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This paper is concerned with the abstract evolution equation with delay. Firstly, we establish some sufficient conditions to ensure
the existence results for the S-asymptotically periodic solutions by means of the compact semigroup. Secondly, we consider the
global asymptotic behavior of the delayed evolution equation by using the Gronwall-Bellman integral inequality involving delay.
These results improve and generalize the recent conclusions on this topic. Finally, we give an example to exhibit the
practicability of our abstract results.

1. Introduction

Let X be a Banach space with norm ∥·∥ and r > 0 be a con-
stant. Let B≔ Cð½−r, 0�, XÞ be the Banach space of continu-
ous functions from ½−r, 0� into X provided with the uniform
norm ∥ϕ∥B = sup

s∈½−r,0�
∥ϕðsÞ∥. If u : ½0,∞Þ⟶ X is a continuous

bounded function, then ut ∈B for each t ≥ 0, where ut
defined by utðsÞ≔ uðt + sÞ for s ∈ ½−r, 0�.

In this article, we discuss the following delayed evolution
equation (DEE)

u′ tð Þ + Au tð Þ = F t, u tð Þ, utð Þ, t ≥ 0 ð1Þ

with initial value condition uðtÞ = φðtÞ for t ∈ ½−r, 0�, where
A : DðAÞ ⊂ X ⟶ X be a closed linear operator, and −A gen-
erate a C0-semigroup TðtÞðt ≥ 0Þ in X; F : ℝ+ × X ×B⟶
X is a given function which will be specified later, φ ∈B.

Delayed partial differential equations play a major role in
evolution equations. Due to its extensive background in
physics, chemistry, realistic mathematical model, and other
aspects, delayed partial differential equations have attracted
attentions of many scholars in recent years, see [1, 2] and

the references therein. On the other hand, periodic oscilla-
tions occur frequently in many fields, which are natural and
significant phenomena. However, the real concrete systems
are usually represented by internal variations and external
perturbations, which are approximately periodic. Therefore,
Henriquez and Pierri [3] first proposed the concept of S
-asymptotically ω-periodicity and found that S-asymptoti-
cally ω-periodicity is a generalization for the classical asymp-
totically. Compared to asymptotically periodic systems, from
an application perspective, S-asymptotically periodic systems
can reflect the actual world more really and more exactly.
Thus, it is necessary to study S-asymptotically ω-periodic
solutions for the delayed evolution equations.

Some scholars have discussed the existence results
about S-asymptotically ω-periodic solutions for differen-
tial equations (one can see [3–15]). In these works, under
the assumption that the nonlinear terms satisfy the
Lipschitz type conditions, the existence and uniqueness
results about S-asymptotically ω-periodic solutions are
explored by using the principle of contractive mapping.
However, based on the fact that the nonlinear functions
represent the source of population or material in many
complicated reaction-diffusion equations, the nonlinear
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functions depend on time in diversified ways. Therefore,
we expect to obtain more general growth conditions
instead of Lipschitz type conditions for most cases.

In addition, the global asymptotic behavior is one of the
major problem encountered in applications and has attracted
considerable attentions. Some scholars study the global
exponential stability of differential equations by constructing
Lyapunov functions or applying matrix theory (one can see
[16–21] and the references therein). However, it is hard to
establish Lyapunov functions or apply the matrix theory to
study the global exponential stability for delayed partial dif-
ferential equations. On the other hand, in view of the asymp-
totical periodic phenomena in many applied disciplines, it
has a profound application prospect to discuss the global
asymptotical periodicity of differential equations. In particu-
lar, in [22, 23], significant results have been obtained on the
global asymptotic periodicity of neural networks. However,
as far as we know, no similar results have been published
for abstract evolution equations.

Motivated by the above discussions, we consider S
-asymptotically ω-periodic solutions about the delayed evo-
lution equation. Our aims are to explore the existence result
for the S-asymptotically ω-periodic solutions and consider
the global asymptotic behavior for DEE (1). Firstly, the exis-
tence of S-asymptotically ω-periodic mild solutions of DEE
(1) under the nonlinear function F satisfying some growth
conditions is explored by applying the semigroup theory of
operators and fixed point theorem. Secondly, by using the
integral inequality of Gronwall-Bellman type involving delay,
we consider not only the global exponential stability but also
the global asymptotic periodicity for DEE (1), which fills the
gap in this field. Compared with constructing Lyapunov
functions or applying matrix theory, our avenue is simpler.
Finally, an example is proposed to verify the applicability of
abstract results. In the next section, some notions, defini-
tions, and preliminary facts that we need are provided.

2. Preliminaries

Throughout this article, let ðX, k·kÞ be a Banach space, and let
A : DðAÞ ⊂ X ⟶ X be a closed linear operator, and −A gen-
erate a C0-semigroup TðtÞðt ≥ 0Þ in X.

Generally, for a C0-semigroup TðtÞðt ≥ 0Þ, there exist
M ≥ 1 and ν ∈ℝ such that

∥T tð Þ∥≤Meνt , t ≥ 0: ð2Þ

The growth exponent of the C0-semigroup TðtÞðt ≥ 0Þ
can be defined by

ν0 = inf ν ∈ℝ ∣ there existsM ≥ 1 such that T tð Þk k ≤Meνt , ∀t ≥ 0
� �

:

ð3Þ

If the C0-semigroup TðtÞðt ≥ 0Þ is continuous in the
uniform operator topology for every t ≥ 0 in X, ν0 can also
be determined by σðAÞ (the spectrum of A),

ν0 = − inf Re λ ∣ λ ∈ σ Að Þf g: ð4Þ

As we all know, if TðtÞðt ≥ 0Þ is a compact semigroup,
then TðtÞðt ≥ 0Þ is continuous in the uniform operator
topology for t ≥ 0. Furthermore, if ν0 < 0, then the C0
-semigroup TðtÞðt ≥ 0Þ is said to be exponentially stable.
For more detailed theory of semigroups of the linear oper-
ator, one can find in [24, 25].

Now, let Cbðℝ+, XÞ denote the set of all bounded and
continuous functions from ℝ+ to X equipped with norm
kukC = sup

t∈ℝ+
kuðtÞk; then, Cbðℝ+, XÞ is a Banach space.

Let h : ℝ+ ⟶ℝ+ be a continuous and nondecreasing
function such that hðtÞ ≥ 1 for all t ∈ℝ+ and limt→∞hðtÞ =
∞. We consider the space

Ch Xð Þ = u ∈ C ℝ+, Xð Þ: lim
t→∞

∥u tð Þ∥
h tð Þ = 0

� �
ð5Þ

endowed with the norm kukh = sup
t≥0

ð∥uðtÞ∥/hðtÞÞ:

Lemma 1 ([26]). A set B ⊂ ChðXÞ is relatively compact in Ch
ðXÞ if and only if, (i) B is equicontinuous; (ii) limt→∞∥uðtÞ∥/
hðtÞ = 0, uniformly for u ∈ B; and (iii) the set BðtÞ = fuðtÞ: u
∈ Bg is relatively compact in X, for every t ≥ 0.

Define

BCh Xð Þ = u ∈ C −r,+∞½ Þ, Xð Þ: u tð Þf
= φ tð Þ, t ∈ −r, 0½ �, φ ∈B ; ujt≥0 ∈ Ch Xð Þg ð6Þ

endowed with the norm ∥u∥B,h = ∥φ∥B + ∥u∥h.
We write

BCb Xð Þ = u ∈ C −r,+∞½ Þ, Xð Þ: u tð Þf
= φ tð Þ, t ∈ −r, 0½ � ; φ ∈B ; ujt≥0 ∈ Cb Xð Þg ð7Þ

endowed with the norm ∥u∥∞ = ∥φ∥B + ∥u∥C . It is not diffi-
cult to verify that BCbðXÞ is a Banach space.

