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We prove the uniform 𝐿1 → 𝐿1,∞ and 𝐻1
𝐸 → 𝐿1 boundedness of oscillatory singular integral operators whose kernels are the

products of an oscillatory factor with bilinear phase and a Calderón-Zygmund kernel 𝐾(𝑥, 𝑦) satisfying a Hölder condition. This
Hölder condition appreciably weakens the 𝐶1 condition imposed in existing literature.

1. Introduction

Let 𝑛 ∈ N.We shall consider the following oscillatory singular
integral operator:

𝑇𝐵,𝐾 : 𝑓 → p.v. ∫
R𝑛

𝑒𝑖𝐵(𝑥,𝑦)𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦 (1)

where 𝐵(⋅, ⋅) is a real-valued bilinear form. In past studies
of this type of operators, 𝐾(𝑥, 𝑦) is typically assumed to be
a Calderón-Zygmund kernel satisfying a 𝐶1 condition away
from the diagonal Δ = {(𝑥, 𝑥) : 𝑥 ∈ R𝑛}, i.e., there exists an𝐴 > 0 such that

(i) for all (𝑥, 𝑦) ∈ (R𝑛 × R𝑛) \ Δ,
𝐾 (𝑥, 𝑦) ≤ 𝐴𝑥 − 𝑦𝑛 ; (2)

(ii) 𝐾(𝑥, 𝑦) ∈ 𝐶1((R𝑛 × R𝑛) \ Δ), and for (𝑥, 𝑦) ∈ (R𝑛 ×
R𝑛) \ Δ

∇𝑥𝐾 (𝑥, 𝑦) + ∇𝑦𝐾(𝑥, 𝑦) ≤ 𝐴𝑥 − 𝑦𝑛+1 ; (3)

(iii) 𝑇𝑜
𝐿2(R𝑛)→𝐿2(R𝑛) ≤ 𝐴 (4)

where

𝑇𝑜𝑓 (𝑥) = p.v. ∫
R𝑛

𝐾(𝑥, 𝑦)𝑓 (𝑦) 𝑑𝑦. (5)

Under conditions (i), (ii), and (iii), Phong and Stein
proved the 𝐿𝑝 boundedness of 𝑇𝐵,𝐾 for 1 < 𝑝 < ∞ ([1]). The𝐿𝑝 result of Phong and Stein was then extended to operators
with polynomial phases by Ricci and Stein ([2]), under the
same conditions (i), (ii), and (iii) on 𝐾(𝑥, 𝑦), while the
weak (1,1) boundedness of such operators was subsequently
established by Chanillo and Christ in [3] (for all polynomial
phase functions, bilinear or otherwise).

The 𝐶1 property of 𝐾 in condition (ii) was instrumental
when van der Corput’s lemma, a standard tool in the
treatment of oscillatory integrals, was used in past studies,
including the seminal papers cited above. There has been
widespread interest in finding out what happens when the𝐶1 kernel 𝐾(𝑥, 𝑦) is replaced by a “rougher” kernel. Many
interesting results have been obtained for kernels that are
homogeneous and of convolutional type but lack smoothness
(i.e.,𝐾(𝑥, 𝑦) = |𝑥 − 𝑦|−𝑛Ω((𝑥− 𝑦)/|𝑥− 𝑦|)). See, for example,
[4–6].

In this paper we are interested in general kernels 𝐾(𝑥, 𝑦)
for which condition (ii) is replaced by the following weaker
condition of Hölder type:
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(ii) there exists a 𝛿 > 0 such that

𝐾 (𝑥, 𝑦) − 𝐾(𝑥, 𝑦) ≤ 𝐴 𝑥 − 𝑥𝛿(𝑥 − 𝑦 + 𝑥 − 𝑦)𝑛+𝛿 (6)

whenever |𝑥 − 𝑥| < (1/2)max{|𝑥 − 𝑦|, |𝑥 − 𝑦|} and
𝐾 (𝑥, 𝑦) − 𝐾(𝑥, 𝑦) ≤ 𝐴 𝑦 − 𝑦𝛿(𝑥 − 𝑦 + 𝑥 − 𝑦)𝑛+𝛿 (7)

whenever |𝑦 − 𝑦| < (1/2)max{|𝑥 − 𝑦|, |𝑥 − 𝑦|}.
In a recent paper, we were able to prove the following

uniform 𝐿𝑝 boundedness of 𝑇𝐵,𝐾 for 1 < 𝑝 < ∞:

Theorem 1 (see [7]). Let 𝐴, 𝛿 > 0 and 𝑇𝐵,𝐾 be given as in (1).
Suppose that 𝐾(𝑥, 𝑦) satisfies (i), (ii), and (iii). Then, for 1 <𝑝 < ∞, there exists a positive𝐶𝑝 whichmay depend on 𝑝, 𝑛, 𝛿,
and 𝐴 but is independent of the bilinear form 𝐵(⋅, ⋅), such that𝑇𝐵,𝐾𝑓𝐿𝑝(R𝑛) ≤ 𝐶𝑝

𝑓𝐿𝑝(R𝑛) (8)

for all 𝑓 ∈ 𝐿𝑝(R𝑛).
In this paper we shall investigate the endpoint case 𝑝 = 1

and obtain both the weak type (1,1) and Hardy space bounds.
We begin with the weak (1,1) result.

