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In the present article, we consider a von Karman equation with long memory. The goal is to study a quadratic cost minimax optimal
control problems for the control system governed by the equation. First, we show that the solution map is continuous under a weak
assumption on the data. Then, we formulate the minimax optimal control problem. We show the first and twice Fréchet
differentiabilities of the nonlinear solution map from a bilinear input term to the weak solution of the equation. With the
Fréchet differentiabilities of the control to solution mapping, we prove the uniqueness and existence of an optimal pair and find

its necessary optimality condition.

1. Introduction

Let Q be an open bounded domain in R* with a sufficiently
smooth boundary 0Q. We set Q=(0,T)xQ,X=(0,T) x 0
0. We consider the following von Karman system with long
memory and the hinged boundary condition in the variables
u and v, representing the deflection of the plate and the Airy’s
stress, respectively:

ot
u" —pAu" + Au+ | k(t-s)A’u(s)ds = [w,v] +qu+f inQ
Jo
A= —lu,u] in Q
u=Au=v= @ =0 on 2,
ov
(0, ) = tg(x),

u'(0,x)=u,(x) in Q

(1)
where ' = 0/0t, the vector v denotes an outward normal,
p>0 means a constant related to the rotational inertia,

k(-) e C*(]0, T]) is a memory kernel, f is a forcing function,
and [-,-] is the von Kédrman bracket given by

v ol = 0*vd*o . 0*00%v B v 2%
[v-o] = 0x?0x}  0x30x3  0x,0x,0x,0x,

(2)

The term qu in Equation (1) represents the reset force
of the elastic plate in the system. This physical situation
naturally leads to the consideration of the bilinear control
problem for the control function g, which is used as a
force to make the state close to a desired state taking into
account. In this motivation, Bradley and Lenhart [1] studied
the bilinear optimal control problem for a Kirchhoft plate
equation (cf. [2]). And it has been studied in [3] the bilin-
ear optimal control problem of velocity term in a Kirchhoft
plate equation.

Motivated by [1, 3] with the above physical background,
we study here the bilinear minimax control problem for
Equation (1) with the control function g based on the Fréchet
differentiabilities of the nonlinear solution map. More
detailed explanations are given as follows:

In our previous study [4], we considered the Dirichlet
boundary value problems of Equation (1) without the term
qu and studied the optimal control problems for the exter-
nal forcing control system by the frameworks in Lions [5].
In [4], we proved and used the Géteaux differentiability of
the nonlinear solution map to present the necessary opti-
mality conditions for the optimal controls of the specific
observation cases.

In this paper, we show the Fréchet differentiability of the
solution map ¢ — u from the bilinear control input terms to
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the solutions of Equation (1). In most cases, the Gateaux dif-
ferentiability may be enough to solve a quadratic cost optimal
control problem. However, the Fréchet differentiability of a
solution map is more desirable for studying the problem with
more general cost function like nonquadratic or nonconvex
functions. So, this study is an improvement on a previous
study [4]. Based on the result, we constructed and solved
the bilinear minimax optimal control problems in Equation
(1). The minimax control strategies have been used by many
researchers for various control problems (see Lasiecka and
Triggiani [6] and Li and Yong [7]). As explained in [8], the
minimax control framework is employed to take into account
of the undesirable effects of system disturbance (or noise) in
control inputs such that a cost function achieves its mini-
mum even in the worst disturbances of the system. For the
purpose, we replace the bilinear multiplier g in Equation
(1) by ¢ +#, where c is a control variable that belongs to the
admissible control set €4, and # is a disturbance (or noise)
that belongs to the admissible disturbance set &,;5. We also
introduce the following cost function to be minimized within
€ ,q and maximized within 9,4

B

1 a
J(en) = 5 [~ Zd”iZ(Q) t3 ||CH%Z(Q) -3 ||’7||iZ(Q)’ (3)

where uis a solution of Equation (1), z; € L>(Q) is desired
value, and the positive constants « and f3 are the relative
weights of the second and third terms on the right hand side
of (3).

Our goal of this paper is to find and characterize the opti-
mal control of the cost function (3) for the worst disturbance
through control input in Equation (1).

