark 5. Selecting 𝛼 = 𝛽 = 0 in Proposition 4 one obtains
𝐵𝑚(𝑓, 𝑔) = 𝜇(0)𝑓 ⋅ 𝑔, selecting 𝛼 = 1, 𝛽 = 0 one obtains
𝐵𝑚(𝑓, 𝑔) = (𝜇 ∗ 𝑓) ⋅ 𝑔, and selecting 𝛼 = 1, 𝛽 = −1 one has
that𝑀 = 𝜇 ∈ M(𝑋1,𝑋2,𝑋3)

(R).
Proposition 6. Let 𝑚 ∈ BM(𝑋1,𝑋2 ,𝑋3)

(R) and 𝑀1 ∈
M𝑌1,𝑋1

(R) and𝑀2 ∈ M𝑌2,𝑋2
(R), where 𝑌1, 𝑌2 ∈ Bℎ.

(a) If �̃�(𝜉, 𝜂) = 𝑀1(𝜉)𝑚(𝜉, 𝜂)𝑀2(𝜂) then �̃� ∈
BM(𝑌1,𝑌2,𝑋3)

(R).
Moreover ‖�̃�‖𝑌1 ,𝑌2,𝑋3 ≤‖𝑀1‖𝑌1,𝑋1‖𝑚‖𝑋1,𝑋2,𝑋3‖𝑀2‖𝑌2,𝑋2 .

(b) IfΦ ∈ 𝐿1(R2) then Φ ∗ 𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)
(R).

Moreover ‖Φ ∗ 𝑚‖𝑋1,𝑋2 ,𝑋3 ≤ ‖Φ‖1‖𝑚‖𝑋1,𝑋2,𝑋3 .
(c) If ] ∈ 𝑀(R2) is a Borel regular measure on R2 then

]̂ ⋅ 𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)
(R).

Moreover ‖]̂ ⋅ 𝑚‖𝑋1,𝑋2,𝑋3 ≤ ‖]‖1‖𝑚‖𝑋1,𝑋2,𝑋3 .
Proof. (a) It follows trivially from

𝐵𝑚 (𝑓, 𝑔) = 𝐵𝑚 (𝑇𝑀1𝑓, 𝑇𝑀2𝑔) . (38)

(b) It was shown ([6, Proposition 2.5, (b)]) that

𝐵Φ∗𝑚 (𝑓, 𝑔) (𝑥) = ∫
R2
𝐵𝜏(𝑢,V)𝑚 (𝑓, 𝑔) (𝑥)Φ (𝑢, V) 𝑑𝑢 𝑑V. (39)

From the vector-valued Minkowski inequality and part
(a) in Proposition 3, we have

‖ 𝐵Φ∗𝑚 (𝑓, 𝑔) ‖𝑋3
≤ ∫

R2

𝐵𝜏(𝑢,V)𝑚 (𝑓, 𝑔)𝑋3 |Φ (𝑢, V)| 𝑑𝑢 𝑑V
≤ ‖𝑚‖𝑋1,𝑋2,𝑋3 𝑓𝑋1 𝑔𝑋2 ‖Φ‖1 .

(40)

(c) Observe that

𝐵]̂⋅𝑚 (𝑓, 𝑔) (𝑥) = ∫
R2
𝑓 (𝜉) 𝑔 (𝜂)

⋅ (∫
R2
𝑀(−𝑢,−V)𝑚(𝜉, 𝜂) 𝑑] (𝑢, V)) 𝑒2𝜋𝑖(𝜉+𝜂)𝑥𝑑𝜉 𝑑𝜂

= ∫
R2
𝐵𝑀(−𝑢,−V)𝑚 (𝑓, 𝑔) (𝑥) 𝑑] (𝑢, V) .

(41)

Argue as above, using now part (b) in Proposition 3, to
conclude

𝐵]̂⋅𝑚 (𝑓, 𝑔)𝑋3 ≤ ∫R2
𝐵𝑀(−𝑢,−V)𝑚 (𝑓, 𝑔)𝑋3 𝑑 |]| (𝑑𝑢, V)

≤ ‖𝑚‖𝑋1 ,𝑋2,𝑋3 𝑓𝑋1 𝑔𝑋2 ‖]‖1 .
(42)

With all these procedures we have several useful methods
to produce examples of multipliers in BM(𝑋1,𝑋2,𝑋3)

(R),
which extend those provided in particular cases in [1, 6].

Corollary 7. Let 𝑋1 ⊆ 𝑀(𝑋2, 𝑋3).
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(a) If𝑚1 ∈ M(𝑋1,𝑋1)
(R) and 𝑚2 ∈ M(𝑋2,𝑋2)

(R) then 𝑚(𝜉,
𝜂) = 𝑚1(𝜉)𝑚2(𝜂) ∈BM(𝑋1,𝑋2 ,𝑋3)

(R).
(b) If𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)

(R) and Ω is a bounded measur-
able set inR2 then

𝑚1 (𝜉, 𝜂) = ∫
(𝜉,𝜂)+Ω

𝑚 (𝑢, V) 𝑑𝑢 𝑑V
∈ BM(𝑋1,𝑋2,𝑋3)

(R) .
(43)

(c) IfΦ ∈ 𝐿1(R2) then Φ̂ ∈BM(𝑋1,𝑋2,𝑋3)
(R).

(d) Let 𝑊(𝑡) = 𝐷2
𝑋3
(1/𝑡)𝐷2

𝑋2
(𝑡) and 𝜓 ∈ 𝐿1(R+,𝑊) and

assume that 𝑡 → 𝑚(𝑡𝜉, 𝑡𝜂)𝜓(𝑡) is integrable in R+ for
each (𝜉, 𝜂) ∈ R2. Define

𝑚𝜓 (𝜉, 𝜂) = ∫
∞

0
𝑚(𝑡𝜉, 𝑡𝜂)𝜓 (𝑡) 𝑑𝑡. (44)

Then 𝑚𝜓 ∈ BM(𝑋1,𝑋2,𝑋3)
(R) and ‖𝑚𝜓‖𝑋1,𝑋2,𝑋3 ≤

‖𝜓‖𝐿1(R+ ,𝑊)‖𝑚‖𝑋1,𝑋2,𝑋3 .
Proof. (a), (b), and (c) follow trivially from Proposition 6.

(d) It is immediate to observe that

𝐵𝑚𝜓 (𝑓, 𝑔) (𝑥) = ∫
∞

0
𝐵𝐷𝑡𝑚 (𝑓, 𝑔) (𝑥) 𝜓 (𝑡) 𝑑𝑡. (45)

Hence Minkowski’s inequality together with (1) and part (c)
in Proposition 3 lead to the desired result and estimate.

