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We use the Baernstein star-function to investigate several questions about the integral means of the convolution of two analytic
functions in the unit disc. The theory of univalent functions plays a basic role in our work.

1. Introduction

Let D = {𝑧 ∈ C : |𝑧| < 1} and T = {𝑧 ∈ C : |𝑧| = 1} denote
the open unit disc and the unit circle in the complex plane
C. We let also H𝑜𝑙(D) be the space of all analytic functions
in D endowed with the topology of uniform convergence in
compact subsets.

If 0 ≤ 𝑟 < 1 and 𝑓 ∈ H𝑜𝑙(D), we set

𝑀𝑝 (𝑟, 𝑓) = (∫𝜋
−𝜋

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑟𝑒𝑖𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑡
2𝜋)1/𝑝 ,

if 0 < 𝑝 < ∞,
𝑀∞ (𝑟, 𝑓) = sup

|𝑧|=𝑟

󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 .
(1)

For 0 < 𝑝 ≤ ∞, the Hardy space 𝐻𝑝 consists of those𝑓 ∈ H𝑜𝑙(D) such that

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐻𝑝 def= sup
0≤𝑟<1

𝑀𝑝 (𝑟, 𝑓) < ∞. (2)

We refer to [1] for the theory of𝐻𝑝-spaces.

If 𝑓, 𝑔 ∈ H𝑜𝑙(D),
𝑓 (𝑧) = ∞∑

𝑛=0

𝑎𝑛𝑧𝑛,

𝑔 (𝑧) = ∞∑
𝑛=0

𝑏𝑛𝑧𝑛

(𝑧 ∈ D) ,

(3)

the (Hadamard) convolution (𝑓 ⋆ 𝑔) of 𝑓 and 𝑔 is defined by

(𝑓 ⋆ 𝑔) (𝑧) = ∞∑
𝑛=0

𝑎𝑛𝑏𝑛𝑧𝑛, 𝑧 ∈ D. (4)

We have the following integral representation:

(𝑓 ⋆ 𝑔) (𝑧) = 1
2𝜋𝑖 ∫|𝜉|=𝑟 𝑓(𝑧

𝜉)𝑔 (𝜉) 𝑑𝜉𝜉 , |𝑧| < 𝑟 < 1, (5)

(see [2, p. 11]). The convolution operation ⋆ makes H𝑜𝑙(D)
into a commutative complex algebra with an identity

𝐼 (𝑧) = 1
1 − 𝑧 = ∞∑

𝑛=0

𝑧𝑛, 𝑧 ∈ D. (6)
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We refer to [2] for the theory of the convolution of analytic
functions and its connections with geometric function the-
ory.

Following [3], we shall say that a function 𝐹 ∈ H𝑜𝑙(D) is
bound preserving if for every 𝑓 ∈ 𝐻∞ we have that 𝑓 ⋆ 𝐹 ∈𝐻∞ and

󵄩󵄩󵄩󵄩𝑓 ⋆ 𝐹󵄩󵄩󵄩󵄩𝐻∞ ≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐻∞ . (7)

Sheil-Small [3, Theorem 1.3] (see also [2, p. 123]) proved
that a function 𝐹 ∈ H𝑜𝑙(D) is bound preserving if and only
if there exists a complex Borel measure 𝜇 on T with ‖𝜇‖ ≤ 1
such that

𝐹 (𝑧) = ∫
T

𝑑𝜇 (𝜉)
1 − 𝑧𝜉 , 𝑧 ∈ D. (8)

The measure 𝜇 is a probability measure if and only if 𝐹 is
convexity preserving; that is, for any 𝑓 ∈ H𝑜𝑙(D) the range
of 𝑓⋆𝐹 is contained in the closed convex hull of the range of𝑓 [2, pp. 123, 124].

It turns out that if 𝐹 is bound preserving and 1 ≤ 𝑝 ≤ ∞,
then for every 𝑓 ∈ 𝐻𝑝 we have that 𝑓 ⋆ 𝐹 ∈ 𝐻𝑝 and

󵄩󵄩󵄩󵄩𝑓 ⋆ 𝐹󵄩󵄩󵄩󵄩𝐻𝑝 ≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐻𝑝 . (9)

Actually, the following stronger result holds.