Theorem 2. Let 𝐴, 𝛿 > 0 and 𝑇𝐵,𝐾 be given as in (1). Suppose
that 𝐾(𝑥, 𝑦) satisfies (i), (ii), and (iii). Then, 𝑇𝐵,𝐾 is of weak
type (1,1), i.e., there exists a positive 𝐶 such that{𝑥 ∈ R

𝑛 : 𝑇𝐵,𝐾𝑓 (𝑥) > 𝛼} ≤ 𝐶𝛼−1 𝑓𝐿1(R𝑛) (9)

for all 𝑓 ∈ 𝐿1(R𝑛) and 𝛼 > 0. Moreover, while the constant𝐶 may depend on 𝑛, 𝛿, and 𝐴, it is otherwise independent of𝐵(⋅, ⋅) and𝐾(⋅, ⋅).
In the statement above, we used |𝑆| to denote the Lebesgue

measure of a measurable set 𝑆.
In order to describe our result on Hardy spaces, let𝐻1

𝐸(R𝑛) be the Hardy space introduced by Phong and Stein in
[1] as a variant of the standard Hardy space 𝐻1(R𝑛) suitable
for the study of oscillatory singular integrals. It was proved
there that under conditions (i), (ii), and (iii)𝑇𝐵,𝐾 is a bounded
operator from 𝐻1

𝐸(R𝑛) to 𝐿1(R𝑛). As an improvement over
their result, we have the following.

Theorem 3. Under conditions (i), (ii), and (iii), 𝑇𝐵,𝐾 is a
bounded operator from 𝐻1

𝐸(R𝑛) to 𝐿1(R𝑛). Moreover, the
bound for the operator norm may depend on 𝑛, 𝛿, and𝐴 but is
otherwise independent of 𝐵(⋅, ⋅) and𝐾(⋅, ⋅).

It is already well-known that analogous results do not
hold for𝐻𝑝 when 𝑝 < 1.

The proof of the weak type (1,1) estimate will appear in
Sections 2 and 3. It follows a 𝐿1 → 𝐿2 strategy pioneered by
C. Fefferman in [8] (see also [3, 4, 9, 10]). The proof of the
Hardy space estimate will be given in Section 4.

We now close this section by posing the following natural
question which should be of interest to many working in this

field: are the 𝐿𝑝 and endpoint results for oscillatory singular
integrals in Theorems 1–3 still true when the bilinear phase
functions are replaced by general polynomials in 𝑥, 𝑦 with
real coefficients?

2. Basic Reductions for the 𝐿1
→ 𝐿1,∞ Bounds

We shall begin the proof ofTheorem 2 with a few reductions.
Since the one-dimensional case is relatively easier, we shall
focus our attention on 𝑛 ≥ 2. For 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 =(𝑦1, . . . , 𝑦𝑛) ∈ R𝑛, 𝐵(𝑥, 𝑦) can be expressed as

𝐵 (𝑥, 𝑦) = 𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝑏𝑗𝑘𝑥𝑗𝑦𝑘. (10)

If 𝑏𝑗𝑘 = 0 for all 𝑗, 𝑘 ∈ {1, . . . , 𝑛}, then 𝑇𝐵,𝐾 = 𝑇𝑜. It is
well-known that, under the conditions (2), (4), and (6)-(7),𝑇𝑜 is bounded from from 𝐿1(R𝑛) to 𝐿1,∞(R𝑛) as well as from𝐿𝑝(R𝑛) to 𝐿𝑝(R𝑛) for 1 < 𝑝 < ∞. Thus, from this point on,
we may assume that 𝑏𝑗𝑘 ̸= 0 holds for at least one pair (𝑗, 𝑘).
Let

𝑏 = max {𝑏𝑗𝑘 : 1 ≤ 𝑗, 𝑘 ≤ 𝑛} . (11)

If we let 𝜌 denote the dilation operator

𝑔 (⋅) → 𝑔( ⋅√𝑏) , (12)

then
𝜌 ∘ 𝑇𝐵,𝐾 = 𝑇𝜌𝐵,𝑏−𝑛/2𝜌𝐾 ∘ 𝜌. (13)

Since 𝑏−𝑛/2𝜌𝐾 satisfies (i), (ii), and (iii) with the same
constants 𝐴 and 𝛿 as 𝐾, it suffices to establish (9) under the
additional assumption that, for some 𝑘0 ∈ {1, . . . , 𝑛}, |𝑏1𝑘0 | =𝑏 = 1 (after reindexing the variables if necessary). Clearly, we
may also assume that 𝛿 ≤ 1.

For any cube𝑄 inR𝑛, let 𝑙(𝑄) and𝑥𝑄 denote its sidelength
and center, respectively. For any 𝛽 > 0, we let 𝛽𝑄 denote the
cube that has the same center as𝑄 and sidelength 𝛽𝑙(𝑄). Also,
let 𝑗𝑄 = log2(𝑙(𝑄)).