Next, we introduce a standard definition of the S
-asymptotically ω-periodic function.

Definition 2 ([3]). A function u ∈ Cbðℝ+, XÞ is said to be
the S-asymptotically ω-periodic function, if there exists
ω > 0 such that lim

t→∞
kuðt + ωÞ − uðtÞk = 0. In this case,

we say that ω is an asymptotic periodic of u. It is obvi-
ous that if ω is an asymptotic period for u, then every
kω is also an asymptotic period of u, k = 1, 2.

Let SAPωðXÞ represent the subspace of Cbðℝ+, XÞ
consisting of all the X value S-asymptotically ω-periodic
functions equipped with the uniform convergence norm.
Then, SAPωðXÞ is a Banach space (see [20, Proposition
3.5]). If u ∈ SAPωðXÞ, then it is easy to verify that the function
t⟶ ut belongs to SAPωðBÞ (see [27, 28]).
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In order to study the S-asymptotically ω-periodic mild
solution, for any given φ ∈B, we define

BSAPω Xð Þ = u ∈ C −r,+∞½ Þ, Xð Þ: u tð Þf
= φ tð Þ, t ∈ −r, 0½ � ; ujt≥0 ∈ SAPω Xð Þg ð8Þ

endowed with the norm kuk∞ = kφkB + kukC .
There are some basic definitions involved in this paper.

Definition 3. A function u ∈ Cð½−r,∞Þ, XÞ is said to be called
mild solution of DEE (1) if uðtÞ = φðtÞ for t ∈ ½−r, 0�,

u tð Þ = T tð Þφ 0ð Þ +
ðt
0
T t − sð ÞF s, u sð Þ, usð Þds, t ≥ 0: ð9Þ

Moreover, if u ∈BSAPωðXÞ, then u is called an S
-asymptotically ω-periodic mild solution of DEE (1.1).

Definition 4. Assume that u is a S-asymptotically ω-periodic
mild solution of DEE (1) with the initial conditions uðsÞ = φ
ðsÞ for s ∈ ½−r, 0�, if there exist positive constants N and α,
such that kuðtÞ − vðtÞk ≤Nkφ − ϕkB · e−αt for all t ≥ 0, then
the S-asymptotically ω-periodic mild solution u is said to be
globally exponentially stable, where vðtÞ is a mild solution
of DEE (1) corresponding to the initial conditions vðsÞ = ϕð
sÞ,s ∈ ½−r, 0�.

Definition 5. DEE (1) is said to be globally asymptotically ω
-periodic if there is an ω-periodic function u∗ðtÞ, such that
all solutions of DEE (1.1) convergent to u∗ðtÞ.

In some proofs, the following inequality is also needed.

Lemma 6 ([29]). Let ψ ∈ Cð½−r,∞Þ,ℝ+Þ. If there are con-
stants l1, l2 > 0 such that

ψ tð Þ ≤ ψ 0ð Þ +
ðt
0
l1ψ sð Þ + l2 sup

τ∈ −r,0½ �
ψ s + τð Þds, t ≥ 0: ð10Þ

Then, ψðtÞ ≤ ∥ψ∥B · eðl1+l2Þt for each t ≥ 0.

3. Main Results

Theorem 7. Let −A generate a compact and exponentially sta-
ble C0-semigroup TðtÞðt ≥ 0Þ in X, whose growth exponent
denotes ν0. Let F : ℝ+ × X ×B⟶ X be a continuous
mapping. If the following conditions (H1) for all x ∈ X
and ϕ ∈B, there is ω > 0, such that

lim
t→∞

F t + ω, x, ϕð Þ − F t, x, ϕð Þk k = 0 ; ð11Þ

(H2) for all t ∈ℝ+, x ∈ X, and ϕ ∈B, there are integra-
ble function pi : ℝ

+ ⟶ℝ+ði = 1, 2Þ and continuous nonde-
creasing function Φi : ℝ

+ ⟶ℝ+ði = 1, 2Þ and positive
constant K such that

∥F t, h tð Þx, h tð Þϕð Þ∥≤p1 tð ÞΦ1 ∥x∥ð Þ + p2 tð ÞΦ2 ∥ϕ∥Bð Þ +K ,

liminf
r→∞

Φi rð Þ
r

= σi <∞ i = 1, 2:

ð12Þ

(H3) Mðρ1σ1 + ρ2σ2Þ < 1, where ρi = sup
t≥0

Ð t
0e

ν0ðt−sÞpiðsÞds,
ði = 1, 2Þ hold, then DEE (1) has at least one S-asymptotically
ω-periodic mild solution u ∈BSAPωðXÞ.

Proof. Define an operator Γ on BChðXÞ by ΓuðtÞ = φðtÞ for
any t ∈ ½−r, 0�,

Γu tð Þ = T tð Þφ 0ð Þ +
ðt
0
T t − sð ÞF s, u sð Þ, usð Þds, t ≥ 0, ð13Þ

where φ ∈B. It is easy to test that Γ : BChðXÞ⟶BChðXÞ
is well defined. In fact, for any u ∈BChðXÞ, we have ∥uðtÞ∥
≤hðtÞ∥u∥B,h,

utk kB = sup
s∈ −r,0½ �

u t + sð Þk k ≤ sup
t∈ −r,0½ �

u tð Þk k + sup
t∈ 0,∞½ Þ

u tð Þk k

≤ φk kB + h tð Þ uk kh ≤ h tð Þ φk kB + h tð Þ uk kh
≤ h tð Þ uk kB,h:

ð14Þ

By the condition (H2), we obtain

Ð t
0T t − sð ÞF s, u sð Þ, usð Þds�� ��

h tð Þ
≤

1
h tð Þ

ðt
0
T t − sð Þk k · F s, u sð Þ, usð Þk kds

≤
1

h tð Þ
ðt
0
Meν0 t−sð Þ · p1 sð ÞΦ1

∥u sð Þ∥
h sð Þ

� ��

+ p2 sð ÞΦ2
∥us∥B
h sð Þ

� �
+K

�
ds

≤
1

h tð Þ
ðt
0
Meν0 t−sð Þ · p1 sð ÞΦ1 ∥u∥B,hð Þð

+ p2 sð ÞΦ2 ∥u∥B,hð Þ +KÞds

≤
M
h tð Þ

K

ν0j j +
ðt
0
eν0 t−sð Þ · p1 sð ÞΦ1 ∥u∥B,hð Þð

�

+ p2 sð ÞΦ2 ∥u∥B,hð ÞÞds
�

≤
M
h tð Þ

K

ν0j j +Φ1 uk kB,h
	 


ρ1 +Φ2 uk kB,h
	 


ρ2

�
,

�

ð15Þ

where ρi = sup
t≥0

Ð t
0e

ν0ðt−sÞpiðsÞds, ði = 1, 2Þ: Hence, Γ : BCh

ðXÞ⟶BChðXÞ is well defined. By (13) and Definition
3, we can assert u ∈BChðXÞ is the mild solution for
DEE (1) and is equal to u that is the fixed point for
operator Γ.
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To do this, we will carry the proof out in six steps.

