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Abstract. 
A new identity involving Riemann-Liouville fractional integral is proposed. The result is then used to obtain some estimates of upper bound for a function associated with Riemann-Liouville fractional integral via -convex functions. An application for establishing the inequalities related to special means is also considered.

1. Introduction
A set  is said to be convex, if 
A function  is said to be convex, if 
In 1978, Breckner [1] introduced the concept of -convex functions as a generalization of convex functions, as follows.
Definition 1 (see [1]).  Let  be a real number, . A function  is said to be -convex, if
In recent years several new extensions of classical convexity have been proposed in the literature. Varošanec [2] investigated a more generalized class of convex functions named -convex function, as follows.
Definition 2 (see [2]).  Let  be a nonnegative function. A function  is said to be -convex, if
It has been observed that the class of -convex functions unifies several other classes of convexity; for example, if we take , , , and , respectively, then we have the class of -convex functions [1], the class of -functions [3], the class of -Godunova-Levin type functions [4], and the class of -functions [5]. For more details on convexity and its generalizations, see [6–9].
Convexity of a function plays a vital role in theory of inequalities, because many inequalities can easily be obtained using the functions having convexity properties. Hermite and Hadamard’s result which is known as Hermite-Hadamard’s inequality is one of the most fascinating results in the field of integral inequalities. This inequality provides a lower and an upper estimate for the integral average of any convex function defined on an interval. This famous result reads as follows.
Let  be a convex function, then 
Sarikaya et al. [10] gave a generalization of Hermite-Hadamard’s inequality using the -convexity of the function as follows.
Let  be -convex function, then, for , we have 
Although the fractional calculus has a long history, it plays significant role in different fields of pure and applied mathematics [11]. Up to now, the study of the fractional calculus is still very active. Sarikaya et al. [12] used the concepts of Riemann-Liouville integrals to obtain the fractional version of Hermite-Hadamard’s inequality. In fact, there are numerous new inequalities that have been obtained using the techniques of fractional calculus. For more details, see [12–15].
In this paper, we present a new integral identity for differentiable functions involving fractional integrals. Then using this auxiliary result we establish our main results that are the estimates of upper bound for a function associated with Riemann-Liouville fractional integral via -convex functions. At the end of the paper, we give an application of the obtained results to the special means.
We begin with recalling the definition of Riemann-Liouville fractional integrals, as follows.
Definition 3 (see [11]).  Let . The Riemann-Liouville integrals  and  of order  with  are defined by andwhere  is the Gamma function.
The integral form of the hypergeometric function is where  is the Beta function.
2. Main Results
In this section, we consider the estimates of upper bound for the function below, which is associated with Riemann-Liouville fractional integral. Consider the following:
In order to establish the estimates of upper bound for , we first prove an auxiliary result which plays an important role in dealing with subsequent results.
Lemma 4.  Let  be differentiable function on  with . If , , and , then 
Proof.  LetIntegrating  givesSimilarly integrating , one hasUsing (14) and (15) in (13) leads to the identity described in Lemma 4.
Based on Lemma 4, we are now in a position to establish our main results.
Theorem 5.  Let  be differentiable function on  with . If , , and  and  is -convex function, then where
Proof.  Using Lemma 4 and the fact that  is -convex function, we have This completes the proof of Theorem 5.
We now discuss some special cases which can be deduced directly from Theorem 5.
(I) Putting in Theorem 5, we have the following.
Corollary 6.  Let  be differentiable function on  with . If , , and  and  is convex function, then 
(II) Putting  in Theorem 5, we have the following.
Corollary 7.  Let  be differentiable function on  with . If , , and  and  is -convex function, then 
(III) Taking  in Theorem 5, we have the following.
Corollary 8.  Let  be differentiable function on  with . If , , and  and  is -function, then 
(IV) Taking  in Theorem 5, we have the following.
Corollary 9.  Let  be differentiable function on  with . If , , and  and  is -Godunova-Levin type function, then 
Theorem 10.  Let  be differentiable function on  with , , , and , and let  be -convex function, . Then 
Proof.  Using Lemma 4, the Hölder inequality and the fact that  is -convex function, we have The proof of Theorem 10 is complete.
We give now four corollaries that follow from the special cases of Theorem 10.
(I) Choosing  in Theorem 10, we have the following.
Corollary 11.  Let  be differentiable function on  with , , , and , and let  be convex function, . Then
(II) Choosing  in Theorem 10, we have the following.
Corollary 12.  Let  be differentiable function on  with , , , and , and let  be -convex function, . Then
(III) Putting  in Theorem 10, we have the following.
Corollary 13.  Let  be differentiable function on  with , , , and , and let  be -function, . Then
(IV) Putting  in Theorem 10, we have the following.
Corollary 14.  Let  be differentiable function on  with , , , and , and let  be -Godunova-Levin type function, . Then
3. Application to Special Means
In this section, we give an application of the obtained results to special means.
Definition 15 (see [16]).  Recall the following definitions.(1) For arbitrary positive numbers  (,  is called the logarithmic mean.(2) For arbitrary real numbers ,  is called the arithmetic mean.(3) The extended logarithmic mean of two positive numbers  is defined by
We focus on the estimation of upper bound for the difference between logarithmic mean and arithmetic mean; we shall establish two inequalities related to these means.
Proposition 16.  If , , then where
Proof.  We start by verifying that  is -convex on .
In view of which implies that  is convex on , thus for all , , and  we have Hence,  is -convex on 
Now, putting , , ,  in Corollary 7, we obtainandNote that the function  is -convex on . Hence, the inequality (32) follows straightway from the inequality given in Corollary 7.
Proposition 17.  If , , , , and , thenwhere
Proof.  Taking , ,  in Corollary 12, we obtainand It remains to prove that  is -convex on .
In fact, one has It follows that  is convex on ; thus for all , , and  we have which implies that  is -convex on .
Now, utilizing the fact that  is -convex on , we can deduce the desired inequality (38) from Corollary 12.
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