Let 𝑓 ∈ 𝐿1(R𝑛) and 𝛼 > 0. Then there is a collection of
dyadic cubesFwith disjoint interiors such that the following
are satisfied:𝑓𝐿∞(Ω𝑐) ≤ 𝛼 where Ω = ⋃

𝑄∈F

𝑄; (14)

1|𝑄| ∫𝑄 𝑓 ≤ 𝐶𝛼 ∀𝑄 ∈ F; (15)

∑
𝑄∈F

|𝑄| ≤ 𝐶𝛼−1 𝑓𝐿1(R𝑛) ; (16)

𝑗𝑄 − 𝑗𝑄  ≤ 𝐶
whenever 𝑄,𝑄 ∈ F and dist (𝑄,𝑄) ≤ 2𝑙 (𝑄) . (17)

For 𝑠 ∈ N ∪ {0}, let𝐾𝑠(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)𝜒[2𝑠 ,∞)(|𝑥 − 𝑦|). Let�̃�(𝑥, 𝑦) = 𝐾(𝑥, 𝑦) − 𝐾0(𝑥, 𝑦),
G = {𝑄 ∈ F : 𝑙 (𝑄) ≥ 2} (18)

and
H = F \G = {𝑄 ∈ F : 𝑙 (𝑄) ≤ 1} . (19)
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Then,

{𝑥 ∈ R
𝑛 : 𝑇𝐵,𝐾𝑓 (𝑥) > 𝛼} ⊆ 5⋃

𝑗=1

𝑈𝑗 (20)

where

𝑈1 = {𝑥 ∈ R
𝑛 : 𝑇𝐵,𝐾0

(𝑓𝜒Ω𝑐) (𝑥) > 𝛼4 } ,
𝑈2 = ⋃

𝑄∈F

4𝑄, (21)

𝑈3 = {𝑥 ∈ ( ⋃
𝑄∈F

4𝑄)𝑐 :  ∑𝑄∈G𝑇𝐵,𝐾0
(𝑓𝜒𝑄) (𝑥)

 >
𝛼4} , (22)

𝑈4

= {𝑥 ∈ ( ⋃
𝑄∈F

4𝑄)𝑐 :  ∑𝑄∈H𝑇𝐵,𝐾0
(𝑓𝜒𝑄) (𝑥)

 >
𝛼4} , (23)

and

𝑈5 = {𝑥 ∈ R
𝑛 : 𝑇𝐵,�̃�𝑓 (𝑥) > 𝛼4 } . (24)

It follows from Theorem 1 and a standard argument that
(8) remains valid when 𝐾 is replaced by 𝐾0 or �̃�. Thus, by
(14)-(15),

𝑈1
 ≤ (𝛼4)

−2 𝑇𝐵,𝐾0
(𝑓𝜒Ω𝑐)𝐿2(R𝑛) ≤ 𝐶𝛼−2 ∫

Ω𝑐

𝑓2
≤ 𝐶𝛼−1 𝑓𝐿1(R𝑛) ,

(25)

and

𝑈2
 = 4𝑛 ( ∑

𝑄∈F

|𝑄|) ≤ 𝐶𝛼−1 𝑓𝐿1(R𝑛) . (26)

The set 𝑈5 can be treated by a finite overlapping argument.
Let 𝑄0 = (−1/2, 1/2]𝑛. For each ℎ ∈ Z𝑛, let ℎ + 𝑄0 = {ℎ + 𝑦 :𝑦 ∈ 𝑄0} and

𝑓ℎ (𝑦) = 𝑒𝑖𝐵(𝑦,𝑦−ℎ)𝜒ℎ+𝑄0 (𝑦) 𝑓 (𝑦) . (27)

Clearly,

supp (𝑇𝐵,�̃� (𝜒ℎ+𝑄0𝑓)) ⊆ ℎ + 3𝑄0. (28)

By (2) and 𝑏 = 1, for 𝑥 ∈ ℎ + 3𝑄0,𝑇𝐵,�̃� (𝜒ℎ+𝑄0𝑓) (𝑥) − 𝑒𝑖𝐵(𝑥,ℎ)𝑇0 (𝑓ℎ) (𝑥)
≤ 𝐶(∫

|𝑥−𝑦|≤1

𝜒ℎ+𝑄0 (𝑦) 𝑓 (𝑦)𝑥 − 𝑦𝑛−1 𝑑𝑦

+ ∫
1≤|𝑥−𝑦|≤2√𝑛

𝜒ℎ+𝑄0 (𝑦) 𝑓 (𝑦)𝑥 − 𝑦𝑛 𝑑𝑦)
≤ 𝐶 (𝑔0 ∗ 𝜒ℎ+𝑄0𝑓) (𝑥) ,

(29)

where 𝑔0(𝑥) = |𝑥|−𝑛+1𝜒[0,2√𝑛](|𝑥|).Thus,
𝑈5


≤ ∑

ℎ∈Z𝑛

{𝑥 ∈ R
𝑛 : 𝑇𝐵,�̃� (𝜒ℎ+𝑄0𝑓) (𝑥) > (4 ⋅ 10𝑛)−1 𝛼}

≤ ∑
ℎ∈Z𝑛

({𝑥 ∈ R
𝑛 : 𝑇0 (𝑓ℎ) (𝑥) > (8 ⋅ 10𝑛)−1 𝛼}

+ {𝑥 ∈ R
𝑛 : (𝑔0 ∗ 𝜒ℎ+𝑄0𝑓) (𝑥) > (8𝐶 ⋅ 10𝑛)−1 𝛼})

≤ 𝐶 ∑
ℎ∈Z𝑛

(𝛼−1 𝑓ℎ𝐿1(R𝑛)
+ 𝛼−1 𝑔0𝐿1(R𝑛) 𝜒ℎ+𝑄0𝑓𝐿1(R𝑛))

≤ 𝐶𝛼−1 𝑓𝐿1(R𝑛) .