This leads to the problem of finding and characterizing
the saddle point (c*, ") €64 x D4 satisfying

Jexm)<J(cxnx)<J(en+), V(en) €Coyx Dy (4)

In this paper, we use the terminology optimal pair for
such a saddle point (c*,#*) in (4). For the study of the exis-
tence of an optimal pair (c*, #*) satistying (4), we can find
results in [8]. In that paper, the author used the minimax the-
orem in infinite dimensions given in Barbu and Precupanu
[9]. And in [10], we extended the result to a quasilinear PDE.

On the other hand, in this paper, we use the method
given in [11] to obtain the uniqueness as well as the existence
of an optimal pair. That is to say, we use the strict convexity
(or concavity) arguments of [12] by proving twice (Fréchet)
differentiability of the solution map. Also, as we will see later,
this method can suggest another condition that ensure strict
convexity (or concavity) of the map from control (or noise)
to the quadratic cost function (3).

Next, we derive an optimality condition for such a (¢*, #*)
in (4). To derive the condition, we refer to the studies on
bilinear optimal control problems where the state equations
are linear partial differential equations such as the reaction
diffusion equation or Kirchhoft plate equation (see [1, 3, 8,
13] and references therein).

We now explain the content of this paper. In Section 2,
we present notations and some necessary lemmas. In Section

Journal of Function Spaces

3, we prove the well-posedness of Equation (1) with respect
to u in the Hadamard sense using some previous results. To
name just a few, we can refer to [14-16], and references
therein. Especially, in order to prove the local Lipschitz con-
tinuity of the nonlinear solution map, we employ the energy
equality of Volterra-type integro-differential equation which
is proved in [17]. In Section 4, we shall study the minimax
optimal control problems: at first, we shall show that the
solution map of Equation (1): ¢ — u is the first and twice
Fréchet differentiable; By using twice Fréchet differentiability
of the solution maps ¢ — u and  — u, we prove that the
maps ¢ — J and # — ] are strictly convex and concave,
respectively, under the assumptions that «, 8 are sufficiently
large or T >0 is sufficiently small. And we also prove that
the maps ¢ — J and # — J are lower and upper semicon-
tinuous, respectively. Consequently, we can prove the
uniqueness and existence of an optimal pair. Next, we derive
the necessary optimality condition of an optimal pair for the
observation case associated with the cost (3).

2. Notations and Preliminaries

Throughout this paper, we use C as a generic constant and
omit the integral variables in any definite integrals without
confusion.

If X is a Banach space, we denote by X' its topological
dual, and by (-, )y’ , the duality pairing between X "and X.
We introduce the following abbreviations:

r=1/(Q), W¥=w*Q), |,=lly )

where p>1 and W*? is the IP-based Sobolev spaces for
k>1. We denote by H*, the standard Sobolev spaces W*?
for k> 1. And HX means the completions of C°(Q) in H*
for k> 1. The duality pairs between HS and H* (k=1,2)
are abbreviated by (-, ), ;. The scalar product and norm

on L* are denoted by (-, -), and ||-||,, respectively. Then,
based on the Poincaré inequality and the well-known regu-
larity theory for elliptic boundary value problems (Temam
[18] p. 150), the scalar products on Hﬁ (k=1,2) can be given
as follows:

((v, 0))H$ = (Vv, Vo)z,Vv, 0€ H(l),

((v, O))Hg = (Av, Ao),,Yv, 0 € H;.
Then obviously,
0]l = VoIl v € Ho, lo]l 2 = || Aol Vo€ Hg. (7)
We define the operator A which stands for the following:

Au=-Au, V=D(A)=H"nH,, (8)
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and consider the operator M, =1+ yA. We also define the
operator & as follows:
Au=A’u, D(of)={ueH*'nHs|Au=0 on I'}. (9)
We note that
D(e'"?)=V. (10)

By using again the well-known elliptic regularity theory
(Temam [18] p. 150), we can obtain
[vllge = CllAv]l,,

YoeV, o]y < C”Azo

Yo e D(dH).