3. The Case 𝑚(𝜉,𝜂)=𝑀(𝜉−𝜂)
As mentioned in the introduction a number of important
bilinear multipliers, such as the bilinear fractional integral,
the bilinear Hilbert transform, and other bilinear singular
integrals, are defined for symbols 𝑚(𝜉, 𝜂) = 𝑀(𝜉 − 𝜂) for a
given measurable function 𝑀 defined in R. Let us restrict
ourselves to this family of multipliers. As in the previous
section we always assume 𝑋1, 𝑋2 ∈ Bℎ and 𝑋3 ∈ B0.
We denote by M𝑋1,𝑋2,𝑋3

(R) the space of locally integrable
functions 𝑀 : R → C such that 𝑚(𝜉, 𝜂) = 𝑀(𝜉 − 𝜂) ∈
BM(𝑋1,𝑋2 ,𝑋3)

(R), that is to say,
𝐵𝑀 (𝑓, 𝑔) (𝑥)

= ∫
R2
𝑓 (𝜉) 𝑔 (𝜂)𝑀 (𝜉 − 𝜂) 𝑒2𝜋𝑖(𝜉+𝜂)𝑥𝑑𝜉 𝑑𝜂; (46)

defined for 𝑓 and 𝑔 compactly supported, satisfies the ine-
quality

𝐵𝑀 (𝑓, 𝑔)𝑋3 ≤ 𝐶 𝑓𝑋1 𝑔𝑋2 ,
∀𝑓 ∈ P (R) ∩ 𝑋1, 𝑔 ∈ P (R) ∩ 𝑋2.

(47)

We keep the notation ‖𝑀‖𝑋1,𝑋2,𝑋3 = ‖𝐵𝑀‖.
This class does have much richer properties than

BM(𝑋1,𝑋2 ,𝑋3)
(R). Since the symbol is also defined on R we

can establish the following behaviour of the bilinear map 𝐵𝑀
under translations, modulations, and dilations:

𝜏𝑦𝐵𝑀 (𝑓, 𝑔) = 𝐵𝑀 (𝜏𝑦𝑓, 𝜏𝑦𝑔) , 𝑦 ∈ R, (48)

𝑀2𝑦𝐵𝑀 (𝑓, 𝑔) = 𝐵𝑀 (𝑀𝑦𝑓,𝑀𝑦𝑔) , 𝑦 ∈ R, (49)

𝐷1/𝜆 (𝐵𝑀 (𝑓, 𝑔)) = 𝐵𝐷𝜆𝑀 (𝐷1/𝜆𝑓,𝐷1/𝜆𝑔) , 𝜆 > 0. (50)

Proposition 8. M(𝑋1,𝑋2,𝑋3)
(R) ∈ B0.

Proof. Let𝑀 ∈ M(𝑋1,𝑋2,𝑋3)
(R) and define𝑚(𝜉, 𝜂) = 𝑀(𝜉−𝜂).

We have that 𝜏(𝑦1 ,𝑦2)𝑚 = 𝜏𝑦1+𝑦2𝑀, 𝑀(𝑦,−𝑦))𝑚 = 𝑀𝑦𝑀, and
𝐷𝜆𝑚 = 𝐷𝜆𝑀 for any 𝑦1, 𝑦2, 𝑦 ∈ R and 𝜆 > 0. Hence from
the formulas for𝑚 we obtain the following ones for𝑀:

𝐵𝑀𝑦𝑀 (𝑓, 𝑔) = 𝐵𝑀 (𝜏−𝑦𝑓, 𝜏𝑦𝑔) , 𝑦 ∈ R. (51)

𝐵𝜏𝑦𝑀 (𝑓, 𝑔) = 𝐵𝑀 (𝑀𝑦/2𝑓,𝑀−𝑦/2𝑔) , 𝑦 ∈ R. (52)

𝐵𝐷𝜆𝑀 (𝑓, 𝑔) = 𝐷1/𝜆 (𝐵𝑀 (𝐷𝜆𝑓,𝐷𝜆𝑔)) , 𝜆 > 0. (53)

From them properties (1), (2), and (3) in M(𝑋1,𝑋2,𝑋3)
(R) are

easily shown.

For symbols 𝑀 = 𝜇 for a given 𝜇 ∈ 𝑀(R) we have the
following expression.

Proposition 9. Let 𝑀 = 𝜇 for a Borel regular measure 𝜇 ∈
𝑀(R). Then

𝐵𝑀 (𝑓, 𝑔) = ∫
R

𝑓 (𝑥 − 𝑡) 𝑔 (𝑥 + 𝑡) 𝑑𝜇 (𝑡) ,
∀𝑓, 𝑔 ∈ P (R) .

(54)

Proof. Given 𝑓, 𝑔 ∈ P(R), we can write

𝐵𝑀 (𝑓, 𝑔) (𝑥) = ∫
R2
𝑓 (𝜉) 𝑔 (𝜂) (∫

R

𝑒−2𝜋𝑖(𝜉−𝜂)𝑡𝑑𝜇 (𝑡))

⋅ 𝑒2𝜋𝑖(𝜉+𝜂)𝑥𝑑𝜉 𝑑𝜂 = ∫
R

(∫
R2
𝑓 (𝜉) 𝑔 (𝜂)

⋅ 𝑒2𝜋𝑖(𝑥−𝑡)𝜉𝑒2𝜋𝑖(𝑥+𝑡)𝜂𝑑𝜉 𝑑𝜂)𝑑𝜇 (𝑡)

= ∫
R

𝑓 (𝑥 − 𝑡) 𝑔 (𝑥 + 𝑡) 𝑑𝜇 (𝑡)

(55)

and the proof is finished.

Note that, selecting 𝛼 = 1 and 𝛽 = −1 in Proposition 4,
we obtain next example, but we would like to point out that it
also follows from Proposition 9 even for spaces inB0.

Proposition 10. Let 𝑋1, 𝑋2, 𝑋3 ∈ B0 such that 𝑋1 ⊆
𝑀(𝑋2, 𝑋3) with norm 𝐴 and let 𝜇 ∈ 𝑀(R). Then 𝑀 = 𝜇 ∈
M(𝑋1,𝑋2,𝑋3)

(R) with ‖𝑀‖𝑋1,𝑋2,𝑋3 ≤ 𝐴‖𝜇‖1.
We now produce a method to get multipliers in

BM(𝑋1,𝑋2,𝑋3)
(R) from those inM(𝑋1,𝑋2 ,𝑋3)

(R).
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Proposition 11. Let 𝑋1, 𝑋2, 𝑋3 ∈ Bℎ, 𝜇 ∈ 𝑀(R), 𝑀 ∈
M(𝑋1,𝑋2,𝑋3)

(R), and set 𝑚(𝜉, 𝜂) = 𝑀(𝜉 − 𝜂)𝜇(𝜉 + 𝜂). Then
𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)