(30)

The proof of Theorem 2 has thus been reduced to the
verification of the following:𝑈𝑗

 ≤ 𝐶𝛼−1 𝑓𝐿1(R𝑛) for 𝑗 = 3, 4. (31)

3. Estimates for |𝑈3| and |𝑈4|
For two nonnegative integers 𝑠 and𝑚, let

𝐿 𝑠𝑚 (𝑥, 𝑦) = ∫
R𝑛

𝑒𝑖𝐵(𝑧,𝑥−𝑦)𝐾𝑠 (𝑧 − 𝑥)𝐾𝑚 (𝑧 − 𝑦)𝑑𝑧. (32)

For 𝑎 ∈ R𝑛 and 𝑟 > 0, let Γ(𝑎, 𝑟) = {𝑥 ∈ R𝑛 : |𝑥 − 𝑎| ≥ 𝑟}.
Let

𝑃 (𝑥) = 𝑛∑
𝑘=1

𝑏1𝑘𝑥𝑘. (33)

Observe that

(12)
𝑛∑

𝑘=1

𝑥𝑘
 ≤ |𝑃 (𝑥)| + ∑

𝑘 ̸=𝑘0

𝑥𝑘
 ≤ 2 𝑛∑

𝑘=1

𝑥𝑘
 . (34)

Lemma 4. Let 𝑠, 𝑚 ∈ N∪ {0} such that 𝑠 ≥ 𝑚. Suppose that 𝐾
satisfies (2) and (6)-(7).

(i) For any 𝑥, 𝑦 ∈ R𝑛,𝐿 𝑠𝑚 (𝑥, 𝑦) ≤ 𝐶2−𝑠𝑛 (1 + 𝑠 − 𝑚) (35)

(ii) For any 𝑥, 𝑦 ∈ R𝑛,𝐿 𝑠𝑚 (𝑥, 𝑦) ≤ 𝐶 𝑥 − 𝑦−𝑛 ln (2 + 2−𝑚 𝑥 − 𝑦) (36)

(iii) For any 𝑥, 𝑦 ∈ R𝑛 satisfying |𝑥 − 𝑦| > 2𝑠+1 and |𝑃(𝑥 −𝑦)| > 4𝜋,
𝐿 𝑠𝑚 (𝑥, 𝑦) ≤ 𝐶 𝑃 (𝑥 − 𝑦)−𝛿 𝑥 − 𝑦−𝑛 . (37)

Proof. We shall omit the arguments for (i) and (ii) because
they utilize (2) only and therefore can be found in [3] (see
page 152).

Suppose that 𝑥, 𝑦 ∈ R𝑛, |𝑥−𝑦| > 2𝑠+1 and |𝑃(𝑥−𝑦)| > 4𝜋.
For any 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) = (𝑧1, �̃�), let 𝑧± = (𝑧1±𝜃, �̃�)where𝜃 = 𝜋/𝑃(𝑥 − 𝑦). Thus,
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𝐿 𝑠,𝑚 (𝑥, 𝑦) ≤ ∫
R𝑛−1

∫R 𝑒𝑖𝑧1𝑃(𝑥−𝑦)𝐾𝑠 (𝑧, 𝑥) 𝐾𝑚 (𝑧, 𝑦)𝑑𝑧1 𝑑�̃�
= 12 ∫

R𝑛−1

∫R 𝑒𝑖𝑧1𝑃(𝑥−𝑦) (𝐾𝑠 (𝑧, 𝑥) 𝐾𝑚 (𝑧, 𝑦) − 𝐾𝑠 (𝑧+, 𝑥)𝐾𝑚 (𝑧+, 𝑦)) 𝑑𝑧1 𝑑�̃�
≤ 𝑀1 (𝑥, 𝑦) + 𝑀2 (𝑥, 𝑦) +𝑀3 (𝑥, 𝑦) +𝑀4 (𝑥, 𝑦)

(38)

where

𝑀1 (𝑥, 𝑦) = ∫
Γ(𝑥,2𝑠)∩Γ(𝑦,2𝑚)

𝐾 (𝑧, 𝑥) − 𝐾 (𝑧+, 𝑥)
⋅ 𝐾 (𝑧, 𝑦) 𝑑𝑧,

𝑀2 (𝑥, 𝑦) = ∫
(Γ(𝑥,2𝑠)ΔΓ(𝑥−,2𝑠))∩Γ(𝑦,2𝑚)

𝐾 (𝑧+, 𝑥)
⋅ 𝐾 (𝑧, 𝑦) 𝑑𝑧,

𝑀3 (𝑥, 𝑦) = ∫
Γ(𝑥−,2𝑠)∩Γ(𝑦,2𝑚)

𝐾 (𝑧, 𝑦) − 𝐾 (𝑧+, 𝑦)
⋅ 𝐾 (𝑧+, 𝑥) 𝑑𝑧,

𝑀4 (𝑥, 𝑦) = ∫
(Γ(𝑦,2𝑚)ΔΓ(𝑦−,2𝑚))∩Γ(𝑥−,2𝑠)

𝐾 (𝑧+, 𝑦)
⋅ 𝐾 (𝑧+, 𝑥) 𝑑𝑧.