Theorem 1. Suppose that 𝑓, 𝐹 ∈ H𝑜𝑙(D) with 𝐹 being bound
preserving. Then

𝑀𝑝 (𝑟, 𝑓 ⋆ 𝐹) ≤ 𝑀𝑝 (𝑟, 𝑓) , 0 < 𝑟 < 1, (10)

whenever 1 ≤ 𝑝 ≤ ∞.

Proof. Since 𝐹 is bound preserving, there exists a complex
Borel measure 𝜇 on T with ‖𝜇‖ ≤ 1 such that

𝐹 (𝑧) = ∫
T

𝑑𝜇 (𝜉)
1 − 𝑧𝜉 = ∞∑

𝑛=0

(∫
T

𝜉𝑛𝑑𝜇 (𝜉)) 𝑧𝑛, 𝑧 ∈ D. (11)

If 𝑓(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 (𝑧 ∈ D), we have

(𝑓 ⋆ 𝐹) (𝑧) = ∞∑
𝑛=0

𝑎𝑛 (∫
T

𝜉𝑛𝑑𝜇 (𝜉)) 𝑧𝑛

= ∫
T

(∞∑
𝑛=0

𝑎𝑛𝜉𝑛𝑧𝑛)𝑑𝜇 (𝜉)

= ∫
T

𝑓 (𝜉𝑧) 𝑑𝜇 (𝜉) , 𝑧 ∈ D.

(12)

This immediately yields (10) for 𝑝 = ∞. Now, if 1 ≤ 𝑝 < ∞,
using Minkowski’s integral inequality we obtain

𝑀𝑝 (𝑟, 𝑓 ⋆ 𝐹)
= [ 1

2𝜋 ∫𝜋
−𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫T 𝑓 (𝑟𝜉𝑒𝑖𝜃) 𝑑𝜇 (𝜉)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 𝑑𝜃]1/𝑝

≤ [ 1
2𝜋 ∫𝜋
−𝜋

(∫
T

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑟𝜉𝑒𝑖𝜃)󵄨󵄨󵄨󵄨󵄨 𝑑 󵄨󵄨󵄨󵄨𝜇󵄨󵄨󵄨󵄨 (𝜉))
𝑝 𝑑𝜃]1/𝑝

≤ ∫
T

( 1
2𝜋 ∫𝜋
−𝜋

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑟𝜉𝑒𝑖𝜃)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜃)
1/𝑝 𝑑 󵄨󵄨󵄨󵄨𝜇󵄨󵄨󵄨󵄨 (𝜉)

= ∫
T

𝑀𝑝 (𝑟, 𝑓) 𝑑 󵄨󵄨󵄨󵄨𝜇󵄨󵄨󵄨󵄨 (𝜉) ≤ 𝑀𝑝 (𝑟, 𝑓) .
(13)

2. Star-Type Inequalities

Themain purpose of this article is studying the possibility of
extending Theorem 1 to cover other integral means, at least
for some special classes of functions. In order to do so, we
shall use the method of the star-function introduced by A.
Baernstein [4, 5].

If 𝑢 is a subharmonic function in D \ {0}, the function 𝑢∗
is defined by

𝑢∗ (𝑟𝑒𝑖𝜃) = sup
|𝐸|=2𝜃

∫
𝐸
𝑢 (𝑟𝑒𝑖𝑡) 𝑑𝑡,

0 < 𝑟 < 1, 0 ≤ 𝜃 ≤ 𝜋,
(14)

where |𝐸| denotes the Lebesgue measure of the set 𝐸. The
basic properties of the star-function which make it useful to
solve extremal problems are the following [5].

(i) If 𝑢 is a subharmonic function in D \ {0}, then the
function 𝑢∗ is subharmonic in D+ = {𝑧 = 𝑟𝑒𝑖𝜃 : 0 <𝑟 < 1, 0 < 𝜃 < 𝜋} and continuous in {𝑧 = 𝑟𝑒𝑖𝜃 : 0 <𝑟 < 1, 0 ≤ 𝜃 ≤ 𝜋}.