(R) and ‖𝑚‖𝑋1,𝑋2,𝑋3 ≤ ‖𝜇‖1‖𝑀‖𝑋1,𝑋2,𝑋3 .
Proof. We use now the following formula for 𝑓, 𝑔 ∈ P(R):

𝐵𝑚 (𝑓, 𝑔) (𝑥) = ∫
R2
𝑓 (𝜉) 𝑔 (𝜂)𝑀(𝜉 − 𝜂)

⋅ (∫
R

𝑒−2𝜋𝑖(𝜉+𝜂)𝑦𝑑𝜇 (𝑦)) 𝑒2𝜋𝑖(𝜉+𝜂)𝑥𝑑𝜉 𝑑𝜂

= ∫
R

(∫
R2
𝑓 (𝜉) 𝑔 (𝜂)𝑀(𝜉 − 𝜂)

⋅ 𝑒2𝜋𝑖(𝜉+𝜂)(𝑥−𝑦)𝑑𝜉 𝑑𝜂)𝑑𝜇 (𝑦) = 𝜇
∗ 𝐵𝑀 (𝑓, 𝑔) (𝑥) .

(56)

Now recall that𝜇∗ℎ(𝑥) = ∫
R
ℎ(𝑥−𝑦)𝑑𝜇(𝑦) = ∫

R
𝜏𝑦ℎ(𝑥)𝑑𝜇(𝑦)

we actually have that ‖𝜇 ∗ ℎ‖𝑋3 ≤ ‖ℎ‖𝑋3‖𝜇‖1 for any ℎ ∈ 𝑋3.
Using that ℎ = 𝐵𝑀(𝑓, 𝑔) ∈ 𝑋3 we conclude the result.

As in the previous section we can generate new multipli-
ers inM(𝑋1,𝑋2,𝑋3)

(R) extending [6, Proposition 3.5].

Proposition 12. Let 𝜙 ∈ 𝐿1(R) and 𝑀 ∈ M(𝑋1,𝑋2,𝑋3)
(R).

Then

(a) 𝜙 ∗ 𝑀 ∈ M(𝑋1,𝑋2,𝑋3)
(R) and ‖𝜙 ∗ 𝑀‖𝑋1,𝑋2,𝑋3 ≤

‖𝜙‖1‖𝑀‖𝑋1,𝑋2 ,𝑋3 .
(b) 𝜙𝑀 ∈ M(𝑋1,𝑋2,𝑋3)

(R) and ‖𝜙𝑀‖𝑋1,𝑋2,𝑋3 ≤
‖𝜙‖1‖𝑀‖𝑋1,𝑋2 ,𝑋3 .

(c) Let 𝑊(𝑡) = 𝐷𝑋3
(1/𝑡)𝐷𝑋1

(𝑡)𝐷𝑋2
(𝑡) and 𝜓 ∈ 𝐿1(R+,

𝑊) and assume that 𝑡 → 𝑀(𝑡𝜉)𝜓(𝑡) is integrable in
R+ for each 𝜉 ∈ R. Define

𝑀𝜓 (𝜉) = ∫
∞

0
𝑀(𝑡𝜉) 𝜓 (𝑡) 𝑑𝑡. (57)

Then 𝑀𝜓 ∈ M(𝑋1,𝑋2,𝑋3)
(R) and ‖𝑀𝜓‖𝑋1 ,𝑋2,𝑋3 ≤

‖𝜓‖𝐿1(R+ ,𝑊)‖𝑀‖𝑋1,𝑋2,𝑋3 .
Proof. (a) Apply Minkowski’s inequality to the formula ([6,
Proposition 3.5. (a)]:

𝐵𝜙∗𝑀 (𝑓, 𝑔) (𝑥) = ∫
R

𝑀𝑢𝐵𝑀 (𝑀−𝑢𝑓, 𝑔) (𝑥) 𝜙 (𝑢) 𝑑𝑢. (58)

(b) Use ([6, Proposition 3.5. (b)] which establishes that

𝐵𝜙𝑚 (𝑓, 𝑔) (𝑥) = ∫
R

𝐵𝑀−𝑢𝑀 (𝑓, 𝑔) (𝑥) 𝜙 (𝑢) 𝑑𝑢 (59)

together with Minkowski’s inequality and (51).

(c) Write making use of (50) the following formula:

𝐵𝑀𝜓 (𝑓, 𝑔) (𝑥) = ∫
R2
𝑓 (𝜉) 𝑔 (𝜂)

⋅ (∫∞

0
𝐷𝑡𝑀(𝜉 − 𝜂)𝜓 (𝑡) 𝑑𝑡) 𝑒2𝜋𝑖(𝜉+𝜂)𝑥𝑑𝜉 𝑑𝜂

= ∫∞

0
𝐵𝐷𝑡𝑀 (𝑓, 𝑔) (𝑥) 𝜓 (𝑡) 𝑑𝑡

= ∫∞

0
𝐷1/𝑡𝐵𝑀 (𝐷𝑡𝑓,𝐷𝑡𝑔) (𝑥) 𝜓 (𝑡) 𝑑𝑡.

(60)

Therefore, fromMinkowski’s again one gets
𝐵𝑀𝜓 (𝑓, 𝑔) (𝑥)

𝑋3 ≤ ‖𝑀‖𝑋1,𝑋2,𝑋3 𝑓𝑋1 𝑔𝑋2
⋅ ∫∞

0
𝐷𝑋3

(1𝑡 )𝐷𝑋1
(𝑡) 𝐷𝑋2

(𝑡) 𝜓 (𝑡) 𝑑𝑡
(61)

which finishes the proof.

Let us show that the classesM(𝑋1,𝑋2,𝑋3)
(R) are reduced to

{0} for some values of the parameters.We follow the approach
used first in [6] and later in [1].

Lemma 13. Assume that𝑊(𝑥) = 𝑒−𝑥2 ∈ 𝑋1 ∩𝑋2 and let𝑀 ∈
M(𝑋1,𝑋2,𝑋3)

(R) such that 𝐹𝑀(𝜆) = ∫
R
𝑒−𝜋2V2/2𝑀(𝜆V)𝑑V < ∞

for all 𝜆 > 0. Then there exists a constant 𝐴 > 0 such that
𝐹𝑀 (𝜆) ≤ 𝐴 ‖𝑀‖𝑋1,𝑋2,𝑋3 𝐷𝑋1

(𝜆)𝐷𝑋2
(𝜆)𝐷𝑋3

(1𝜆) ,
𝜆 > 0.