Step 8. Γ is continuous on BChðXÞ. In BChðXÞ, there is a

sequence fuðnÞg such that uðnÞ ⟶ u as n⟶∞; then, uðnÞt
⟶ utð n⟶∞Þ for all t ∈ ½0,∞Þ. Combining this with the
definition of Γ, for any t ∈ ½−r, 0�, we know that

∥Γu nð Þ tð Þ − Γu tð Þ∥
h tð Þ =

∥φ tð Þ − φ tð Þ∥
h tð Þ = 0, ð16Þ

and we can conclude from the continuity of F that

F t, u nð Þ tð Þ, u nð Þ
t

� �
⟶ F t, u tð Þ, utð Þ as n⟶∞for any t ∈ 0, +∞½ Þ:

ð17Þ

Together with the Lebesgue dominated convergence the-
orem, we get

∥Γu nð Þ tð Þ − Γu tð Þ∥
h tð Þ =

1
h tð Þ

ðt
0
T t − sð Þ · F s, u nð Þ sð Þ, u nð Þ

s

� ������
− F s, u sð Þ, usð Þ

�
dsk

≤
1

h tð Þ
ðt
0
T t − sð Þk k · F s, u nð Þ sð Þ, u nð Þ

s

� ����
− F s, u sð Þ, usð Þkds⟶ 0 as n⟶∞:

ð18Þ

Hence, we say that operator Γ is continuous from BCh
ðXÞ to BChðXÞ.

For any R > 0, let

�ΩR ≔ u ∈BCh Xð Þ∣∥u∥B,h ≤ R
� �

: ð19Þ

Obviously, �ΩR is a closed ball in BChðXÞ.

Step 9. There is a constant R0 > 0 big enough such that
Γð�ΩR0

Þ ⊂ �ΩR0
.

If this is incorrect, there are u ∈ �ΩR and t ≥ 0 such that ∥
ΓuðtÞ∥>R for any R > 0. Thus, by (H2), one can see that

R <
Γu tð Þk k
h tð Þ ≤

1
h tð Þ T tð Þφ 0ð Þk k + 1

h tð Þ
ðt
0
T t − sð Þk k

· F s, u sð Þ, usð Þk kds

≤
Meν0t φk kB

h tð Þ +
M
h tð Þ

ðt
0
eν0 t−sð Þ · p1 sð ÞΦ1 Rð Þð

+ p2 sð ÞΦ2 Rð Þ +KÞds

≤
M
h tð Þ φk kB +

K

∣ν0 ∣

� �
+

M
h tð Þ

ðt
0
eν0 t−sð Þ · p1 sð ÞΦ1 Rð Þð

+ p2 sð ÞΦ2 Rð ÞÞds
≤

M
h tð Þ φk kB +

K

∣ν0 ∣

� �
+

M
h tð Þ ρ1Φ1 Rð Þ + ρ2Φ2 Rð Þð Þ

≤M ∥φ∥B +
K

∣ν0 ∣

� �
+M ρ1Φ1 Rð Þ + ρ2Φ2 Rð Þð Þ:

ð20Þ

Dividing both sides of (20) by R and taking the lower
limit as R⟶ +∞, and comparing this with the condition
(H3), it follows that

1 ≤M ρ1σ1 + ρ2σ2ð Þ < 1, ð21Þ

which is a contradiction. Hence, the conclusion is valid.

Step 10. The set

Λ tð Þ≔ Γu tð Þ ∣ u ∈ �ΩR0
, t ∈ −r, a½ �� � ð22Þ

is relatively compact on X for every a ∈ ð0,∞Þ. From
ΓuðtÞ = φðtÞ for every u ∈ �ΩR0

and t ∈ ½−r, 0�, we can con-
clude that ΛðtÞ is relatively compact on X for t ∈ ½−r, 0�. For
t ∈ ½0, a�, a set fΛεðtÞg is defined by

Λε tð Þ≔ Γεu tð Þ ∣ u ∈ �ΩR0
, ε ∈ 0, tð Þ, t ∈ 0, a½ �� �

, ð23Þ

with

Γεu tð Þ = T tð Þφ 0ð Þ +
ðt−ε
0
T t − sð ÞF s, u sð Þ, usð Þds

= T tð Þφ 0ð Þ + T εð Þ
ðt−ε
0
T t − ε − sð Þ · F s, u sð Þ, usð Þds:

ð24Þ

According to the compactness of the semigroup TðtÞðt
≥ 0Þ, fΛεðtÞg is relatively compact on X for ε ∈ ð0, tÞ. Thus,
for any u ∈ �ΩR0

, t ∈ ½0, a�, from the condition (H2), we obtain

Γu tð Þ − Γεu tð Þk k
=
ðt
t−ε
T t − sð Þ · F s, u sð Þ, usð Þds

����
����

≤
ðt
t−ε

T t − sð Þk k · F s, u sð Þ, usð Þk kds

≤
ðt
t−ε

T t − sð Þk k · p1 sð ÞΦ1
∥u sð Þ∥
h sð Þ

� ��

+ p2 sð ÞΦ2
∥us∥B
h sð Þ

� �
+KÞds

≤
ðt
t−ε

T t − sð Þk k · p1 sð ÞΦ1 ∥u∥B,hð Þð
+ p2 sð ÞΦ2 ∥u∥B,hð Þ +KÞds

≤
ðt
t−ε

T t − sð Þk k · p1 sð ÞΦ1 R0ð Þ + p2 sð ÞΦ2 R0ð Þ +Kð Þds

≤M
ðt
t−ε
eν0 t−sð Þ · p1 sð ÞΦ1 R0ð Þ + p2 sð ÞΦ2 R0ð Þ +Kð Þds

⟶ 0 as ε⟶ 0:
ð25Þ

Namely, there are relatively compact sets, which are arbi-
trarily close to the set ΛðtÞ. It means that for any t ∈ ½0, a�,
the set ΛðtÞ is relatively compact in X.
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Step 11. Γð�ΩR0
Þ is equicontinuous. For any u ∈ �ΩR0

, in view of
(13), we only need to verify it on ½0,∞Þ. In general, assume
that 0 ≤ t1 < t2, we know that

Γu t2ð Þ − Γu t1ð Þ = T t2ð Þφ 0ð Þ +
ðt2
0
T t2 − sð ÞF s, u sð Þ, usð Þds

− T t1ð Þφ 0ð Þ −
ðt1
0
T t1 − sð Þ · F s, u sð Þ, usð Þds

= T t2ð Þφ 0ð Þ − T t1ð Þφ 0ð Þ +
ðt1
0
T t2 − sð Þ − T t1 − sð Þð Þ

· F s, u sð Þ, usð Þds +
ðt2
t1

T t2 − sð Þ · F s, u sð Þ, usð Þds

≔ J1 + J2 + J3:

ð26Þ

Obviously,

Γu t2ð Þ − Γu t1ð Þk k ≤ J1k k + J2k k + J3k k: ð27Þ

Moreover, since t⟶ ∥TðtÞ∥ is continuous for t > 0, then
we have

J1k k = T t2ð Þφ 0ð Þ − T t1ð Þφ 0ð Þk k
≤ T t2ð Þ − T t1ð Þk k φk kB ≤ T t2 − t1ð Þ − Ik k · T t1ð Þk k φk kB
⟶ 0 as t2 − t1 ⟶ 0,

ð28Þ

and taking ε > 0 small enough which is independent of t1 and
t2, by the condition (H2) and (19), we arrive at

J2k k =
ðt1
0
T t2 − sð Þ − T t1 − sð Þð Þ · F s, u sð Þ, usð Þds

����
����

≤
ðt1−ε
0

T t2 − sð Þ − T t1 − sð Þk k · F s, u sð Þ, usð Þk kds

+
ðt1
t1−ε

T t2 − sð Þ − T t1 − sð Þk k · F s, u sð Þ, usð Þk kds

≤ T t2 − t1 + εð Þ − T εð Þk k ·
ðt1−ε
0

T t1 − s − εð Þk k
· p1 sð ÞΦ1 R0ð Þ + p2 sð ÞΦ2 R0ð Þ +Kð Þds

+
ðt1
t1−ε

T t2 − sð Þk k + T t1 − sð Þk kð Þ · p1 sð ÞΦ1 R0ð Þð

+ p2 sð ÞΦ2 R0ð Þ +KÞds
≤ T t2 − t1 + εð Þ − T εð Þk kM Φ1 R0ð Þρ1 +Φ2 R0ð Þρ2 +

K

ν0j j
� �

+ 2M
ðt1
t1−ε

p1 sð ÞΦ1 R0ð Þ + p2 sð ÞΦ2 R0ð Þ +Kð Þds

⟶ 0 as t2 − t1 ⟶ 0:
ð29Þ

Due to the exponentially stable semigroup TðtÞðt ≥ 0Þ that is
uniformly bounded, one can see that