(ii) If V is harmonic in D \ {0}, and it is a symmetric
decreasing function on each of the circles {|𝑧| = 𝑟}
(0 < 𝑟 < 1), then V∗ is harmonic in D+ and; in fact,
V∗(𝑟𝑒𝑖𝜃) = ∫𝜃

−𝜃
V(𝑟𝑒𝑖𝑡)𝑑𝑡.

The relevance of the star-function to obtain integral
means estimates comes from the following result.

Proposition A (see [5]). Let 𝑢 and V be two subharmonic
functions in D. Then the following two conditions are equiv-
alent:

(i) 𝑢∗ ≤ V∗ in D+.
(ii) For every convex and increasing functionΦ : R 󳨀→ R,

we have that

∫𝜋
−𝜋

Φ(𝑢 (𝑟𝑒𝑖𝜃)) 𝑑𝜃 ≤ ∫𝜋
−𝜋

Φ(V (𝑟𝑒𝑖𝜃)) 𝑑𝜃,
0 < 𝑟 < 1.

(15)

Proposition A yields the following result about analytic
functions.

Proposition B. Let 𝑓 and 𝑔 be two nonidentically zero
analytic functions inD.Then the following conditions are equi-
valent:

(i) (log |𝑓|)∗ ≤ (log |𝑔|)∗ in D+.
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(ii) For every convex and increasing functionΦ : R 󳨀→ R,
we have that

∫𝜋
−𝜋

Φ(log 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑟𝑒𝑖𝜃)󵄨󵄨󵄨󵄨󵄨) 𝑑𝜃 ≤ ∫𝜋
−𝜋

Φ(log 󵄨󵄨󵄨󵄨󵄨𝑔 (𝑟𝑒𝑖𝜃)󵄨󵄨󵄨󵄨󵄨) 𝑑𝜃,
0 < 𝑟 < 1.

(16)

Since for any 𝑝 > 0 the function Φ defined by Φ(𝑥) =
exp(𝑝𝑥) (𝑥 ∈ R) is convex and increasing, we deduce that if𝑓 and 𝑔 are as in Proposition B and (log |𝑓|)∗ ≤ (log |𝑔|)∗ in
D+, then

𝑀𝑝 (𝑟, 𝑓) ≤ 𝑀𝑝 (𝑟, 𝑔) , 0 < 𝑟 < 1, (17)

for all 𝑝 > 0.
The main achievement in the use of the star-function by

A. Baernstein in [5] was the proof that the Koebe function𝑘(𝑧) = 𝑧/(1 − 𝑧)2 (𝑧 ∈ D) is extremal for the integral means
of functions in the class 𝑆 of univalent functions (see [1, 6]
for the notation and results regarding univalent functions).
Namely, Baernstein proved that if 𝑓 ∈ 𝑆 then

(± log 󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨)∗ ≤ (± log |𝑘|)∗ (18)

and, hence,

∫𝜋
−𝜋

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑟𝑒𝑖𝜃)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜃 ≤ ∫𝜋
−𝜋

󵄨󵄨󵄨󵄨󵄨𝑘 (𝑟𝑒𝑖𝜃)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜃, 0 < 𝑟 < 1, (19)

for all 𝑝 ∈ R. In particular, we have that if 𝑓 ∈ 𝑆 and 0 < 𝑝 ≤∞, then

𝑀𝑝 (𝑟, 𝑓) ≤ 𝑀𝑝 (𝑟, 𝑘) , 0 < 𝑟 < 1. (20)

Subsequently the star-function has been used in a good
number of papers to obtain bounds on the integral means of
distinct classes of analytic functions (see, e.g., [7–12]).

Coming back to convolution, the following questions
arise in a natural way.