(39)

When 𝑧 ∈ Γ(𝑥, 2𝑠), we have
|𝑧 − 𝑥| ≥ 2𝑠 ≥ 2 |𝜃| = 2 𝑧 − 𝑧+ . (40)

It follows from (2) and (6) that

𝑀1 (𝑥, 𝑦) ≤ 𝐶 |𝜃|𝛿 ∫
Γ(𝑥,2𝑠)∩Γ(𝑦,2𝑚)

𝑑𝑧|𝑧 − 𝑥|𝑛+𝛿 𝑧 − 𝑦𝑛
≤ 𝐶 |𝜃|𝛿 ∫

R𝑛

𝑑𝑧(1 + |𝑧 − 𝑥|)𝑛+𝛿 (1 + 𝑧 − 𝑦)𝑛
≤ 𝐶 |𝜃|𝛿 (∫

|𝑧−𝑦|≥|𝑥−𝑦|/2

𝑑𝑧(1 + |𝑧 − 𝑥|)𝑛+𝛿 𝑧 − 𝑦𝑛
+ ∫

|𝑧−𝑥|≥|𝑥−𝑦|/2≥|𝑧−𝑦|

𝑑𝑧|𝑧 − 𝑥|𝑛 (1 + |𝑧 − 𝑥|)𝛿 (1 + 𝑧 − 𝑦)𝑛)
≤ 𝐶 |𝜃|𝛿 𝑥 − 𝑦−𝑛 ∫

R𝑛

𝑑𝑧(1 + |𝑧|)𝑛+𝛿 = 𝐶 𝑃 (𝑥 − 𝑦)−𝛿 𝑥
− 𝑦−𝑛 .

(41)

When 𝑧 ∈ Γ(𝑥−, 2𝑠),
|𝑧 − 𝑥| ≤ 𝑧 − 𝑥− + |𝜃| ≤ 2 𝑧 − 𝑥− = 2 𝑧+ − 𝑥 . (42)

Thus,

𝑀3 (𝑥, 𝑦) ≤ 𝐶 |𝜃|𝛿 ∫
R𝑛

𝑑𝑧
(1 + 𝑧 − 𝑦)𝑛+𝛿 (1 + |𝑧 − 𝑥|)𝑛 . (43)

It follows from the the arguments for𝑀1(𝑥, 𝑦) that
𝑀3 (𝑥, 𝑦) ≤ 𝐶 𝑃 (𝑥 − 𝑦)−𝛿 𝑥 − 𝑦−𝑛 . (44)

When 𝑧 ∈ Γ(𝑥, 2𝑠)ΔΓ(𝑥−, 2𝑠), we have
(34) |𝑧 − 𝑥| ≤ 𝑧+ − 𝑥 ≤ (43) |𝑧 − 𝑥| (45)

and

(34) 2𝑠 ≤ |𝑧 − 𝑥| ,
𝑧+ − 𝑥 ≤ (43) 2𝑠. (46)

Thus,

|𝑧 − 𝑥| ≤ (43) 2𝑠 ≤ (23) 𝑥 − 𝑦 (47)

and

𝑧 − 𝑦 ≥ 𝑥 − 𝑦 − |𝑧 − 𝑥| ≥ (13) 𝑥 − 𝑦 . (48)

Therefore,

𝑀2 (𝑥, 𝑦) ≤ 𝐶∫
Γ(𝑥,2𝑠)ΔΓ(𝑥−,2𝑠)

𝑧+ − 𝑥−𝑛 𝑧 − 𝑦−𝑛 𝑑𝑧
≤ 𝐶2−𝑛𝑠 𝑥 − 𝑦−𝑛 Γ (𝑥, 2𝑠) ΔΓ (𝑥−, 2𝑠)
≤ 𝐶2−𝑛𝑠 𝑥 − 𝑦−𝑛 2𝑠(𝑛−1) |𝜃|
≤ 𝐶 𝑃 (𝑥 − 𝑦)−1 𝑥 − 𝑦−𝑛 .

(49)

Similarly,

𝑀4 (𝑥, 𝑦) ≤ 𝐶2−𝑛𝑚 𝑥 − 𝑦−𝑛 2𝑚(𝑛−1) |𝜃|
≤ 𝐶 𝑃 (𝑥 − 𝑦)−1 𝑥 − 𝑦−𝑛 . (50)

The proof of Lemma 4 is now complete.