(11)

|2’

Therefore, we can employ

Yo e D(d).
(12)

It becomes apparent that each topological imbedding

olly = 4v]l,,  Yoe V. [ollp, = [|4%],,

V—H,—L1*—H'—V (13)

is continuous and compact. According to Adams [19], we
know that when n < 3, the imbedding

V—C'(Q), (14)

is compact.
It is well known that the biharmonic operator

A HYnH — 1% (15)
is bijective, and it admits an isometric extension
A Hy— H™. (16)

Thus, we can define an operator G € Z(L*, H* n H})(or
Z(H?, Hy))by

0
Gf = giff A’g=finQ, g=a—‘z=00n o0Q. (17)

Therefore, from Equation (1), one can also note that

v=-Glu,u] YueH;. (18)

We collect below some results for the Airy stress function
and von Karman bracket.

Lemma 1. The trilinear form b: V x V x V. — R given by

b(v, 0,9) = ([v,0],9), (19)

satisfies the property
b(v,0,9)=b(v,¢9,0), Yv,0,p€V. (20)

Proof. See ([20], Proposition 1.4.2).

Lemma 2. The bilinear forms (v, 0) — G[v, o] from H? x H?

into W2 and (v,0) — [v, 0] from H! x H? into H™ are
continuous. We also have the following estimates:

Y, 0 € H,
Yo e H,

Glv, 0 o < Cllv 0| 1525
16120l < Cll ol o

00l l1» < Cllell llll e Voe P,

Consequently,

9> Glvs o]] 11, < Cligll g [0l e ll0ll gz Vv, 0 € HE. (22)

Proof. See [15, 20].

3. Well Posedness of a von Karman
Equation with Long Memory

We introduce the Hilbert space W(0, T') of the weak solu-
tions of Equation (1) given by

W(0,T) = {u|u €L?(0,T5 V), u' eI?(0,T5HY), u" eLZ(Q)},
(23)

with the norm

172
1oz = (||u||iz(o,m #1190y * Hu,,HiZ(Q)) .

(24)

Definition 3. Function u € W(0, T) is called a weak solution
of Equation (1), if it satisfies

(M ()y0) |+ (Bu() + ko Au(), Ao), = ([u(),v()] +4()u() + (), o)y,

(8v(), Ap), = =([u( ), u()], 9),

forall(o, ¢) € V x Hgin the sense of @' (0, 7),

u(0) = ug, u'(O) =u,



where @' (0, T) is the space of distributions on (0, T).

As indicated in [14], von Kdrman nonlinearity is subcrit-
ical; thus, the issues of well-posedness and regularity of weak
solutions are standard.

Theorem 4. If (ug,u;) € VxH) ke C'([0,T)]),q€L®(Q),
and f € L?(Q), then a weak solution u of Equation (1) exists
and satisfies:

ueW(O, T)NL®(0, T;V)n W' (0, T;Hy).  (26)

To show the regularity of a weak solutions of Equation (1),
we need the following lemma.

Lemma 5. Let X, Y be two Banach spaces, X C Y with dense,

and X being reflexive. Set

Cull0. T} Y) = {f €L"O. T3 V)| (F(). &)y €C(0.T)), VEEY'}.
(27)

Then

L®(0,T;X)NC,([0,T];Y)=C,([0, T];; X). (28)

Proof. See ([21], p. 275).

Corollary 6. Assume that u is a weak solution of Equation (1).
Then, we can assert (after possibly a modification on a set of
measure zero) that

ueC,([0,T];V), u' €C,([0,T];Hy).  (29)

Proof. From Dautray and Lions ([22], p. 480), it is clear that
W(0, T)=>C([0, T]; Hy) N C'([0, T]; L*). Therefore, since u
eW(0, T)NL®(0,T; V)N WH®(0, T;H}), the proof is
the immediate consequence of Lemma 5 obtained by setting
X=V,Y=Hj] to have u € C,([0,T]; V) and by setting X =
HL, Y =1%to have u' € C, ([0, T]; H}).

In the sequel, we give the important energy equality of
weak solutions of Equation (1). It is used to prove the

improved regularity of weak solutions of Equation (1) and
used in all estimations in this paper.