J3k k =
ðt2
t1

T t2 − sð ÞF s, u sð Þ, usð Þds
�����

�����
≤
ðt2
t1

T t2 − sð Þk k · F s, u sð Þ, usð Þk kds

≤
ðt2
t1

T t2 − sð Þk k · p1 sð ÞΦ1 R0ð Þ + p2 sð ÞΦ2 R0ð Þ +Kð Þds

≤M ·
ðt2
t1

p1 sð ÞΦ1 R0ð Þ + p2 sð ÞΦ2 R0ð Þ +Kð Þds

⟶ 0 as t2 − t1 ⟶ 0:
ð30Þ

Therefore, from the above discussion, we have kΓuðt2Þ
− Γuðt1Þk tends to 0 independently of u ∈ �ΩR0

as t2 − t1
⟶ 0, and it implies that Γð�ΩR0

Þ is equicontinuous.

Step 12. lim
t→∞

ΓuðtÞ/hðtÞ = 0, uniformly for u ∈ �ΩR0
.

For any u ∈ �ΩR0
, one can find that

Γu tð Þk k
h tð Þ ≤

1
h tð Þ T tð Þφ 0ð Þk k + 1

h tð Þ
ðt
0
T t − sð Þk k

· F s, u sð Þ, usð Þk kds

≤
Meν0t φk kB

h tð Þ +
M
h tð Þ

ðt
0
eν0 t−sð Þ · p1 sð ÞΦ1 R0ð Þð

+ p2 sð ÞΦ2 R0ð Þ +KÞds

≤
M
h tð Þ φk kB +

K

∣ν0 ∣

� �
+

M
h tð Þ

ðt
0
eν0 t−sð Þ

· p1 sð ÞΦ1 R0ð Þ + p2 sð ÞΦ2 R0ð Þð Þds
≤

M
h tð Þ φk kB +

K

∣ν0 ∣

� �
+

M
h tð Þ ρ1Φ1 R0ð Þ + ρ2Φ2 R0ð Þð Þ

≤
M
h tð Þ φk kB +

K

∣ν0 ∣

� �
+

M
h tð Þ ρ1Φ1 R0ð Þ + ρ2Φ2 R0ð Þð Þ:

ð31Þ

It implies that ∥ΓuðtÞ∥/hðtÞ tends to zero, as t⟶∞,
uniformly for u ∈ �ΩR0

.

Above all, we can conclude that Γð�ΩR0
Þ is relatively com-

pact in BChðXÞ. Thus, Γ is completely continuous.

Step 13. One can prove that ΓðBSAPωðXÞÞ ⊆BSAPωðXÞ.
For any u ∈BSAPωðXÞ, by the definition of Γ, one can

find that for t ∈ ½−r, 0�, ΓuðtÞ ≡ φðtÞ, which implies that
ðΓuÞj½−r,0� ∈B. Thus, we only show that ΓuðtÞ ∈ SAPωðXÞ
for all t ≥ 0 and ujℝ+ ∈ SAPωðXÞ. It is noteworthy that ∥uðtÞ
∥≤∥u∥∞ and ∥ut∥ = sup

s∈½−r,0�
∥uðt + sÞ∥≤∥φ∥B+∥u∥C≤∥u∥∞. So, it
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is easy to find

Γuð Þ t + ωð Þ − Γuð Þ tð Þ
= T t + ωð Þφ 0ð Þ +

ðt+ω
0

T t + ω − sð ÞF s, u sð Þ, usð Þds

− T tð Þφ 0ð Þ −
ðt
0
T t − sð ÞF s, u sð Þ, usð Þds

= T t + ωð Þφ 0ð Þ − T tð Þφ 0ð Þ +
ðω
0
T t + ω − sð ÞF s, u sð Þ, usð Þds

+
ðt
0
T t − sð Þ · F s + ω, u s + ωð Þ, us+ωð Þ − F s, u sð Þ, usð Þð Þds

≔ I1 tð Þ + I2 tð Þ + I3 tð Þ:
ð32Þ

Next, we show that ∥IiðtÞ∥ tends 0 as t⟶∞ (i = 1, 2, 3).
In fact, by calculation, one can get that

I1 tð Þk k ≤ T t + ωð Þφ 0ð Þk k + T tð Þφ 0ð Þk k
≤ Meν0 t+ωð Þ +Meν0t
� �

· ∥φ∥B ≤ 2Meν0t∥φ∥B,
ð33Þ

and by the condition (H2), we can derive

I2 tð Þk k ≤
ðω
0
T t + ω − sð Þk k · F s, u sð Þ, usð Þk kds

≤M
ðω
0
eν0 t+ω−sð Þ · p1 sð ÞΦ1 uk k∞

	 
	
+ p2 sð ÞΦ2 uk k∞

	 

+KÞds

=MΦ1 uk k∞
	 


eν0t ·
ðω
0
eν0 ω−sð Þp1 sð Þds

+MΦ2 uk k∞
	 


eν0t ·
ðω
0
eν0 ω−sð Þp2 sð Þds + MKeν0t

∣ν0 ∣

≤Meν0t ρ1Φ1 uk k∞
	 


+ ρ2Φ2 uk k∞
	 


+
K

∣ν0 ∣

� �
:

ð34Þ

According to the fact that TðtÞðt ≥ 0Þ is exponentially sta-
ble, we can derive immediately that ∥I1ðtÞ∥, ∥I2ðtÞ∥ tend to 0
as t⟶∞.

In addition, it is easy to know that ujℝ+ ∈ SAPωðXÞ and
ut ∈ SAPωðBÞ for arbitrary t ≥ 0; in other words, for any pos-
itive ε, there is constant l1 > 0 such that kuðt + ωÞ − uðtÞk ≤ ε
and ∥ut+ω − ut∥B ≤ ε for every t ≥ l1. Thus, according to the
continuity of F, we can derive

F t, u t + ωð Þ, ut+ωð Þ − F t, u tð Þ, utð Þk k ≤ ν0j j
M

ε, for any t ≥ l1:

ð35Þ
Furthermore, by the condition (H1), it is not difficult to

find that there is a positive constant l2 large enough such that

F t + ω, u t + ωð Þ, ut+ωð Þ − F t, u t + ωð Þ, ut+ωð Þk k ≤ ν0j j
M

ε, for t ≥ l2:

ð36Þ

Then, for t > l≔max fl1, l2g, from (35), (36), and (H2),
one can easily deduce

I3 tð Þk k =
ðt
0
T t − sð Þ · F s + ω, u s + ωð Þ, us+ωð Þ − F s, u sð Þ, usð Þð Þds