(62)

Proof. It is known (see [6, Proposition 3.3]) that for 𝑓, 𝑔 ∈
P(R) we can write

𝐵𝑀 (𝑓, 𝑔) (𝑥)
= 1
2 ∫R2 𝑓(

𝑢 + V
2 )𝑔 (𝑢 − V

2 )𝑀 (V) 𝑒2𝜋𝑖𝑢𝑥𝑑𝑢𝑑V. (63)

Let 𝐺(𝑥) = 𝐷𝜋𝑊(𝑥) = 𝑒−𝜋2𝑥2 . One has that 𝐺 ∈ 𝑋1 ∩ 𝑋2 and𝐺 = 𝛾𝐺 for certain constant 𝛾. Making use of (50) and (63)
we have that

𝐵𝑀 (𝐷𝜆𝐺,𝐷𝜆𝐺) (𝑥) = 𝐵𝐷𝜆𝑀 (𝐺,𝐺) (𝜆𝑥) = 1
2

⋅ ∫
R

∫
R

𝐺(𝑢 + V
2 )𝐺(𝑢 − V

2 )𝑀(𝜆V) 𝑒2𝜋𝑖𝑢𝜆𝑥𝑑𝑢 𝑑V

= 𝐶(∫
R

𝑒−𝜋2𝑢2/2𝑒2𝜋𝑖𝑢𝜆𝑥𝑑𝑢)

⋅ (∫
R

𝑒−𝜋2V2/2𝑀(𝜆V) 𝑑V) = 𝐶𝐷√2𝜆𝐺 (𝑥) 𝐹𝑀 (𝜆) .

(64)

Since𝑀 ∈ M(𝑋1,𝑋2,𝑋3)
(R) we have

𝐶 𝐷√2𝜆𝐺𝑋3 𝐹𝑀 (𝜆)
≤ ‖𝑀‖𝑋1,𝑋2 ,𝑋3 𝐷𝜆𝐺𝑋1 𝐷𝜆𝐺𝑋2 .

(65)



Journal of Function Spaces 7

Using that 𝐺 = 𝐷1/√2𝜆𝐷√2𝜆𝐺 we have ‖𝐺‖𝑋3 ≤ 𝐷𝑋3
(1/

√2)𝐷𝑋3
(1/𝜆)‖𝐷√2𝜆𝐺‖𝑋3 .

Hence
‖𝐺‖𝑋3

𝐷𝑋3
(1/𝜆)𝐹𝑀 (𝜆)

≤ 𝐴 ‖𝑀‖𝑋1 ,𝑋2,𝑋3 𝐷𝑋1
(𝜆) ‖𝐺‖𝑋1 𝐷𝑋2

(𝜆) ‖𝐺‖𝑋2 .
(66)

The proof is then complete.

Theorem 14. Assume that 𝑊(𝑥) = 𝑒−𝑥2 ∈ 𝑋1 ∩ 𝑋2 and
M(𝑋1,𝑋2,𝑋3)

(R) ̸= {0}. Then

lim inf
𝜆→0

𝐷𝑋1
(𝜆)𝐷𝑋2

(𝜆)𝐷𝑋3
( 1𝜆) > 0 (67)

and

lim inf
𝜆→∞

𝜆𝐷𝑋1
(𝜆)𝐷𝑋2

(𝜆)𝐷𝑋3
( 1𝜆) > 0 (68)

Proof. Using Proposition 12 we may assume that there exists
a nonzero continuous and integrable function 𝑀 belonging
to M(𝑋1,𝑋2,𝑋3)

(R). Let 𝑦 ∈ R such that 𝑀(𝑦) ̸= 0. By using
Lemma 13 for the function𝑀(𝑦 − ⋅) we obtain


1
𝜆 ∫R 𝑒

−𝜋2𝜉2/2𝜆2𝑀(𝑦 − 𝜉) 𝑑𝜉
≤ 𝐶𝐷𝑋1

(𝜆)𝐷𝑋2
(𝜆)𝐷𝑋3

( 1𝜆) .
(69)

Since𝑀 ∈ 𝐿1(R) and continuous and in particular 𝑀 ∈
𝐶0(R), through the convolution with an approximation of the
identity and taking limits as 𝜆 → 0 one obtains

lim
𝜆→0

1
𝜆
∫R 𝑒

−𝜋2𝜉2/2𝜆2𝑀(𝑦 − 𝜉) 𝑑𝜉 = 𝐶
𝑀 (𝑦) > 0. (70)

This gives (67).
Since �̂� ̸= 0 there exists 𝑦 ∈ R such that �̂�(𝑦) ̸= 0. Using

again Lemma 13, applied now to𝑀−𝑦𝑀, we obtain

∫R 𝑒
−𝜋2𝜉2/2𝜆2𝑒−2𝜋𝑖𝜉𝑦𝑀(𝜉) 𝑑𝜉

≤ 𝐶𝜆𝐷𝑋1
(𝜆)𝐷𝑋2

(𝜆)𝐷𝑋3
(1𝜆) .

(71)

Therefore, taking limits as 𝜆 → ∞ we get

lim
𝜆→∞

∫R 𝑒
−𝜋2𝜉2/2𝜆2𝑒−2𝜋𝑖𝜉𝑦𝑀(𝜉) 𝑑𝜉 =

�̂� (𝑦) > 0. (72)

Hence we get (68) and the proof is finished.

Corollary 15. Let 𝑋1, 𝑋2, 𝑋3 ∈ B0 and let us write

𝑑0 (𝑋1, 𝑋2, 𝑋3) = lim inf
𝜆→0

𝐷𝑋1
(𝜆)𝐷𝑋2

(𝜆)𝐷𝑋3
( 1𝜆)

𝑑∞ (𝑋1, 𝑋2, 𝑋3)
= lim inf

𝜆→∞
𝜆𝐷𝑋1

(𝜆)𝐷𝑋2
(𝜆)𝐷𝑋3

(1𝜆) .
(73)

If 𝑑0(𝑋1, 𝑋2, 𝑋3)𝑑∞(𝑋1, 𝑋2, 𝑋3) = 0 then M(𝑋1,𝑋2,𝑋3)
(R) =

{0}.
In the cases 𝑋𝑖 = 𝐿𝑝𝑖(R) for 𝑖 = 1, 2, 3 the constants

𝑑0(𝑋1, 𝑋2, 𝑋3) and 𝑑∞(𝑋1, 𝑋2, 𝑋3) can be explicitly com-
puted. Therefore one recovers the following result.

Corollary 16 (see [6, 17]). Let 1 ≤ 𝑝1, 𝑝2, 𝑝3 < ∞ and
M(𝐿𝑝1 (R),𝐿𝑝2 (R),𝐿𝑝3 (R))(R) ̸= {0}. Then 1/𝑝3 ≤ 1/𝑝1 + 1/𝑝2 ≤1/𝑝3 + 1.