Lemma 7. Assume that u is a weak solution of Equation (1).
Then, for each t € [0, T], we have the energy equality

' ()] +y||Vad' (1)]]7 + [ Au(r) |2

+ L IAV()[2 + 20k = Aue), Bu(t)),

t

t t
=2| (K" * Au, Au) ds+2| k(0)||Au|j5ds +2| (quu') d
JO( * Au u)z s + JO (0)||Au||5ds + L(qu u )2 s

t
1
w2 (1) o o] yTon 3+ Al + 5ol
0
(30)

where Avy=—A""[uy, u,).
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Proof. By Corollary 6 and the uniform boundedness theo-
rem, we have u(t) € V and u'(t) € H} for all t € [0, T]. Thus,
every function in (30) has meaning for all ¢ € [0, T]. Then, we
can proceed the proof as in ([17], Proposition 2.1). By
regarding f in ([17], Proposition 2.1) as [u,v]+qu+f in
Equation (1), we can deduce that the weak solution u of
Equation (1) satisfies

[ ()2 + ]|V (0|12 + 14u(t) |2 + 2(k = Au(t), Au(t)),

t ('t
=2 (K= ) s 2 k0) s
0 2 0

t
#2[ ()4 quef’) dos 3y 9o -+ 4
0

(31)

From [4], we can have

! ! ds = 1 2 1 2
2| (wvlu') ds==3llav(3 + S lawl3  (32)

0

Thus, we have (30).
This proves the lemma.

From the energy equalities (30) or (31) together with the
following well-known Gronwall's lemma, we can prove
uniqueness and regularity of weak solutions of Equation (1).

Lemma 8. Let &(-) be a nonnegative, absolutely continuous
function on [0, T|, which satisfies the differentiable inequality
fora.e.t €0, T]:

E (1) <y(t)E() + (1), (33)

where v and ¢ are nonnegative, summable functions on [0, T).
Then

£ < (50)+ [ ), (34)

0

forall0<t<T.
Proof. See ([23], p.624).
Here, we can state the following theorem.

Theorem 9. Assume that (u,, u;) € V x H), ke C'([0, T]),

q€L®(Q), and f € L*(Q). Then Equation (1) has a unique
weak solution u in S(0,T)=W(0, T)nC([0, T]; V) n C!
([0, T]; HY). Moreover, the solution mapping p = (u,, u;, g,
) — (ulp).u' (). v(p)) of P=V xHyxL2(Q)xI*(Q)
into C([0, T]; V) x C([0, T] ; H}) x C([0, T] ; W**) is locally
Lipschitz continuous.
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Indeed, let p,=(ul,ul,q,.1,) € P and p,=(u},ui,q,,
f,) € P, we prove this theorem by showing the following
inequality

[u(py) = w2l 07y + IV(P1) = V(PZ)”C([O,T];WZ"”)
<Clp; =Pl

(35)
where C> 0 is a constant depending on the data and
) = P2l
1/12
= (I = 3]l + 1t =935 + 2 = @iy * i = FllFr))
(36)

Proof of Theorem 9. Lemma 7 allows us to show the reg-
ularity of wu. It is verified from the data conditions that
the right hand side of (30) is continuous in t. Hence, we
have that

t— || Vi’ (1)][3 + [ Au(t) % (37)

is continuous on [0, T]. Indeed, u € C([0, T]; V) n C' ([0,
T]; Hp).

Therefore, considering results in [15, 16] and [14], we can
deduce that Equation (1) possesses a unique weak solution
u €S8(0, T) under the data condition (uy, u;,f) € H =V x
H} x L*(Q) such that

4]l 50,y < Cll (0> 115 f) | - (38)

Based on the above result, we prove the inequality (35).
For the purpose, we denote u; —u, =u(p,) —u(p,) by ¢
and v, —v, =v(p,) — v(p,) by Y. Then, we can know from
Equation (1) that ¢ and Y satisfy the following equation in
the weak sense:

M¢" + Np+kx Ap=[$,v,] + [, Y]+ q, 0+ (4, — 42)ur + f — fo»