����
����

≤
ð l
0
T t − sð Þk k · F s + ω, u s + ωð Þ, us+ωð Þ − F s, u sð Þ, usð Þk k

� ds +
ðt
l
T t − sð Þk k · F s + ω, u s + ωð Þ, us+ωð Þk

− F s, u s + ωð Þ, us+ωð Þkds +
ðt
l
T t − sð Þk k

· F s, u s + ωð Þ, us+ωð Þ − F s, u sð Þ, usð Þk kds

≤
ð l
0
T t − sð Þk k · F s + ω, u s + ωð Þ, us+ωð Þk kð

+ F s, u sð Þ, usð Þk kÞds +M
ðt
l
eν0 t−sð Þds ·

∣ν0 ∣ ε
M

+M
ðt
l
eν0 t−sð Þds ·

∣ν0 ∣ ε
M

≤MΦ1 uk k∞
	 


·
ðl
0
eν0 t−sð Þ p1 s + ωð Þ + p1 sð Þð Þds

+MΦ2 uk k∞
	 


·
ð l
0
eν0 t−sð Þ p2 s + ωð Þ + p2 sð Þð Þds

+ 2MK

ð l
0
eν0 t−sð Þds + 2

ðt
l
eν0 t−sð Þds · ∣ν0∣ε

≤MΦ1 uk k∞
	 


eν0 t−lð Þ ·
ðl+ω
0

eν0 l+ω−sð Þp1 sð Þds
�

+
ð l
0
eν0 l−sð Þp1 sð Þds

�
+MΦ2 uk k∞

	 

eν0 t−lð Þ

·
ð l+ω
0

eν0 l+ω−sð Þp2 sð Þds +
ð l
0
eν0 l−sð Þp2 sð Þds

� �

+
2MKeν0 t−lð Þ

∣ν0 ∣
+ 2 1 − eν0 t−lð Þ
� �

ε

≤ 2Meν0 t−lð Þ ρ1Φ1 uk k∞
	 


+ ρ2Φ2 uk k∞
	 


+
K

∣ν0 ∣

��

+ 2 1 − eν0 t−lð Þ
� �

ε:

ð37Þ
This means that kI3ðtÞk tends to 0 as t⟶∞.
We conclude from the above discussion that

lim
t→∞

Γu t + ωð Þ − Γu tð Þk k = 0, ð38Þ

namely, Γu ∈ SAPωðXÞ. Therefore, ΓðBSAPωðXÞÞ ⊂BSAPω
ðXÞ:

From the above results, one has that Γ :
��ΩR0

∩BSAPωðXÞ¯ ⟶ ��ΩR0
∩BSAPωðXÞ¯ is a completely

continuous operator. Meanwhile, by the Schauder fixed point
theorem, the operator Γ has at least one fixed point u in

��ΩR0
∩BSAPωðXÞ¯. Let fuðnÞg be a sequence in

��ΩR0
∩BSAPωðXÞ¯ that converges to u. One has that fΓuðnÞg

converges to Γu = u uniformly in ½0,∞Þ. It implies that u ∈
BSAPωðXÞ.This completes the proof.
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We further strengthen the condition (H2), namely, (H4)
for all t ∈ℝ+, x, y ∈ X, and ϕ, ψ ∈B, there are constants
C1, C2 > 0 such that

F t, x, ϕð Þ − F t, y, ψð Þk k ≤ C1 x − yk k + C2 ϕ − ψk kB ; ð39Þ

then, we can get the following results.

Theorem 14. Let −A generate a compact and exponentially
stable C0 − semigroup TðtÞðt ≥ 0Þ in X. Let F : ℝ+ × X ×B

⟶ X be a continuous mapping and sup
t∈ℝ+

kFðt, θ, θÞk <∞.

If the conditions (H1), (H4), and (H5) MðC1 + C2Þ < ∣ν0 ∣
hold, there is a unique S-asymptotically ω-periodic mild solu-
tion for DEE (1). Moreover, if the condition (H5) replaced by
ðH5′ÞMC1 +MC2e

−ν0r < ∣ν0 ∣ , then the unique S-asymptoti-
cally ω-periodic mild solution of DEE (1) is globally exponen-
tially stable.

Proof.We consider the operator Γ be defined onBCbðXÞ by
(13). For any u ∈BCbðXÞ, we have∥uðtÞ∥≤∥u∥∞,

utk k = sup
s∈ −r,0½ �

u t + sð Þk k ≤ sup
t∈ −r,0½ �

u tð Þk k + sup
t∈ 0,∞½ Þ

u tð Þk k

≤ φk kB + uk kC ≤ uk k∞:

ð40Þ

Hence, it is not difficult to find that

F t, u tð Þ, utð Þk k ≤ C1 + C2ð Þ uk k∞ + F t, θ, θð Þk k≔ C: ð41Þ

By the definition of Γ, we have ∥ΓuðtÞ∥≡∥φðtÞ∥≤∥φ∥B for
t ∈ ½−r, 0�. On the other hand, if t ≥ 0, then by the condition
(H4), we have

ðt
0
T t − sð ÞF s, u sð Þ, usð Þds

����
���� ≤ MC

∣ν0 ∣
: ð42Þ

It means that Γ : BCbðXÞ→BCbðXÞ is well defined.
Next, we need to verify that ΓðBSAPωðXÞÞ ⊂BSAPωðXÞ:

To do this, we just need to show that (32) tends 0 as t→∞.
Similar to the proof of Theorem 7, From (35), (36), (41), and
(H4), one has ∥I1ðtÞ∥≤2Meν0t∥φ∥B

I2 tð Þk k ≤
ðω
0
T t + ω − sð Þk k · F s, u sð Þ, usð Þk kds

≤
MCeν0t

∣ν0 ∣
I3 tð Þk k =

ðt
0
T t − sð Þ

����
· F s + ω, u s + ωð Þ, us+ωð Þ − F s, u sð Þ, usð Þð Þdsk

≤
ðl
0
T t − sð Þk k · F s + ω, u s + ωð Þ, us+ωð Þk

− F s, u sð Þ, usð Þkds +
ðt
l
T t − sð Þk k

· F s + ω, u s + ωð Þ, us+ωð Þ − F s, u s + ωð Þ, us+ωð Þk k
� ds +

ðt
l
T t − sð Þk k · F s, u s + ωð Þ, us+ωð Þk

− F s, u sð Þ, usð Þkds

≤ 2MC
ð l
0
eν0 t−sð Þds +M

ðt
l
eν0 t−sð Þds ·

∣ν0 ∣ ε
M

+M
ðt
l
eν0 t−sð Þds ·

∣ν0 ∣ ε
M

≤
2MCeν0 t−lð Þ

∣ν0 ∣
+ 2 1 − eν0 t−lð Þ
� �

ε:

ð43Þ

According to the fact that TðtÞðt ≥ 0Þ is exponentially sta-
ble, we infer that ∥IiðtÞ∥ tends to 0 as t⟶∞ði = 1, 2, 3Þ: This
means that ΓðBSAPωðXÞÞ ⊂BSAPωðXÞ:

Thus, for uð1Þ, uð2Þ ∈BSAPωðXÞ, under the condition
(H4), it is not difficult to derive that

Γu 1ð Þ tð Þ − Γu 2ð Þ tð Þ
��� ���

=
ðt
0
T t − sð Þ · F s, u 1ð Þ sð Þ, u 1ð Þ

s

� �
ds −

ðt
0
T t − sð Þ

����
· F s, u 2ð Þ sð Þ, u 2ð Þ

s

� �
ds
���

≤
ðt
0
T t − sð Þk k · F s, u 1ð Þ sð Þ, u 1ð Þ

s

� �
− F s, u 2ð Þ sð Þ, u 2ð Þ

s

� ���� ���ds
≤M

ðt
0
eν0 t−sð Þ C1 u 1ð Þ sð Þ − u 2ð Þ sð Þ

��� ��� + C2 u 1ð Þ
s − u 2ð Þ

s

��� ���
B

� �
ds

≤M C1 + C2ð Þ
ðt
0
eν0 t−sð Þds · u 1ð Þ − u 2ð Þ

��� ���
∞

≤
M C1 + C2ð Þ

ν0j j u 1ð Þ − u 2ð Þ
��� ���

∞
;

ð44Þ

by the condition (H5), we can conclude that Γ is a contrac-
tion mapping. Thus, there is a unique S-asymptotically ω
-periodic mild solution for DEE (1).