Question 1. Let 𝑓, 𝑔, 𝐹, 𝐺 be analytic functions in D with |𝐹|
and |𝐺| being symmetric decreasing on each of the circles{|𝑧| = 𝑟} and suppose that

(log 󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨)∗ ≤ (log |𝐹|)∗
and (log 󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨)∗ ≤ (log |𝐺|)∗ . (21)

Does it follow that (log |𝑓 ⋆ 𝑔|)∗ ≤ (log |𝐹 ⋆ 𝐺|)∗?
Question 2. Let 𝐹 and 𝑓 be two analytic functions in D
and suppose that 𝐹 is bound preserving. Can we assert that(log |𝑓 ⋆ 𝐹|)∗ ≤ (log |𝑓|)∗?

We shall show that the answer to these two questions is
negative. Regarding Question 1 we have the following result.

Theorem 3. There exist two functions 𝐹1, 𝐹2 ∈ H𝑜𝑙(D) with
(log 󵄨󵄨󵄨󵄨󵄨𝐹𝑗󵄨󵄨󵄨󵄨󵄨)∗ ≤ (log |𝐼|)∗ , 𝑓𝑜𝑟 𝑗 = 1, 2, (22)

and such that

𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (log 󵄨󵄨󵄨󵄨𝐹1 ⋆ 𝐹2󵄨󵄨󵄨󵄨)∗
≤ (log |𝐼 ⋆ 𝐼|)∗ 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑. (23)

Here, 𝐼 is the identity element of the convolution defined in
(6); that is, 𝐼(𝑧) = 1/(1 − 𝑧) (𝑧 ∈ D). Hence 𝐼 ⋆ 𝐼 = 𝐼.
Proof. Let ℎ be an odd function in the class 𝑆 with Taylor
expansion

ℎ (𝑧) = 𝑧 + 𝑎3𝑧3 + 𝑎5𝑧5 + . . . (24)

with |𝑎5| > 1. The existence of such ℎ was proved by Fekete
and Szegö (see [13, p. 104]). Set also

ℎ1 (𝑧) = ℎ (𝑧)
𝑧 = 1 + 𝑎3𝑧2 + 𝑎5𝑧4 + . . . , 𝑧 ∈ D. (25)

It is well known that there exists a function 𝐻 ∈ 𝑆 such thatℎ(𝑧) = √𝐻(𝑧2) (see [13, p. 64]). Set 𝑘2(𝑧) = √𝑘(𝑧2) = 𝑧/(1 −𝑧2) and 𝐽(𝑧) = 𝑘2(𝑧)/𝑧 = 1/(1 − 𝑧2) (𝑧 ∈ D). By Baernstein’s
theorem we have (log |𝐻|)∗ ≤ (log |𝑘|)∗, a fact which easily
implies that (log |ℎ1|)∗ ≤ (log |𝐽|)∗. Now, it is clear that 𝐽 is
subordinate to 𝐼 and then, using [8, Lemma 2], we see that(log |𝐽|)∗ ≤ (log |𝐼|)∗.Thus it follows that

(log 󵄨󵄨󵄨󵄨ℎ1󵄨󵄨󵄨󵄨)∗ ≤ (log |𝐼|)∗ . (26)

For 𝑛 = 1, 2, 3, . . ., we define 𝑓𝑛 inductively as follows:
𝑓1 = ℎ1

and 𝑓𝑛 = 𝑓𝑛−1 ⋆ 𝑓1, for 𝑛 ≥ 2. (27)

In other words, 𝑓𝑛 =
(𝑛)⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ℎ1 ⋆ ⋅ ⋅ ⋅ ⋆ ℎ1. Clearly, (25) yields

𝑓𝑛 (𝑧) = 1 + 𝑎𝑛3𝑧2 + 𝑎𝑛5𝑧4 + . . . . (28)

Since |𝑎5| > 1, it follows that |𝑎𝑛5 | 󳨀→ ∞, as 𝑛 󳨀→ ∞. This is
equivalent to saying that

󵄨󵄨󵄨󵄨󵄨𝑓(4)𝑛 (0)󵄨󵄨󵄨󵄨󵄨 󳨀→ ∞, as 𝑛 󳨀→ ∞. (29)