4. Bilinear Multipliers on Rearrangement
Invariant Banach Function Spaces

In this section we shall restrict our study to Banach function
spaces. A space𝑋 ⊂ 𝐿0(R) is called a “Banach function space”
(see [19]), in short 𝑋 ∈ (𝐵𝐹𝑆), if (𝑋, ‖ ⋅ ‖𝑋) is a Banach space
which satisfies

(1) 𝑓 ∈ 𝑋 and |𝑔| ≤ |𝑓| a.e. implies that 𝑔 ∈ 𝑋 and
‖𝑔‖𝑋 ≤ ‖𝑓‖𝑋.

(2) If 0 ≤ 𝑓𝑛 ↑ 𝑓 a. e. then ‖𝑓𝑛‖𝑋 ↑ ‖𝑓‖𝑋.
(3) 𝜒𝐸 ∈ 𝑋 whenever 𝐸 is measurable and |𝐸| < ∞.

(4) For each |𝐸| < ∞ there exists 𝐶𝐸 > 0 such that
∫
𝐸
|𝑓| ≤ 𝐶𝐸‖𝑓‖𝑋.

We shall denote (𝐵𝐹𝑆)0 = (𝐵𝐹𝑆) ∩ B0 and (𝐵𝐹𝑆)ℎ =
(𝐵𝐹𝑆) ∩ Bℎ. It is clear that 𝐶𝑐(R𝑛) ⊂ 𝑋 for any 𝑋 ∈ (𝐵𝐹𝑆)
and thatP(R) is dense in 𝑋 whenever 𝑋 ∈ (𝐵𝐹𝑆)ℎ.

Recall that 𝑋 ∈ (𝐵𝐹𝑆) is said to have “absolutely
continuous norm”, in short 𝑋 ∈ (𝐵𝐹𝑆)𝑎, if ‖𝑓𝜒𝐸𝑛‖𝑋 → 0
for every 𝑓 ∈ 𝑋 and every sequence of measurable sets 𝐸𝑛
with 𝐸𝑛 → 0 a.e.
Proposition 17. If𝑋 ∈ (𝐵𝐹𝑆)𝑎 then 𝑋 ∈ (𝐵𝐹𝑆)ℎ.
Proof. Let 𝑋 ∈ (𝐵𝐹𝑆)𝑎. The fact that 𝐿1(R𝑛) ∩ 𝑋 is dense in
𝑋 follows since bounded functions compactly supported are
dense (see [19, Theorem 3.11]). To show that 𝑥 → 𝜏𝑥𝑓 and
𝑥 → 𝑀𝑥𝑓 are continuous for any𝑓 ∈ 𝑋we shallmake use of
the Lebesgue dominated theorem (see [19, Proposition 3.6])
which holds because𝑋 has absolutely continuous norm. Now
given 𝑓 ∈ 𝑋 and a sequence 𝑥𝑛 → 0 one has𝑀𝑥𝑛

𝑓−𝑓 → 0
and |𝑀𝑥𝑛

𝑓 − 𝑓| ≤ 2|𝑓| what gives that ‖𝑀𝑥𝑛
𝑓 − 𝑓‖𝑋 → 0.

Therefore 𝑥 → 𝑀𝑥𝑓 is continuous at the origin and hence
at any point. To study the translation we first assume that 𝑓 is
a bounded function supported on a finite set 𝐸 and |𝑥𝑛| ≤ 1
with 𝑥𝑛 → 0. In such a case 𝜏𝑥𝑛𝑓 − 𝑓 → 0 and |𝜏𝑥𝑛𝑓 −
𝑓| ≤ 2‖𝑓‖∞𝜒𝐸 with 𝐸 = 𝐸 ∪ (𝐸 + [−1, 1]). This gives that
‖𝜏𝑥𝑛𝑓 − 𝑓‖𝑋 → 0 and therefore 𝑥 → 𝜏𝑥𝑓 is continuous for
any bounded function with finite support. Using the density
of such functions in𝑋 one gets the result for any 𝑓 ∈ 𝑋.
Proposition 18. Assume that 𝑋1, 𝑋2 ∈ Bℎ and 𝑋3 ∈ (𝐵𝐹𝑆).
If 𝑚𝑛(𝑥, 𝑦) → 𝑚(𝑥, 𝑦) a.e. where 𝑚𝑛 ∈ BM(𝑋1,𝑋2,𝑋3)

(R)
with sup𝑛‖𝑚𝑛‖𝑋1 ,𝑋2,𝑋3 < ∞ then 𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)

(R) and
‖𝑚‖𝑋1,𝑋2,𝑋3 ≤ sup𝑛‖𝑚𝑛‖𝑋1,𝑋2,𝑋3 .
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Proof. For each 𝑓 ∈ P(R) ∩ 𝑋1 and 𝑔 ∈ P(R) ∩ 𝑋2 one has
that 𝐵𝑚𝑛(𝑓, 𝑔) → 𝐵𝑚(𝑓, 𝑔) a.e. and lim inf‖𝐵𝑚𝑛(𝑓, 𝑔)‖𝑋3 <∞. Hence using Fatou’s lemma (see [19, Theorem 1.7]), one
has

𝐵𝑚 (𝑓, 𝑔)𝑋3 ≤ lim inf 𝐵𝑚𝑛 (𝑓, 𝑔)𝑋3
≤ sup

𝑛

𝑚𝑛
𝑋1 ,𝑋2,𝑋3 𝑓𝑋1 𝑔𝑋2 .

(74)

This gives the result.

Recall that 𝑋 ∈ (𝐵𝐹𝑆) is said to be invariant under
rearrangement, in short 𝑋 ∈ (𝑟.𝑖.), whenever it satisfies the
following.

(5) If𝑓 ∈ 𝑋 and 𝑔 is equimeasurable to 𝑔 then 𝑔 ∈ 𝑋 and
‖𝑓‖𝑋 = ‖𝑔‖𝑋.

Recall that if 𝑋 ∈ (𝑟.𝑖.) one defines
ℎ𝑋 (𝑡) = sup

𝑓 ̸=0

𝐷1/𝑡𝑓∗�̃�𝑓∗�̃� , 𝑡 > 0 (75)

where 𝑓∗(𝑡) = inf{𝑠 > 0 : |{𝑥 : |𝑓(𝑥)| > 𝑠}| ≤ 𝑡} and 𝑋
is the r.i. space defined on (0,∞) with the same distribution
function. In particular 𝐷𝑋(𝜆) = ℎ𝑋(1/𝜆).