Let 𝑑(𝑆1, 𝑆2) denote the distance between two sets 𝑆1 and𝑆2. For 𝑄 ∈ G, let

G (𝑄) = {𝑄 ∈ G : 𝑙 (𝑄) ≤ 𝑙 (𝑄)} . (51)

Lemma 5. If 𝑄 ∈ G and 𝑥 ∈ 𝑄, then
∑

𝑄∈G(𝑄)

∫
𝑄

𝐿𝑗𝑄,𝑗𝑄
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦 ≤ 𝐶𝛼. (52)
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Proof. Let 𝑄 ∈ G and

G1 (𝑄) = {𝑄 ∈ G (𝑄) : 𝑑 (𝑄, 𝑄) ≤ 2𝑙 (𝑄)} . (53)

For each 𝑥 ∈ 𝑄, let
G2 (𝑄, 𝑥) = {𝑄 ∈ G \G1 (𝑄) : inf

𝑦∈𝑄

𝑃 (𝑥 − 𝑦)
≤ (8𝑛) 𝑙 (𝑄)} ;

(54)

G3 (𝑄, 𝑥) = {𝑄 ∈ G \G1 (𝑄) : inf
𝑦∈𝑄

𝑃 (𝑥 − 𝑦)
> (8𝑛) 𝑙 (𝑄)} .

(55)

It follows from (15), (17), and Lemma 4(i) that the cardinality
ofG1(𝑄) is bounded by a constant and

∑
𝑄∈G1(𝑄)

∫
𝑄

𝐿𝑗𝑄,𝑗𝑄
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦 (56)

≤ 𝐶 ∑
𝑄∈G1(𝑄)

(1 + 𝑙 (𝑄) − 𝑙 (𝑄)) |𝑄|−1 ∫
𝑄

𝑓 (𝑦) 𝑑𝑦
≤ 𝐶𝛼.

(57)

When 𝑄 ∈ G \G1(𝑄),
sup
𝑦∈𝑄

( ln (2 + 2−𝑗𝑄 𝑥 − 𝑦)𝑥 − 𝑦𝑛 )

≤ 𝐶 inf
𝑦∈𝑄

( ln (2 + 2−𝑗𝑄 𝑥 − 𝑦)𝑥 − 𝑦𝑛 ) .
(58)

Also, for any 𝑄 ∈ G2(𝑄, 𝑥) and 𝑦 ∈ 𝑄,

𝑃 (𝑥 − 𝑦) ≤ inf
V∈𝑄

|𝑃 (𝑥 − V)| + 𝑛𝑙 (𝑄) ≤ 9𝑛𝑙 (𝑄) . (59)

Thus, by Lemma 4(ii), (15), and (58),

∑
𝑄∈G2(𝑄,𝑥)

∫
𝑄

𝐿𝑗𝑄,𝑗𝑄
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦

≤ 𝐶𝛼 ∑
𝑄∈G2(𝑄,𝑥)

∫
𝑄

𝑥 − 𝑦−𝑛 ln (2 + 2−𝑗𝑄 𝑥 − 𝑦) 𝑑𝑦

≤ 𝐶𝛼 𝑗𝑄∑
𝑚=1

∫
{𝑦∈R𝑛 :|𝑃(𝑥−𝑦)|≤(9𝑛)2𝑚}

(𝑙 (𝑄) + 𝑥 − 𝑦)−𝑛
⋅ ln (2 + 2−𝑚 𝑥 − 𝑦) 𝑑𝑦

= 𝐶𝛼 𝑗𝑄∑
𝑚=1

∫
{𝑢∈R𝑛 :|𝑃(𝑢)|≤9𝑛}

(2𝑗𝑄−𝑚 + |𝑢|)−𝑛 ln (2 + |𝑢|) 𝑑𝑢

≤ 𝐶𝛼 𝑗𝑄∑
𝑚=1

∫
R𝑛−1

∫
|V1|≤9𝑛

(2𝑗𝑄−𝑚 + |Ṽ| + V1)−𝑛
⋅ ln (2 + |Ṽ| + V1) 𝑑V1𝑑Ṽ

≤ 𝐶𝛼 𝑗𝑄∑
𝑚=1

(1 + 𝑗𝑄 − 𝑚) 2−(𝑗𝑄−𝑚) ≤ 𝐶𝛼.
(60)

For any 𝑄 ∈ G3(𝑄, 𝑥),
sup
𝑦∈𝑄

𝑃 (𝑥 − 𝑦) ≤ inf
𝑦∈𝑄

𝑃 (𝑥 − 𝑦) + 𝑛𝑙 (𝑄)
≤ 2 inf

𝑦∈𝑄

𝑃 (𝑥 − 𝑦) . (61)

It follows from Lemma 4(iii), (15), (58), and (61) that

∑
𝑄∈G3(𝑄,𝑥)

∫
𝑄

𝐿𝑗𝑄,𝑗𝑄
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦

≤ 𝐶𝛼 ∑
𝑄∈G3(𝑄,𝑥)

∫
𝑄

𝑃 (𝑥 − 𝑦)−𝛿 𝑥 − 𝑦−𝑛 𝑑𝑦
≤ 𝐶𝛼∫

R𝑛
(1 + |𝑃 (𝑢)|)−𝛿 (1 + |𝑢|)−𝑛 𝑑𝑢

≤ 𝐶𝛼∫
R𝑛

(1 + V1)−𝛿 (1 + |V|)−𝑛 𝑑V ≤ 𝐶𝛼.