Then it follows that the family {𝑓(4)𝑛 : 𝑛 = 1, 2, 3, . . .} is not a
locally bounded family of holomorphic functions inD. Using
[14, Theorem 16, p. 225] we see that the same is true for the
family {𝑓𝑛 : 𝑛 = 1, 2, 3, . . .}. Take 𝑝 ∈ (0, 1), then 𝐼 ∈ 𝐻𝑝.
Since a bounded subset of 𝐻𝑝 is a locally bounded family [1,
p. 36], it follows that

sup
𝑛≥1

󵄩󵄩󵄩󵄩𝑓𝑛󵄩󵄩󵄩󵄩𝐻𝑝 = ∞. (30)

Now, (30) implies that ‖𝑓𝑛‖𝐻𝑝 > ‖𝐼‖𝐻𝑝 for some 𝑛. Using
Proposition B, we see that this implies that

the inequality (log 󵄨󵄨󵄨󵄨𝑓𝑛󵄨󵄨󵄨󵄨)∗
≤ (log |𝐼|)∗ is not true for some 𝑛. (31)

Let𝑁 be the smallest of all such 𝑛. Using (26) and the fact that𝑓1 = ℎ1, it follows that 𝑁 > 1.
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Then it is clear that (23) holds with 𝐹1 = 𝑓1, 𝐹2 = 𝑓𝑁−1.
We have the following result regarding Question 2.

Theorem 4. There exist 𝑓, 𝐹 analytic and univalent in D such
that 𝐹 is convexity preserving and with the property that the
inequality (log |𝑓 ⋆ 𝐹|)∗ ≤ (log |𝑓|)∗ does not hold.

The following lemma will be used in the proof of
Theorem 4.

Lemma 5. Let 𝑓, 𝐹 ∈ H𝑜𝑙((𝐷) and suppose that 𝐹(0) = 1, 𝐹
is convexity preserving, and 𝑓 and 𝑓⋆𝐹 are zero-free inD and
satisfy the inequality (log |𝑓 ⋆ 𝐹|)∗ ≤ (log |𝑓|)∗. Then we also
have that

(log 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

𝑓 ⋆ 𝐹
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
∗ ≤ (log 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
𝑓
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
∗ . (32)

Proof. Set 𝑢 = log |𝑓 ⋆ 𝐹|, V = log |𝑓|. Then 𝑢 and V are
harmonic in D, 𝑢(0) = V(0), and 𝑢∗ ≤ V∗. Then it follows
that, for 0 < 𝑟 < 1 and 0 ≤ 𝜃 ≤ 𝜋,

(−𝑢)∗ (𝑟𝑒𝑖𝜃) = sup
|𝐸|=2𝜃

∫
𝐸
−𝑢 (𝑟𝑒𝑖𝑡) 𝑑𝑡

= sup
|𝐸|=2𝜃

(−∫𝜋
−𝜋

𝑢 (𝑟𝑒𝑖𝑡) 𝑑𝑡 + ∫
[−𝜋,𝜋]\𝐸

𝑢 (𝑟𝑒𝑖𝑡) 𝑑𝑡)
= −2𝜋𝑢 (0) + 𝑢∗ (𝑟𝑒𝑖(𝜋−𝜃))
= −2𝜋V (0) + 𝑢∗ (𝑟𝑒𝑖(𝜋−𝜃))
≤ −2𝜋V (0) + V∗ (𝑟𝑒𝑖(𝜋−𝜃)) = (−V)∗ (𝑟𝑒𝑖𝜃) .

(33)

Hence, we have proved that (−𝑢)∗ ≤ (−V)∗ which is
equivalent to (32).

Proof of Theorem 4. Set

𝑓 (𝑧) = 1
(1 − 𝑧)2 =

∞∑
𝑛=0

(𝑛 + 1) 𝑧𝑛,

𝐹 (𝑧) = 1 − 1
2𝑧,

𝑧 ∈ D.