Now, we verify the globally exponentially stability of the
unique S-asymptotic ω-periodic mild solution. Let u = uðt,
φÞ ∈ Cð½−r,∞Þ, XÞ be the unique S-asymptotic ω-periodic
mild solution of DEE (1) with the initial value φ ∈B. From
([30], Theorem 3.2), it is easy to prove that for every ϕ ∈B,
the initial value problem corresponding to DEE (1) has a
unique global mild solution v = vðt, ϕÞ ∈ Cð½−r,∞Þ, XÞ. By
Definition 3, u and v satisfy the integral equation (2.4).

Since TðtÞðt ≥ 0Þ is an exponentially stable C0 − semi-
group, whose growth exponent is ν0 < 0. Hence, by the con-
dition ðH5′Þ, we can choose ν ∈ ðMC1 +MC2e

−ν0r ,∣ν0 ∣ Þ,
and it follows that ∥TðtÞ∥≤Me−νt for t ≥ 0. So, according to
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the condition (H4), for any t ≥ 0, we can get

u tð Þ − v tð Þk k
= T tð Þφ 0ð Þ +

ðt
0
T t − sð ÞF s, u sð Þ, usð Þds

����
− T tð Þϕ 0ð Þ −

ðt
0
T t − sð ÞF s, v sð Þ, vsð Þds

����
≤ T tð Þφ 0ð Þ − T tð Þϕ 0ð Þk k +

ðt
0
T t − sð Þk k

· F s, u sð Þ, usð Þ − F s, v sð Þ, vsð Þk kds

≤Me−νt φ 0ð Þ − ϕ 0ð Þk k +M
ðt
0
e−ν t−sð Þ

· C1 u sð Þ − v sð Þk k + C2 us − vsk kB
	 


ds

≤Me−νt u 0ð Þ − v 0ð Þk k +M
ðt
0
e−ν t−sð Þ

� C1 u sð Þ − v sð Þk k + C2 sup
τ∈ −r,0½ �

u s + τð Þ − v s + τð Þk k
 !

ds:

ð45Þ

For any t ∈ ½−r,∞Þ, let ΨðtÞ = eνtkuðtÞ − vðtÞk, and one
can find

Ψ tð Þ ≤MΨ 0ð Þ +
ðt
0
MC1Ψ sð Þ +MC2e

νr sup
τ∈ −r,0½ �

Ψ s + τð Þds:

ð46Þ

Denote l1 =MC1, l2 =MC2e
νr , by Lemma 6 and ν < ∣ν0 ∣ ,

we can obtain

eνt u tð Þ − v tð Þk k =Ψ tð Þ ≤M φ − ϕk kB · e l1+l2ð Þt

≤M φ − ϕk kB · e MC1+MC2e
−ν0rð Þt:

ð47Þ

By α≔ ν − ðMC1 +MC2e
−ν0rÞ > 0 and (47), one can

obtain

u tð Þ − v tð Þk k ≤M vk kB · e−αt ð48Þ

for every t ≥ 0, which implies that the S-asymptotically
ω-periodic mild solution u of DEE (1) is globally
exponentially stable. The proof is complete.

Theorem 15. Let −A generate an exponentially stable C0
-semigroup TðtÞðt ≥ 0Þ in X. Let F : ℝ+ × X ×B⟶ X be
the continuous function and sup

t∈ℝ+
∥Fðt, θ, θÞ∥<∞. If the condi-

tions ðH1Þ, ðH4Þ, ðH5′Þ hold, then DEE (1) is globally asymp-
totically ω-periodic.

Proof. We complete the proof by three steps.

Step 16. The solution of DEE (1) is bounded.

From ([30], Theorem 3.2), it follows that DEE (1) exists a
unique global mild solution u ∈ Cð½−r,∞Þ, XÞ for given φ ∈
Cð½−r, 0Þ, XÞ.

By Definition 3, for any t ∈ ½−r, 0�, ∥uðtÞ∥ = ∥φðtÞ∥≤∥φ∥B,
and if t ≥ 0 and denote C0 ≔ sup

t∈ℝ+
kFðt, θ, θÞk <∞, then one

can obtain that

u tð Þk k = T tð Þφ 0ð Þ +
ðt
0
T t − sð Þ · F s, u sð Þ, usð Þds

����
����

≤ T tð Þφ 0ð Þk k +
ðt
0
T t − sð Þ · F s, u sð Þ, usð Þds

����
����

≤ T tð Þk k · φ 0ð Þk k +
ðt
0
T t − sð Þk k · F s, u sð Þ, usð Þkð

− F s, θ, θð Þk + F s, θ, θð Þk kÞds

≤M φk kB +M
ðt
0
eν0 t−sð Þ

� C1 u sð Þk k + C2 sup
τ∈ −r,0½ �

u s + τð Þk k + C0

 !
ds

≤M φk kB +
MC0
∣ν0 ∣

+
M C1 + C2ð Þ

∣ν0 ∣
uk kC:

ð49Þ

Hence,

uk kC · 1 −
M C1 + C2ð Þ

∣ν0 ∣

� �
≤M φk kB +

MC0
∣ν0 ∣

: ð50Þ

From ðH5′Þ, it follows that 1 −MðC1 + C2Þ/∣ν0 ∣ >0
holds, which implies the mild solution uðtÞ of DEE (1) is
bounded, namely, u ∈BCbðXÞ:

Step 17. The mild solution u ∈BCbðXÞ of DEE (1) is
S-asymptotically ω-periodic.

For this reason, we only need to verify lim
t→∞

∥uðt + ωÞ − u

ðtÞ∥ = 0: By Definition 3, we have

u t + ωð Þ − u tð Þk k
≤ T t + ωð Þφ 0ð Þ − T tð Þφ 0ð Þk k +

ðω
0
T t + ω − sð ÞF s, u sð Þ, usð Þds

����
����

+
ðt
0
T t − sð Þ · F s + ω, u s + ωð Þ, us+ωð Þ − F s, u sð Þ, usð Þð Þds

����
����

≔ K1 tð Þk k + K2 tð Þk k + K3 tð Þk k:
ð51Þ

First of all, since TðtÞðt ≥ 0Þ is an exponentially stable
C0 − semigroup, that is the growth exponent ν0 < 0. Hence,
by the condition ðH5′Þ, we can choose ν ∈ ðMC1 +MC2
e−ν0r ,∣ν0 ∣ Þ, and it follows that ∥TðtÞ∥≤Me−νt for t ≥ 0. Under
the condition, we see that

K1 tð Þk k ≤ T t + ωð Þφ 0ð Þk k + T tð Þφ 0ð Þk k ≤ 2Me−νt φk kB:

ð52Þ

Secondly, since the mild solution u ∈BCbðXÞ, thus, there
exists a positive constant R such that kuk∞ ≤ R. Combining
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this with the condition (H4), one can find that

F t, u tð Þ, utð Þk k ≤ C1 u tð Þk k + C2 sup
τ∈ −r,0½ �

u t + τð Þk k + C0

≤ C1 + C2ð ÞR + C0 ≔ C

ð53Þ

for any t ≥ 0. Therefore, one can see

K2 tð Þk k ≤
ðω
0
T t + ω − sð Þk k · F s, u sð Þ, usð Þk kds

≤MC
ðω
0
e−ν t+ω−sð Þds =

MC
ν

e−νt − e−ν t+ωð Þ
� �

≤
MC
ν

e−νt:

ð54Þ

Finally, by the condition (H1), for any ε > 0, there is a
constant lðl > 0Þ sufficiently large such that

F t + ω, u tð Þ, utð Þ − F t, u tð Þ, utð Þk k ≤ ε:for t > l: ð55Þ

Choosing ε ≤ 2Ce−νt/1 − e−νðt−lÞ, by the condition (H4),
(53), and (55), one can deduce that

K3 tð Þk k ≤
ðt
0
T t − sð Þk k · F s + ω, u s + ωð Þ, us+ωð Þk

− F s, u sð Þ, usð Þkds

≤
ð l
0
T t − sð Þk k · F s + ω, u s + ωð Þ, us+ωð Þk

− F s, u sð Þ, usð Þkds +
ðt
l
T t − sð Þk k

· F s + ω, u s + ωð Þ, us+ωð Þ − F s, u s + ωð Þ, us+ωð Þk kds

+
ðt
l
T t − sð Þk k · F s, u s + ωð Þ, us+ωð Þk

− F s, u sð Þ, usð Þkds

≤ 2C ·
ð l
0
Me−ν t−sð Þds + ε

ðt
l
Me−ν t−sð Þds +

ðt
l
Me−ν t−sð Þ

· C1 u s + ωð Þ − u sð Þk k + C2 us+ω − usk kB
	 


ds

≤
2MC
ν

· e−ν t−lð Þ − e−νt
� �

+
2Ce−νt

1 − e−ν t−lð Þ

·
M
ν

1 − e−ν t−lð Þ
� �

+
ðt
l
Me−ν t−sð Þ C1 u s + ωð Þkð

− u sð Þk + C2 sup
τ∈ −r,0½ �

u s + ω + τð Þ − u s + τð Þk kÞds

≤
2MC
ν

· e−ν t−lð Þ +
ðt
0
Me−ν t−sð Þ

 
C1 u s + ωð Þ − u sð Þk k

+ C2 sup
τ∈ −r,0½ �

u s + ω + τð Þ − u s + τð Þk k
!
ds:

ð56Þ

Therefore, based on the above results, one can find

u t + ωð Þ − u tð Þk k ≤ 2Me−νt φk kB +
MC
ν

e−νt +
2MC
ν

e−ν t−lð Þ

+
ðt
0
Me−ν t−sð Þ C1 u s + ωð Þ − u sð Þk k

�

+ C2 sup
τ∈ −r,0½ �

u s + ω + τð Þ − u s + τð Þk k
�
ds:

ð57Þ

For any t ∈ ½−r,∞Þ, let ΨðtÞ = eνtkuðt + ωÞ − uðtÞk; then,

Ψ tð Þ ≤ 2M φk kB +
MC
ν

· 1 + 2eνl
� �

+
ðt
0
MC1Ψ sð Þ +MC2e

νr sup
τ∈ −r,0½ �

Ψ s + τð Þds:
ð58Þ

Let l1 =MC1, l2 =MC2e
νr , combined with Lemma 6 and

ν < ∣ν0 ∣ , and we can deduce

eνt u t + ωð Þ − u tð Þk k =Ψ tð Þ ≤ �M · e l1+l2ð Þt ≤ �M · e MC1+MC2e
−ν0rð Þt ,
ð59Þ

where �M = 2MkφkB + ðMC/νÞ · ð1 + 2eνlÞ. By α≔ ν − ðM
C1 +MC2e

−ν0rÞ > 0 and (59), it is easy to know that

u t + ωð Þ − u tð Þk k ≤ �M · e−αt: ð60Þ

Under this discussion, we have

lim
t→∞

u tð Þ − u t + ωð Þk k = 0: ð61Þ

That is to say, u ∈BSAPωðXÞ.

Step 18. There is a nonconstant ω-periodic function, which
makes the S-asymptotically ω-periodic mild solution u ∈
BSAPωðXÞ asymptotically converges to the nonconstant
ω-periodic function.

It is not difficult to verify that the sequence
fuðt + kωÞgk∈ℕ is of equicontinuity and of uniformly bound.
We can choose a subsequence of fkωg (for convenience, we
still denote the subsequence as fkωg) such that sequence
fuðt + kωÞg uniformly converges to a continuous function
u∗ðtÞ on any compact set of ½0,∞Þ by means of the
Arzela-Ascoli theorem. Obviously, u∗ðtÞ is a ω-periodic
function, i.e., u∗ðt + ωÞ = u∗ðtÞ for any t ≥ 0 and u∗ðtÞ =
φðtÞ for t ∈ ½−r, 0�.

Now, for t ≥ 0 and k ∈ℕ, we consider

u tð Þ − u∗ tð Þk k ≤ u tð Þ − u t + ωð Þk k + u t + ωð Þ − u t + kωð Þk k
+ u t + kωð Þ − u∗ tð Þk k:

ð62Þ

Based on the S-asymptotically ω-periodicity of uðtÞ, one
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can obtain easily that

lim
t→∞

u tð Þ − u t + ωð Þk k = 0: ð63Þ

By globally exponentially stable of DEE (1),

lim
t→∞

u t + ωð Þ − u t + kωð Þk k = 0, for every k ∈ℕ: ð64Þ

According to the definition of u∗ðtÞ, one has

lim
k→∞

u t + kωð Þ − u∗ tð Þk k = 0, for any t ≥ 0: ð65Þ

By (62), (63), (64), and (65), one can easily find

lim
t→∞

u tð Þ − u∗ tð Þk k = 0: ð66Þ

Thus, by Definition 5, DEE (1) is globally asymptotically
periodic. This is the end of the proof.

4. Application

In this section, two examples are given to show the applica-
bility and effectiveness of our main results.

Example 19. The functional partial differential equation is
considered

∂
∂t

u t, xð Þ − ∂2

∂x2
u t, xð Þ =G t, x, u t, xð Þ, ut xð Þð Þ, t ∈ℝ+, x ∈ 0, π½ �,

u t, 0ð Þ = u t, πð Þ = 0, t ∈ℝ+,

u τ, xð Þ = φ τ, xð Þ, τ ∈ −r, 0½ �, x ∈ 0, π½ �,

8>>>><
>>>>:

ð67Þ

where G : ℝ+ × ½0, π� ×ℝ × Cð½−r, 0�, L2½0, π�Þ⟶ℝ is a
continuous function, which is 1-asymptotic periodic with
respect to t, r > 0 is a constant.

Let X = L2½0, π� with the norm ∥·∥. Operator A : DðAÞ ⊂
X⟶ X is defined by

D Að Þ = u ∈ X : u′ ∈ X, u′′ ∈ X, u 0ð Þ = u πð Þ = 0
n o

,

Au t, xð Þ = −
∂2

∂x2
u t, xð Þ ;

ð68Þ

then, −A generates an exponentially stable compact analytic
semigroup fTðtÞgðt ≥ 0Þ in X. It means that A has a discrete
spectrum with eigenvalues n2ðn ∈ℕÞ and gives the corre-
sponding normalized eigenfunctions by enðxÞ =

ffiffiffiffiffiffiffi
2/π

p
· sin ð

nxÞ for any x ∈ ½0, π�. Consequently, for any t ≥ 0, u ∈ X, the
associated semigroup fTðtÞgðt ≥ 0Þ is given by

T tð Þu = 〠
∞

n=1
e−n

2t u, enh ien: ð69Þ

Clearly, for all t ≥ 0, kTðtÞk ≤ e−t , namely, the growth
exponent of the semigroup is -1.