We observe that rearrangement invariant Banach func-
tion spaces preserve translations, modulations, and dilations;
that is,

(𝑟.𝑖.) ⊂ (𝐵𝐹𝑆)0 . (76)

Indeed, it follows using that ‖𝑀𝑥𝑓‖𝑋 = ‖|𝑀𝑥𝑓|‖ = ‖𝑓‖𝑋,𝜏𝑥𝑓 is equimeasurable to 𝑓 for any 𝑥 and 𝐷𝜆(𝑓) < ∞ for
any 𝑓 ∈ 𝑋 (see [19, Proposition 5.11]), since (𝐷𝜆𝑓)∗ = 𝐷𝜆𝑓∗.
In particular if 𝑋 ∈ (𝑟.𝑖.) ∩ (𝐵𝐹𝑆)𝑎 then 𝑋 ∈ (𝐵𝐹𝑆)ℎ. We
shall write (𝑟.𝑖.)𝑎 the class of rearrangement invariant Banach
function spaces with absolutely continuous norm.

Taking into account that 𝑓(𝑥) = 𝑓(−𝑥) is equimeasurable
with 𝑓 then

M(𝑋1,𝑋2,𝑋3)
(R) = M(𝑋2,𝑋1,𝑋3)

(R) (77)

for any 𝑋1, 𝑋2 ∈ (𝑟.𝑖.)𝑎 and 𝑋3 ∈ (𝐵𝐹𝑆).
In the setting of Banach function spaces we can always

consider the associate space 𝑋, corresponding to the Köthe
dual 𝑀(𝑋,𝐿1(R)). It is well-known that 𝑋 is isometrically
embedded into the dual 𝑋∗ (see [19, Lemma 2.8]) and that
actually𝑋 = 𝑋 (see [19,Theorem2.7]).This allows us to give
a characterization of bilinear multipliers inBM(𝑋1,𝑋2,𝑋3)

(R)
in terms of the duality.

Proposition 19. Let 𝑋𝑖 ∈ (𝑟.𝑖.)𝑎 for 𝑖 = 1, 2 and 𝑋3 ∈ (𝑟.𝑖.)
such that𝑋

3 ∈ (𝑟.𝑖.)𝑎, and let𝑚 be a locally integrable function
in R2. Then 𝑚 ∈ BM(𝑋1,𝑋2 ,𝑋3)

(R) if and only if there exists
𝐶 > 0 such that

∫R2 𝑓 (𝜉) 𝑔 (𝜂) ℎ̂ (𝜉 + 𝜂)𝑚 (𝜉, 𝜂) 𝑑𝜉 𝑑𝜂
≤ 𝐶 𝑓𝑋1 𝑔𝑋2 ‖ℎ‖𝑋3

(78)

for all 𝑓 ∈ P(R) ∩ 𝑋1, 𝑔 ∈ P(R) ∩ 𝑋2 and ℎ ∈ 𝐿1(R) ∩ 𝑋
3.

Corollary 20. Let 𝑋1, 𝑋2, 𝑋
3, 𝑌3 ∈ (𝑟.𝑖.)𝑎. Then F(𝑌3 ∩𝐿1(R)) ⊆ M(𝑋1 ,𝑋2,𝑋3)

(R) if and only if F(𝑋
3 ∩ 𝐿1(R)) ⊆

M(𝑋1,𝑋2,𝑌3)
(R).

Proof. Due to Proposition 19, �̂� ∈ M(𝑋1,𝑋2,𝑋3)
(R) for some

𝑘 ∈ 𝑌3 ∩ 𝐿1(R) implies that

∫R2 𝑓 (𝜉) 𝑔 (𝜂) ℎ̂ (𝜉 + 𝜂) �̂� (𝜉 − 𝜂) 𝑑𝜉 𝑑𝜂


≤ 𝐶 𝑓𝑋1 𝑔𝑋2 ‖ℎ‖𝑋3
�̂�𝑋1 ,𝑋2,𝑋3

≤ 𝐶 𝑓𝑋1 𝑔𝑋2 ‖ℎ‖𝑋3 ‖𝑘‖𝑌3 .
(79)

Changing the variables 𝜉 = 𝜉 and 𝜂 = −𝜂 implies that ℎ̂ ∈
M(𝑋1,𝑋2,𝑌3)

(R).

Let us give now a necessary condition for bilinear multi-
pliers homogeneous of degree 𝛽 in the setting of rearrange-
ment invariant Banach function spaces. We need to recall the
definition of Boyd indices (see [19, page 149]): these are given
by

𝛼𝑋 = lim
𝑡→0

log ℎ𝑋 (𝑡)
log 𝑡 ,

𝛼𝑋 = lim
𝑡→∞

log ℎ𝑋 (𝑡)
log 𝑡 .

(80)

Proposition 21. Let 𝑋1, 𝑋2 ∈ (𝑟.𝑖.)𝑎 and 𝑋3 ∈ (𝑟.𝑖.), 𝛽 ∈ R

and assume that𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)
(R) be a nonzeromultiplier

such that 𝑚(𝑡𝜉, 𝑡𝜂) = 𝑡𝛽𝑚(𝜉, 𝜂) for any 𝑡 > 0. Then

𝛼𝑋3 ≥ 𝛽 + 𝛼𝑋1 + 𝛼𝑋2 (81)

and

𝛼𝑋3 ≤ 𝛽 + 𝛼𝑋1 + 𝛼𝑋2 (82)

Proof. From assumption 𝐷𝑡𝑚 = 𝑡𝛽𝑚 for 𝑡 > 0. Using now
Proposition 3 we can write

𝑡𝛽 ‖𝑚‖(𝑋1,𝑋2,𝑋3)
≤ 𝐷𝑋3

(1𝑡 )𝐷𝑋1
(𝑡) 𝐷𝑋2

(𝑡) ‖𝑚‖(𝑋1 ,𝑋2,𝑋3) , 𝑡 > 0.
(83)

Since𝐷𝑋(𝑡) = ℎ𝑋(1/𝑡) we have

ℎ𝑋3 (𝑡) ℎ𝑋1 (1𝑡 ) ℎ𝑋2 (
1
𝑡 ) ≥ 𝑡

𝛽, 𝑡 > 0. (84)

Therefore,

log ℎ𝑋3 (𝑡) + log ℎ𝑋1 (1𝑡 ) + log ℎ𝑋2 (1𝑡 ) ≥ 𝛽, 𝑡 > 0 (85)
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This shows that
log ℎ𝑋3 (𝑡)

log 𝑡 − log ℎ𝑋1 (1/𝑡)
log (1/𝑡) − log ℎ𝑋2 (1/𝑡)

log (1/𝑡) ≥ 𝛽,
𝑡 ≥ 1

log ℎ𝑋3 (𝑡)
log 𝑡 − log ℎ𝑋1 (1/𝑡)

log (1/𝑡) − log ℎ𝑋2 (1/𝑡)
log (1/𝑡) ≤ 𝛽,

0 < 𝑡 < 1.

(86)

Hence making limits as 𝑡 → ∞ and 𝑡 → 0 one obtains (81)
and (82), respectively.