(34)

Clearly, 𝑓 and 𝐹 are analytic, univalent, and zero-free in D.
Also

(𝑓 ⋆ 𝐹) (𝑧) = 1 − 𝑧, 𝑧 ∈ D. (35)

Hence𝑓⋆𝐹 is also zero-free inD. Notice that 1/(𝑓⋆𝐹) ∉ 𝐻∞
and 1/𝑓 ∈ 𝐻∞. Then it follows that

the inequality (log 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

𝑓 ⋆ 𝐹
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
∗

≤ (log 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
𝑓
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
∗

does not hold.
(36)

Now, it is a simple exercise to check that

𝐹 (𝑧) = 1
2𝜋 ∫𝜋
−𝜋

1 − cos 𝜃
1 − 𝑒𝑖𝜃𝑧 𝑑𝜃 (37)

and then it follows that 𝐹 is convexity preserving.Then, using
(36) and Lemma 5, it follows that the inequality (log |𝑓 ⋆𝐹|)∗ ≤ (log |𝑓|)∗ does not hold, as desired.

We close the paper with a positive result, determining a
class of univalent functions Z such that (10) is true for all𝑝 > 0, whenever 𝑓 ∈ Z and 𝐹 is convexity preserving.

A domain 𝐷 in C is said to be Steiner symmetric if its
intersection with each vertical line is either empty, or is the
whole line, or is a segment placed symmetrically with respect
to the real axis. We letZ be the class of all functions 𝑓 which
are analytic and univalent in D with 𝑓(0) = 0, 𝑓󸀠(0) > 0, and
whose image is a Steiner symmetric domain. The elements
of Z will be called Steiner symmetric functions. Using
arguments similar to those used by Jenkins [15] for circularly
symmetric functions, we see that a univalent function 𝑓with𝑓(0) = 0 and 𝑓󸀠(0) > 0 is Steiner symmetric if and only if
it satisfies the following two conditions: (i) 𝑓 is typically real
and (ii) Re𝑓 is a symmetric decreasing function on each of the
circles {|𝑧| = 𝑟} (0 < 𝑟 < 1).Then it follows that if𝑓 ∈ Z, then
for every 𝑟 ∈ (0, 1), the domain 𝑓({|𝑧| < 𝑟}) is a Steiner sym-
metric domain and, hence, the function 𝑓𝑟 defined by𝑓𝑟(𝑧) =𝑓(𝑟𝑧) (𝑧 ∈ D) belongs toZ and it extends to an analytic func-
tion in the closed unit discD. Nowwe can state our last result.

Theorem 6. Suppose that 𝑓 ∈ Z and let 𝐹 be an analytic
function inDwhich is convexity preserving. We have, for every𝑝 > 0,

𝑀𝑝 (𝑟, 𝑓 ⋆ 𝐹) ≤ 𝑀𝑝 (𝑟, 𝑓) , 0 < 𝑟 < 1. (38)

Proof. In view of Theorem 1 we only need to prove (38) for0 < 𝑝 < 1. Let 𝜇 be the probability measure on T such that𝐹(𝑧) = ∫
T
(𝑑𝜇(𝜉)/(1 − 𝑧𝜉)) (𝑧 ∈ D). Then we have

(𝑓 ⋆ 𝐹) (𝑧) = ∫
T

𝑓 (𝜉𝑧) 𝑑𝜇 (𝜉) . (39)

Since 𝐹 is convexity preserving, for 0 < 𝑟 < 1, we have that
(𝑓𝑟 ⋆ 𝐹) (D) is contained in the closed convex hull of 𝑓𝑟(D).
This easily yields

min
𝑧∈D

Re𝑓𝑟 (𝑧) ≤ min
𝑧∈D

Re (𝑓𝑟 ⋆ 𝐹) (𝑧) ,
max
𝑧∈D

Re (𝑓𝑟 ⋆ 𝐹) (𝑧) ≤ max
𝑧∈D

Re𝑓𝑟 (𝑧) . (40)

By the remarks in the previous paragraph, we find that, for all𝑟 ∈ (0, 1),𝑓𝑟 belongs toZ and extends to an analytic function
in the closed unit disc D. Finally, we claim that

(Re (𝑓𝑟 ⋆ 𝐹))∗ ≤ (Re𝑓𝑟)∗ , 0 < 𝑟 < 1. (41)