Meanwhile, let uðtÞðxÞ = uðt, xÞ and utðτÞðxÞ = uðt + τ, xÞ
for any t ∈ℝ+, x ∈ ½0, π� and τ ∈ ½−r, 0�; then, u ∈ X and ut ∈
B = Cð½−r, 0�, XÞ. Thus, F : ℝ+ × X ×B⟶ X is defined by

F t, u tð Þ, utð Þ xð Þ = G t, x, u t, xð Þ, ut xð Þð Þ: ð70Þ

Therefore, equation (67) can be rewritten into DEE (1)
in X.

Taking hðtÞ = et , let G : ℝ+ × ½0, π� ×ℝ × Cð½−r, 0�,
L2½0, π�Þ⟶ℝ be a continuous function, which is
1-asymptotic periodic with respect to t.

Thus, the existence and uniqueness results are obtained
from equation (67).

Theorem 20. If the following condition holds: (P1) for any
t ∈ℝ+, x ∈ ½0, π�, η ∈ℝ, ζ ∈B,

G t, x, etη, etζ
	 
�� �� ≤ π sin 2πt

4et
ηk k + π2 sin 2πt

5et
ζk kB + 1,

ð71Þ

then equation (67) has at least one S-asymptotically ω
-periodic mild solution.

Proof. G is 1-asymptotic periodic with respect to t implying
that the condition (H1) holds of Theorem 7, namely, ω = 1.
From the condition (P1), it is not difficult that the condition
(H2) is satisfied. Indeed,

G t, x, etη, etζ
	 
�� �� ≤ π sin 2πt

4et
ηk k + π2 sin 2πt

5et
ζk kB + 1

≔ p1 tð ÞΦ1 ηk kð Þ + p2 tð ÞΦ2 ζk kB
	 


+K ,
ð72Þ

where p1ðtÞ = sin 2πt/4et , p2 = π sin 2πt/5et ,K = 1, liminf
r→∞

ΦiðrÞ/r = π <∞i = 1, 2. By M = 1, ν0 = −1,

sup
t≥0

ðt
0
e− t−sð Þ π sin 2πs

4es
ds + sup

t≥0

ðt
0
e− t−sð Þ π

2 sin 2πs
5es

ds

= sup
t≥0

e−t
ðt
0

π sin 2πs
4

ds + sup
t≥0

e−t
ðt
0

π2 sin 2πs
5

ds

= sup
t≥0

1 − cos 2πt
8et

+ sup
t≥0

π 1 − cos 2πtð Þ
10et

≤
1
4
+
π

5
≈ 0:88 < 1,

ð73Þ

we can conclude that the condition (H3) of Theorem 7 is ful-
filled. Thus, from Theorem 7, the functional partial differen-
tial equation (67) has at least one S-asymptotically 1-periodic
mild solution.
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Theorem 21. If sup
t∈ℝ+

∥Gðt, x, θ, θÞ∥<∞ and the following con-

dition: (P2) for any t ∈ℝ+, x ∈ ½0, π�, η1, η2 ∈ℝ, ζ1, ζ2 ∈B,

G t, x, η1, ζ1ð Þ −G t, x, η2, ζ2ð Þk k ≤ 1
4

η1 − η2k k + π

5
ζ1 − ζ2k kB

ð74Þ

hold, there is a unique S-asymptotically 1-periodic mild solu-
tion of equation (67). Moreover, if 0 < r < ln ð15/4πÞ holds,
then the S-asymptotically 1-periodic mild solution of equation
(67) is globally exponentially stable.

Proof. Obviously, condition (H1) is true. SinceM = 1, ν0 = −1,

G t, x, η1, ζ1ð Þ − G t, x, η2, ζ2ð Þk k ≤ 1
4

η1 − η2k k + π

5
ζ1 − ζ2k kB,

ð75Þ

one has

M C1 + C2ð Þ = 1 ·
1
4
+
π

5

� �
≈ 0:88 < 1 = ν0j j, ð76Þ

which implies that condition (H5) holds with C1 = 1/4, C2 =
π/5. Hence, our conclusion follows from Theorem 14 that
there is a unique S-asymptotically 1-periodic mild solution of
equation (67).

From 0 < r < ln ð15/4πÞ, it is not difficult to know that
condition ðH5′Þ holds. In fact, C1 = 1/4, C2 = π/5; then, 1/4
+ ðπ/5Þ <MC1 +MC2e

r < 3/4 + 1/4, namely, 0:88 <MC1 +
MC2e

r < 1. It suffices to apply Theorem 14, and one can find
that the S-asymptotically 1-periodic mild solution of equa-
tion (67) is globally exponentially stable.

Theorem 22. If the condition (P2) is satisfied and 0 < r < ln
ð15/4πÞ is valid, then equation (67) is globally asymptotically
1-periodic.

Proof. Obviously, if conditions (H1), (H4), and ðH5′Þ are
true, our conclusion follows from Theorem 15. Hence, it suf-
fices to apply Theorem 15, and we can obtain that equation
(67) is globally asymptotically 1-periodic.

Example 23. Consider the integer-order neural networks with
finite delay (INND)

y1′ tð Þ + 2y1 tð Þ = sin t
t + 1

tanh y1 t + θð Þð Þ + 1
5
tanh y2 t + θð Þð Þ + 2

� �
, t ≥ 0,

y2′ tð Þ + 2y2 tð Þ = cos t
t + 1

1
10

tanh y1 t + θð Þð Þ + tanh y2 t + θð Þð Þ + 3
� �

, t ≥ 0,

y1 θð Þ = y2 θð Þ = 0:2, θ ∈ −1, 0½ �:

8>>>>>><
>>>>>>:

ð77Þ

Let X =ℝ2, the vector y = ðy1, y2ÞT ∈ℝ2 endowed with
norm ∥y∥ = Σ2

i=1 ∣ yi∣, define ∥A∥ =max
1≤j≤2

Σ2
i=1 ∣ yi∣ for the matrix

A = ðaijÞ2×2.

In this way, equation (77) can be transformed into a vec-
tor form as follows:

y′ tð Þ + By tð Þ = F t, y tð Þ, ytð Þt ≥ 0,

y tð Þ = 0:2 t ∈ −1, 0½ �,
ð78Þ

where yðtÞ = ðy1ðtÞ, y2ðtÞÞT , B = diag ð2, 2Þ, Fðt, yðtÞ, ytÞ = A
ðtÞf ðytÞ + CðtÞ, f ðytÞ = ðtanh ðy1,tÞ, tanh ðy2,tÞÞT ,

A tð Þ = aij
	 


2×2 =

sin t
t + 1

sin t
5 t + 1ð Þ

cos t
10 t + 1ð Þ

cos t
t + 1

0
BBB@

1
CCCA, ð79Þ

CðtÞ = ðð2 sin t/t + 1Þ, ð3 cos t/t + 1ÞÞT : It is easy to see that B
generates a bounded operator semigroup TðtÞ = e−Bt = diag

1
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Figure 1: Numercial solution of Eq. (77).

11Journal of Function Spaces



ðe−2t , e−2tÞ and ∥TðtÞ∥≤e−2t , for t ≥ 0, namely,M = 1, ν0 = −2,
see [24]. For x, y ∈ X, φ, ϕ ∈ Cð½−1, 0�, XÞ, one has

F t, y, φð Þ − F t, x, ϕð Þk k ≤ 6
5

φ − ϕk k −1,0½ �,

F t, 0, 0ð Þk k ≤ 5,

F t + 2π, y, φð Þ − F t, y, φð Þk k ≤ 1
t + 1 + 2π

+
1

t + 1

� �

� 6
5

φk k −1,0½ � + 5
� �

→ 0 t→∞:

ð80Þ

Then, all conditions in Theorem 14 hold; hence, INND
(77) has a unique S-asymptotically 2π-periodic solution. Fur-
thermore, the unique S-asymptotically 2π-periodic solution
is globally exponentially stable and is global asymptotic 2π
-periodic, see Figure 1.
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