Corollary 22. Let 1 ≤ 𝑝1, 𝑝2, 𝑝3 < ∞. If 𝑚 ∈
BM(𝐿𝑝1 (R),𝐿𝑝2 (R),𝐿𝑝3 (R))(R) is a nonzero and homogeneous of
degree 𝛽 then 1/𝑝1 + 1/𝑝2 + 𝛽 = 1/𝑝3.

In particular the bilinear Hilbert transform 𝐻 and the
fractional integral 𝐼𝛼 can only be bounded whenever 1/𝑝1 +1/𝑝2 = 1/𝑝3 and 1/𝑝1 + 1/𝑝2 − 𝛼 = 1/𝑝3, respectively.

Weuse now our general approaches to get concrete exam-
ples of multipliers inM(𝑋1,𝑋2,𝑋3)

(R) andBM(𝑋1,𝑋2,𝑋3)
(R).

Proposition 23. Let 𝑋1, 𝑋2 ∈ (𝑟.𝑖.)𝑎 and 𝑋3 ∈ (𝐵𝐹𝑆) satisfy
0 < 𝛼𝑋𝑖 ≤ 𝛼𝑋𝑖 < 1, 𝑖 = 1, 2. (87)

Let 𝑄 = [𝑎, 𝑏] × [𝑐, 𝑑] and 𝑚 ∈ BM(𝑋1,𝑋2,𝑋3)
(R) then 𝑚𝜒𝑄 ∈

BM(𝑋1,𝑋2 ,𝑋3)
(R) and ‖𝑚𝜒𝑄‖𝑋1,𝑋2,𝑋3 ≤ 𝐶‖𝑚‖𝑋1 ,𝑋2,𝑋3 .

Proof. We invoke firt Boyd’s result (see [19, Theorem 5.18])
which establishes that 𝑚(𝜉) = sign(𝜉) ∈ M(𝑋,𝑋)(R) if and
only if 0 < 𝛼𝑋 ≤ 𝛼𝑋 < 1. Since 𝜒(−∞,𝑥] = 𝜏−𝑥𝜒(−∞,0]

and 𝜒(−∞,0] ∈ M𝑋𝑖,𝑋𝑖
for 𝑖 = 1, 2 one has that 𝜒[𝑎,𝑏] ∈

M𝑋1,𝑋1
(R) and 𝜒[𝑐,𝑑] ∈ M𝑋2,𝑋2

(R). Now applying part (a)
in Proposition 6 one obtains the result.

Proposition 24. Let 𝑋2 ∈ (𝑟.𝑖.)𝑎. Then

F ((𝑋2, 𝐿2 (R)) ∩ 𝐿1 (R)) ⊆ M(𝐿2(R),𝑋2,𝐿
∞(R)) (R) . (88)

Proof. Let ℎ ∈ (𝑋2, 𝐿2(R))∩𝐿1(R) and𝑀(𝜉) = ℎ̌(𝜉) = ℎ̂(−𝜉).
We shall see that𝑀 ∈ M(𝐿2(R),𝑋2,𝐿

∞(R))(R) and
‖𝑀‖𝐿2(R),𝑋2,𝐿∞(R) ≤ ‖ℎ‖(𝑋2,𝐿2(R)) . (89)

We use the formulation (see [6, Proposition 3.3]) given by

𝐵𝑀 (𝑓, 𝑔) (𝑥) = ∫
R

(𝜏−𝑥𝑔 ∗𝑀) (𝜉) 𝜏−𝑥𝑓 (𝜉) 𝑑𝜉. (90)

Hence, since ℎ̂ ∗ 𝑔 = ℎ ∗ 𝑔 whenever it is well defined, for
𝑓, 𝑔 ∈ P(R) we can write

𝐵𝑀 (𝑓, 𝑔) (𝑥) ≤ ∫
R

(𝜏−𝑥𝑔 ∗ ℎ) (𝜉) 𝜏−𝑥𝑓 (𝜉) 𝑑𝜉
≤ 𝜏−𝑥𝑔 ∗ ℎ𝐿2(R) 𝜏−𝑥𝑓𝐿2(R)
≤ 𝜏−𝑥𝑔𝑋2 ‖ℎ‖(𝑋2,𝐿2(R))

𝜏−𝑥𝑓𝐿2(R)
≤ 𝑔𝑋2 ‖ℎ‖(𝑋2,𝐿2(R)) 𝑓𝐿2(R) .

(91)

This gives the result.

We now shall combine our results with the method
of interpolation for Banach lattices due to Calderón (see
[4, 20]) to get some sufficient conditions on multipliers in
M(𝑋1,𝑋2,𝑋3)

(R). Recall that for 0 < 𝜃 < 1 and 𝑋1, 𝑋2 ∈ (𝐵𝐹𝑆)
we can define the Banach function space

𝑋𝜃
1𝑋1−𝜃

2 = {ℎ ∈ 𝐿0 (R) : |ℎ| ≤ 𝜆 𝑔𝜃 |ℎ|1−𝜃 , 𝜆
> 0, 𝑓𝑋1 ≤ 1, 𝑔𝑋2 ≤ 1} .

(92)

Proposition 25. Let 𝑋1, 𝑋2, 𝑋
3 ∈ (𝑟.𝑖.)𝑎 satisfying that 𝑋1 ⊆𝑀(𝑋2, 𝑋3) and let 0 ≤ 𝜃 ≤ 1. Set

𝑋 = 𝐿1 (R)𝜃 (𝑋
3)1−𝜃 ,

𝑋3 = 𝑋𝜃
3𝐿∞ (R)1−𝜃

(93)

and assume that F(𝑋) ⊂ 𝐿1loc(R). Then F(𝑋) ⊆
M(𝑋1,𝑋2,�̃�3)

(R).
Proof. Consider the trilinear form

𝑇 (𝐾, 𝑓, 𝑔) (𝑥) = ∫
R

𝑓 (𝑥 − 𝑡) 𝑔 (𝑥 + 𝑡)𝐾 (𝑡) 𝑑𝑡. (94)

From Proposition 9, assuming that 𝐾 ∈ 𝐿1(R), we have
𝐵𝑀(𝑓, 𝑔) = 𝑇(𝐾,𝑓, 𝑔) for𝑀 = �̂�. Now from Proposition 10
we conclude that 𝑇 is bounded from 𝐿1(R) ×𝑋1 ×𝑋2 into𝑋3

and it has norm bounded by 1.
On the other hand, if𝐾 ∈ 𝑋

3, using Hölder’s inequality,

sup
𝑥

∫R 𝑓 (𝑥 − 𝑡) 𝑔 (𝑥 + 𝑡)𝐾 (𝑡) 𝑑𝑡
≤ 𝑓𝑋1 𝑔𝑋2 ‖𝐾‖𝑋3 .