Once this is proved, using Proposition 6 of [10], we deduce
that
𝑀𝑝 (𝑟, 𝑓 ⋆ 𝐹) = 󵄩󵄩󵄩󵄩𝑓𝑟 ⋆ 𝐹󵄩󵄩󵄩󵄩𝐻𝑝 ≤ 󵄩󵄩󵄩󵄩𝑓𝑟󵄩󵄩󵄩󵄩𝐻𝑝 = 𝑀𝑝 (𝑟, 𝑓) ,

0 < 𝑝 ≤ 2, (42)

finishing our proof.
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So we proceed to prove (41). Fix 𝑟 ∈ (0, 1) and set 𝑢 =
Re(𝑓𝑟 ⋆ 𝐹), V = Re𝑓𝑟. Using (39), we have, for 0 < 𝑅 < 1 and0 < 𝜃 < 𝜋,

𝑢∗ (𝑅𝑒𝑖𝜃) = sup
|𝐸|=2𝜃

∫
𝐸
𝑢 (𝑅𝑒𝑖𝑡) 𝑑𝑡

= sup
|𝐸|=2𝜃

∫
𝐸
∫
T

V (𝑅𝑒𝑖𝑡𝜉) 𝑑𝜇 (𝜉) 𝑑𝑡

= sup
|𝐸|=2𝜃

∫
T

∫
𝐸
V (𝑅𝑒𝑖𝑡𝜉) 𝑑𝑡 𝑑𝜇 (𝜉)

≤ ∫
T

V∗ (𝑅𝑒𝑖𝜃) 𝑑𝜇 (𝜉) = V∗ (𝑅𝑒𝑖𝜃) .

(43)
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l’Université de Montréal, Montréal, Canada, 1982.

[3] T. Sheil-Small, “On the convolution of analytic functions,”
Journal für die Reine und Angewandte Mathematik, vol. 258, pp.
137–152, 1973.

[4] A. Baernstein, “Proof of Edrei’s spread conjecture,” Proceedings
of the London Mathematical Society, vol. 26, no. 3, pp. 418–434,
1973.

[5] A. Baernstein, “Integralmeans, univalent functions and circular
symmetrization,” Acta Mathematica, vol. 133, pp. 139–169, 1974.

[6] C. Pommerenke, Univalent Functions, Vandenhoeck & Ru-
precht, Göttingen, Germany, 1975.

[7] A. Baernstein, “Some sharp inequalities for conjugate func-
tions,” Indiana UniversityMathematics Journal, vol. 27, no. 5, pp.
833–852, 1978.

[8] Y. J. Leung, “Integral means of the derivatives of some univalent
functions,” Bulletin of the London Mathematical Society, vol. 11,
no. 3, pp. 289–294, 1979.

[9] J. E. Brown, “Derivatives of close-to-convex functions, inte-
gral means and bounded mean oscillation,” Mathematische
Zeitschrift, vol. 178, no. 3, pp. 353–358, 1981.

[10] D. Girela, “Integral means and BMOA-norms of logarithms
of univalent functions,” Journal of The London Mathematical
Society-Second Series, vol. 33, no. 1, pp. 117–132, 1986.

[11] D. Girela, “Integral means, bounded mean oscillation, and
Gel’fer functions,” Proceedings of the American Mathematical
Society, vol. 113, no. 2, pp. 365–370, 1991.

[12] M. Nowak, “Some inequalities for BMOA functions,” Complex
VariablesTheory andApplication, vol. 16, no. 2-3, pp. 81–86, 1991.

[13] P. L. Duren, Univalent Functions, Springer-Verlag, New York,
NY, USA, 1983.

[14] L. V. Ahlfors, Complex Analysis. An Introduction to the Theory
of Analytic Functions of One Complex Variable, International
Series in Pure and Applied Mathematics, McGraw-Hill Book
Co., New York, NY, USA, 3rd edition, 1978.

[15] J. A. Jenkins, “On circularly symmetric functions,” Proceedings
of the American Mathematical Society, vol. 6, pp. 620–624, 1955.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