AY =—[p,u, +1,]inQ,
p=Ap=Y = g—z =0onZ,

$(0) =ty — ug ¢'(0) =14 — 1} in Q.
(39)

We note that

1y, Y] = [~ G[, uy + 1] (40)

Just as deriving the equality (31) from Equation (1), we
can know that the weak solution ¢ of Equation (39) satisfies

6" ()] + V8" (1)]]2 + 146 (2) 2
= —2(k = A(t), A(1)), + 2 t(k' * Ag, A¢>) ds
0 2

t

e2] ko)aplias v2[ (0.1l + ¥ +a6 (41

0

() 0

+]|8 )]+ ¥]|Ve' (0|3 + [|4¢(0)] 2.

+(q, — )ty ‘P/)zds +2

At first, we note by (13) that:

‘ZJ; (‘h‘/” ¢/)2ds

t
<20l | 191]19' ]
t
< CJO||A¢||2||¢'||2ds (42)

<c| (1ol lo'I;)es

Ht ((ql —Qz)”z’ﬁb’)zds

0

t
<2 ay = gy s
t
<10l + | 0" e

t
<19~ ol el * | 10l

By u, € (0, T)>L*(Q) and (38), we can get from (43)
that

! ’ 2 ST
’2J ((% —qy)u ¢ )2d5 <Cllq, _CI2HL°°(Q) +J H‘/’ ||2ds.
0 0

(44)

For other estimates of the remaining terms on the right
hand side of (41), we can refer to the previous results in [4]
and obtain with (41) and (42)-(44) the following:

18 ][5 + V¢’ ()]]> + 146 ()]
<C([l¢' @)+ 199" )2+ 14¢(©) 1 + la,
~aalig + W~ Klig + | (18615 9')2)es)
<c(llev=pall+ [ (1l ') ).
(45)



By applying Lemma 8 to (45), we have

IV ()| + 1A6() 12 <Cllp, = pal5e (46)

And also, for almost ¢ € [0, T], we obtain by Lemma 2 and
(11) that

1Y (6)[ 20 = [=GLB(E)s 1 () + 113 (6)] e
< ClLA() 1Ay (1) + (1)) 2 (47)
< (Nl o + lnalor, ) 1460 13-

By (38), (46), and (47), we can obtain
1Y ()[[y2e0 < Cllpy = P21 5- (48)
This implies with (46) that

”(pHC([O,T];V)nCl([O,T];Hé) + ||Y||c([o,T];w2-°°) <Cllpy - P2l
(49)
Since M' A" € L(L?) and M, € L(L?, V), by conduct-

ing similar estimations in Equation (39), we can obtain from
(49) that

t

Av(q) =~[u(q), u(9)]in Q

The weak solution u(q) of Equation (53) is called the state
of the control system Equation (53).

To study the quadratic cost minimax optimal control
problems for Equation (53), we introduce the following qua-
dratic cost function

B

«
J(e:n) = 5 [lu(q) _ZdHiZ(Q) ) ”CHiZ(Q) -3 ”’7”%2(())’ (54)

N =

where z,; € L*(Q) is the desired value, and the positive con-
stants « and f3 are the relative weights of the second and third
terms on the right hand side of (54).

As indicated in the introduction, we shall study the mini-
max optimal control problem as follows: we prove the
uniqueness as well as existence of a control c* € C,4 and a dis-

u(q) = Au(q) =v(q) = 222 <0 on 3,
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19”1120 < Cllpy = Pl (50)

Hence, by (49) and (50) we can prove (35).
This completes the proof.