(62)

Lemma 5 is proved.

For 𝑄 ∈ H, letH(𝑄) = {𝑄 ∈ H : 𝑙(𝑄) ≤ 𝑙(𝑄)}.
Lemma 6. If 𝑄 ∈ H and 𝑥 ∈ 𝑄, then

∑
𝑄∈H(𝑄)

∫
𝑄

𝐿0,0 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦 ≤ 𝐶𝛼. (63)

Proof. The argument is very similar to the proof of the
previous lemma. We will point out the differences but omit
most of the details.

Let 𝑄 ∈ H and 𝑥 ∈ 𝑄. Let
H1 (𝑄) = {𝑄 ∈ H (𝑄) : 𝑑 (𝑄, 𝑄) ≤ 2} ,
H2 (𝑄, 𝑥)

= {𝑄 ∈ H \H1 (𝑄) : inf
𝑦∈𝑄

𝑃 (𝑥 − 𝑦) ≤ 4𝜋} ;
H3 (𝑄, 𝑥)

= {𝑄 ∈ H \H1 (𝑄) : inf
𝑦∈𝑄

𝑃 (𝑥 − 𝑦) > 4𝜋} .

(64)
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While there is no uniform bound on the cardinality ofH1(𝑄)
(unlike G1(𝑄)), by using |𝐿0,0(𝑥, 𝑦)| ≤ 𝐶, we still have

∑
𝑄∈H1(𝑄)

∫
𝑄

𝐿0,0 (𝑥, 𝑦)𝑓 (𝑦) 𝑑𝑦 ≤ 𝐶𝛼 ∑
𝑄∈H1(𝑄)

𝑄
≤ 𝐶𝛼.

(65)

By |𝐿0,0(𝑥, 𝑦)| ≤ 𝐶|𝑥 − 𝑦|−𝑛 ln(2 + |𝑥 − 𝑦|),
∑

𝑄∈H2(𝑄,𝑥)

∫
𝑄

𝐿0,0 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦
≤ 𝐶𝛼∫

{𝑢∈R𝑛 :|𝑃(𝑢)|≤4𝜋+𝑛}
(1 + |𝑢|)−𝑛 ln (2 + |𝑢|) 𝑑𝑢

≤ 𝐶𝛼.
(66)

Finally,H3(𝑄, 𝑥) can be treated the same as G3(𝑄, 𝑥), which
finishes the proof of Lemma 6.

We now employ a well-known 𝐿2 → 𝐿1 technique
to obtain the desired estimates for |𝑈3| and |𝑈4| (see, for
example, [3, 8–11]). By Lemma 5,

𝑈3
 ≤ 𝐶𝛼−2

 ∑𝑄∈G𝑇𝐵,𝐾0
(𝑓𝜒𝑄)


2

𝐿2((⋃𝑄∈F 4𝑄)𝑐)

≤ 𝐶𝛼−2 ∑
𝑄∈G

∫
𝑄
( ∑

𝑄∈G(Q)

𝐿𝑗𝑄,𝑗𝑄
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦)

⋅ 𝑓 (𝑥) 𝑑𝑥
≤ 𝐶𝛼−1 ∑

𝑄∈G

∫
𝑄

𝑓 (𝑥) 𝑑𝑥 ≤ 𝐶𝛼−1 𝑓𝐿1(R𝑛) .

(67)

By Lemma 6,

𝑈4
 ≤ 𝐶𝛼−2 ∑

𝑄∈H

∫
𝑄
( ∑

𝑄∈H(𝑄)

𝐿0,0 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦)
⋅ 𝑓 (𝑥) 𝑑𝑥

≤ 𝐶𝛼−1 ∑
𝑄∈H

∫
𝑄

𝑓 (𝑥) 𝑑𝑥 ≤ 𝐶𝛼−1 𝑓𝐿1(R𝑛) .
(68)

The proof of Theorem 2 is now complete.

4. 𝐻1
𝐸 → 𝐿1 Boundedness

We shall begin by recalling the definition of the function
space𝐻1

𝐸(R𝑛).
Definition 7. A measurable function 𝑎(⋅) on R𝑛 is called an
atom if there exists a cube 𝑄 such that supp(𝑎) ⊆ 𝑄, ‖𝑎‖∞ ≤|𝑄|−1 and

∫
𝑄
𝑒𝑖𝐵(𝑥𝑄,𝑦)𝑎 (𝑦) 𝑑𝑦 = 0. (69)

A function 𝑓 is in 𝐻1
𝐸(R𝑛) if there exist a sequence {𝜆𝑗} in C

and a sequence of atoms {𝑎𝑗} such that

𝑓 = ∑
𝑗

𝜆𝑗𝑎𝑗. (70)

The𝐻1
𝐸 norm of 𝑓 is the infimum of ∑𝑗 |𝜆𝑗| over all possible

expressions of 𝑓 described in (70).