(95)

This shows that 𝑇 is also bounded from 𝑋
3 × 𝑋1 × 𝑋2 into𝐿∞(R). Therefore, by interpolation, for each 0 < 𝜃 < 1 one

obtains that 𝑇 is bounded from 𝑋 × 𝑋1 × 𝑋2 into 𝑋3. This
shows that �̂� ∈ M(𝑋1,𝑋2,�̃�3)

(R) for any 𝐾 ∈ 𝑋.
Let us apply the previous proposition for 𝑋1 = 𝐿𝑝1(R),

𝑋2 = 𝐿𝑝2(R), and 𝑋3 = 𝐿𝑝3(R) with 1/𝑝1 + 1/𝑝2 = 1/𝑝3 with1 ≤ 𝑝1, 𝑝2 < ∞ and 1 < 𝑝3 ≤ ∞.

Corollary 26. Let 1 ≤ 𝑝1, 𝑝2 < ∞ and 1 < 𝑝3 ≤ ∞ with
1/𝑝1 + 1/𝑝2 = 1/𝑝3. If 0 < 𝑞 − 𝑝3 ≤ 𝑝3𝑞/2 then

F (𝐿𝑝 (R)) ⊆ M(𝐿𝑝1 (R),𝐿𝑝2 (R),𝐿𝑞(R)) (R) (96)

where 1 ≤ 𝑝 ≤ 2 is such that 1/𝑝3 − 1/𝑞 = 1/𝑝.
Proof. Since 𝑝 ≤ 2 invoking Hausdorff-Young, F(𝐿𝑝(R)) ⊆
𝐿𝑝(R). Select 0 < 𝜃 < 1 such that 𝐿1(R)𝜃𝐿𝑝3(R)1−𝜃 = 𝐿𝑝(R)
for 1/𝑝 = 𝜃+(1−𝜃)/𝑝3 = 𝜃/𝑝3+1/𝑝3 and 𝐿𝑝3(R)𝜃𝐿∞(R)1−𝜃 =𝐿𝑞(R) for 1/𝑞 = 𝜃/𝑝3. Hence 1/𝑝 = 1/𝑞+1/𝑝3.The result now
follows from Proposition 25.
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Proposition 27. Let 𝑋1, 𝑋2, 𝑋
3 ∈ (𝑟.𝑖.)𝑎 satisfying that 𝑋1 ⊆(𝑋2, 𝑋3) and let 0 ≤ 𝜃 ≤ 1. Set

𝑋 = 𝐿∞ (R)𝜃 (𝑋
3)1−𝜃 ,

𝑋3 = 𝑋𝜃
3𝐿1 (R)1−𝜃

(97)

and assume thatF(𝑋) ⊂ 𝐿1loc(R). Then

F (𝑋) ⊆ M(𝑋1,𝑋2,�̃�3)
(R) . (98)

Proof. Note that ∫
R
𝑓(𝑥−𝑡)𝑔(𝑥+𝑡)𝑑𝑡 = 𝑓∗𝑔(2𝑥). Hence each

∈ 𝐿∞(R)| ∫
R
𝑓(𝑥− 𝑡)𝑔(𝑥+ 𝑡)𝐾(𝑡)𝑑𝑡| ≤ ‖𝐾‖∞𝐷2(|𝑓|∗ |𝑔|)(𝑥).

Therefore,
∫R 𝑓 (𝑥 − 𝑡) 𝑔 (𝑥 + 𝑡)𝐾 (𝑡) 𝑑𝑡𝑋3
≤ ‖𝐾‖∞ 𝐷2 (𝑓 ∗ 𝑔)𝑋3
≤ 𝐷𝑋3

(2) ‖𝐾‖∞ 𝑓(𝑋2,𝑋3) 𝑔𝑋2
≤ 𝐶 ‖𝐾‖∞ 𝑓𝑋1 𝑔𝑋2 .

(99)

Hence, denoting as above𝑇(𝐾, 𝑓, 𝑔)(𝑥) = ∫
R
𝑓(𝑥−𝑡)𝑔(𝑥+

𝑡)𝐾(𝑡)𝑑𝑡, one obtains that𝑇 is bounded from 𝐿∞(R)×𝑋1×𝑋2

into 𝑋3.
Using duality, ⟨𝑇(𝐾,𝑓, 𝑔), ℎ⟩ = ⟨𝑇(ℎ, 𝑓, 𝑔), 𝐾⟩, where

𝑓(𝑥) = 𝑓(−𝑥), because
∫
R

∫
R

𝑓 (𝑥 − 𝑡) 𝑔 (𝑥 + 𝑡)𝐾 (𝑡) 𝑑𝑡)ℎ (𝑥) 𝑑𝑥

= ∫
R

(∫
R

𝑓 (𝑡 − 𝑥) 𝑔 (𝑥 + 𝑡) ℎ (𝑥) 𝑑𝑥)𝐾 (𝑡) 𝑑𝑡.
(100)

Therefore 𝑇 is also bounded from𝑋
3 × 𝑋1 × 𝑋2 into 𝐿1(R).

Now the result follows again by interpolation.

Let us apply the previous proposition for 𝑋1 = 𝐿𝑝1(R),
𝑋2 = 𝐿𝑝2(R), and 𝑋3 = 𝐿𝑝3(R) with 1/𝑝1 + 1/𝑝2 − 1 = 1/𝑝3
with 1 ≤ 𝑝1, 𝑝2 < ∞with 1 ≤ 1/𝑝1+1/𝑝2 < 3/2 (in particular𝑝3 > 2).
Corollary 28. Let 1 ≤ 𝑝1, 𝑝2 < ∞with 1 ≤ 1/𝑝1+1/𝑝2 < 3/2
and 1/𝑝1 + 1/𝑝2 − 1 = 1/𝑝3. If 𝑝3 < 𝑝 ≤ 2 then

F (𝐿𝑝 (R)) ⊆ M(𝐿𝑝1 (R),𝐿𝑝2 (R),𝐿𝑞(R)) (R) (101)

where 1 ≤ 𝑞 < ∞ is such that 1/𝑞 = 1/𝑝 + 1/𝑝3.
Proof. As above F(𝐿𝑝(R)) ⊆ 𝐿1loc(R). Select 0 < 𝜃 < 1 such
that 𝐿∞(R)𝜃𝐿𝑝3(R)1−𝜃 = 𝐿𝑝(R) for 1/𝑝 = (1 − 𝜃)/𝑝3 and𝐿𝑝3(R)𝜃𝐿1(R)1−𝜃 = 𝐿𝑞(R) for 1/𝑞 = 𝜃/𝑝3 +1−𝜃 = 1−𝜃/𝑝3 =1/𝑝3 + (1 − 𝜃)/𝑝3. Hence 1/𝑞 = 1/𝑝 + 1/𝑝3 and the result
follows from Proposition 27.
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