In order to prove Theorem 3, it suffices to establish that,
for every atom 𝑎(⋅), 𝑇𝐵,𝐾𝑎𝐿1(R𝑛) ≤ 𝐶. (71)

By using a dilation (as in Section 2) as well as a translation, we
can further reduce the task to the verification of (71) under the
assumption that, for some 𝑗0 ∈ {1, . . . , 𝑛} and ℎ > 0,

max {𝑏𝑗𝑘 : 1 ≤ 𝑗, 𝑘 ≤ 𝑛} = 𝑏𝑗01 = 1,
supp (𝑎) ⊆ [−ℎ, ℎ]−𝑛 ,

‖𝑎‖∞ ≤ (2ℎ)−𝑛
and ∫

[−ℎ,ℎ]𝑛
𝑎 (𝑦) 𝑑𝑦 = 0.

(72)

Let 𝜂 = max{2𝑛ℎ, ℎ−1}. Then𝑇𝐵,𝐾𝑎𝐿1(R𝑛) ≤ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 (73)

where

𝐼1 = ∫
|𝑥|≤2𝑛ℎ

𝑇𝐵,𝐾𝑎 (𝑥) 𝑑𝑥,
𝐼2 = ∫

|𝑥|≥2𝑛ℎ

∫R𝑛 𝑒𝑖𝐵(𝑥,𝑦) (𝐾 (𝑥, 𝑦) − 𝐾 (𝑥, 0))
⋅ 𝑎 (𝑦) 𝑑𝑦 𝑑𝑥,

𝐼3 = ∫
2𝑛ℎ≤|𝑥|≤𝜂

𝐾 (𝑥, 0) ∫
R𝑛

𝑒𝑖𝐵(𝑥,𝑦)𝑎 (𝑦) 𝑑𝑦 𝑑𝑥,
𝐼4 = ∫

|𝑥|≥𝜂

𝐾 (𝑥, 0) ∫
R𝑛

𝑒𝑖𝐵(𝑥,𝑦)𝑎 (𝑦) 𝑑𝑦 𝑑𝑥.

(74)

ByTheorem 1,

𝐼1 ≤ 𝐶ℎ𝑛/2 𝑇𝐵,𝐾𝑎𝐿2(R𝑛) ≤ 𝐶ℎ𝑛/2 ‖𝑎‖𝐿2(R𝑛) ≤ 𝐶. (75)

By (7),

𝐼2 ≤ ∫
|𝑥|≥2𝑛ℎ

(∫
𝑦∈[−ℎ,ℎ]𝑛

𝑦𝛿 𝑎 (𝑦) 𝑑𝑦|𝑥|𝑛+𝛿 )𝑑𝑥
≤ 𝐶ℎ𝛿 ‖𝑎‖𝐿1(R𝑛) ∫

|𝑥|≥2𝑛ℎ
|𝑥|−𝑛−𝛿 𝑑𝑥 ≤ 𝐶.

(76)

By the vanishing integral property of 𝑎(⋅),
𝐼3 = ∫

2𝑛ℎ≤|𝑥|≤𝜂
|𝐾 (𝑥, 0)|

⋅ ∫𝑦∈[−ℎ,ℎ]𝑛 (𝑒𝑖𝐵(𝑥,𝑦) − 1) 𝑎 (𝑦) 𝑑𝑦 𝑑𝑥
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≤ 𝐶∫
2𝑛ℎ≤|𝑥|≤𝜂

|𝑥|−𝑛+1 (∫
𝑦∈[−ℎ,ℎ]𝑛

𝑦 𝑎 (𝑦) 𝑑𝑦)𝑑𝑥
≤ 𝐶 ‖𝑎‖𝐿1(R𝑛) ℎ (𝜂 − 2𝑛ℎ) ≤ 𝐶.

(77)

Let F1 denote the partial Fourier transform in the first
variable. Then,

𝐼4 ≤ 𝐶∫
R𝑛

(𝜂 + |𝑥|)−𝑛 ∫̃
𝑦∈R𝑛−1

F1 (𝑎 (⋅, 𝑦))

⋅ (− 𝑛∑
𝑗=1

𝑏𝑗1𝑥𝑗)
 𝑑𝑦𝑑𝑥

≤ 𝐶 ∫̃
𝑦∈R𝑛−1

∫
𝑢∈R𝑛

(𝜂 + |𝑢|)−𝑛
⋅ F1 (𝑎 (⋅, 𝑦)) (𝑢1) 𝑑𝑢𝑑𝑦

≤ 𝐶 ∫̃
𝑦∈R𝑛−1

∫̃
𝑢∈R𝑛−1

(∫
R

𝑑𝑢1(𝜂 + |𝑢|)2𝑛)
1/2

⋅ (∫
R

F1 (𝑎 (⋅, 𝑦)) (𝑢1)2 𝑑𝑢1)1/2 𝑑�̃�𝑑𝑦
≤ 𝐶(∫̃

𝑢∈R𝑛−1
(𝜂 + |�̃�|)−𝑛+1/2 𝑑�̃�)

⋅ ∫
𝑦∈R𝑛−1

(∫
R

𝑎 (𝑦)2 𝑑𝑦1)1/2 𝑑𝑦
≤ 𝐶 (𝜂ℎ)−1/2 ≤ 𝐶.

(78)

The proof of Theorem 3 is now complete.
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