4. Quadratic Cost Minimax Control Problems

Let the following be the set of the admissible controls:
Coa={ceL®(Q)c<c<ca.einQ}, (51)

where cand ¢ are given constants, representing lower and
upper bounds of the admissible control variables, respec-
tively. Let the following be the set of the admissible distur-
bances or noises:

D, = {,IGLOO(Q)mgqu]a.e.inQ}, (52)

where # and 7 are given constants, representing lower and

upper bounds of admissible disturbance variables, respec-
tively. For variational analysis, we use the L?(Q) norm on
C,q and D,4. For simplicity, we denote by B,3=C,q X D,q4-
From Theorem 9, we can uniquely define the solution map
B,; — S(0, T), which maps from g=(c,7) € B,y to the
weak solution u(g) € S(0, T'), where u(q) satisfies the follow-
ing equation:

My (q) + 2u(q) + | k(t3)2%u(q5)ds = ula), v(a)] + (c+m)u(a) +,

(53)

u(q;0,x) =uy(x), u'(q;0,x) = u; (x) in Q.

turbance (or noise) #* € D,y such that (¢*,%*) is a saddle
point of the functional J(-, - ) of (54). That is,

J(¢"m) <T("n") <T(en*)V(en) € By (55)

Here, we call such (¢*,%*) in (55) to be an optimal pair
for the minimax optimal control problem with the cost
(54). And we need to characterize (¢*,#*) in (55) by giving
the necessary optimality condition through adjoint equation
related to Equation (53) and the cost (54). For this purpose,
we have to show the differentiabilities of the control to state

mapping.
4.1. Differentiabilities of the Nonlinear Solution Map. We

study the Fréchet differentiability of the nonlinear solution
map, which is an improvement of the previous results in
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[4] and is more desirable for many applications. From Theo-
rem 9, for fixed (uy,u;,f) €V xHyxL*(Q)in Equation
(53), we know that the solution map L®(Q) — S(0, T)
from q (= ¢ +# in Equation (53)) €L* (Q) to u(q) € S(0, T)
is well defined and continuous.

For our study, we present the following definitions.

Definition 10. The solution map g — u(g) of L*(Q) into
S§(0, T) is said to be Fréchet differentiable on L*(Q) if for
any q€L®(Q), there exists a T(q) € Z(L*(Q),S(0,T))
such that, for any w € L*(Q),

[u(q +w) —u(q) - T(q)w”S(O,T)

=0. (56)
][0 (q)

m
[wllo0(q)—0

The operator T(q) is called the Fréchet derivative of u at
g> which we denote by Du(q).T(q)w = Du(q)w € S(0, T) is

t

called the Fréchet derivative of u at g in the direction of
w e L°(Q).

Definition 11. Let U be a subset of L°(Q) and q, ¢* € U. The
solution map g — u(q) of U into S(0,T) is said to be
Gateaux differentiable at ¢* in the direction g —gq* if there
exists a function Du(g* ;¢ — g*) € S(0, T) such that

- |[u(g" +Aq-9q")) —u(g") b
lim ;) Du(q"5q9-9q")

Theorem 12. The solution map q — u(q) of L°(Q) into S
(0, T) is Fréchet differentiable on L°(Q) and the Fréchet
derivative of u(q) at q in the direction w € L*°(Q), that is to
say z = Du(q)w, is the weak solution of

MzZ" + Nz + J k(t - s)A%zds = [z,-Glu(q), u(q)]] + 2[u(q),~G[z, u(q)]] + qz + wu(q) in Q,

0
z=Az=0o0n2,

z(0)=0,z"(0)=0in Q.

We prove this theorem by two steps.

(i) For any w € L*°(Q), Equation (58) admits a unique
weak solution z € S(0,T), namely, there exists an
operator T € L(L™°(Q),S(0,T)) satisfying Tw =
2(=2z(w))

(ii) We  show  that |u(q+w)-u(q) —z|spr <C

||w||i°°(Q)-
Proof. (i) Let
Y (u(q), z) = [2:=Glu(q), u(q)]] + 2[u(9),-Glz, u(q)]]. (59)

Then, we can estimate the right hand side of (59) as fol-
lows. By (11) and Lemma 2 we have

[2:=Glu(@), (@I, < Cllzll 2 | #(9) 7 < Cllu(@) (0.1, 142+
(60)

This implies with (38) that

I[z=Glu(q), u(9)]lll, < C||Az]],. (61)

(58)
Similarly, we have
[12[u(q)=G[z, u(q)]]l, < C[|Az]|,. (62)
Hence, by (61) and (62), we note that
G(u(q),-) e Z(V,L1?). (63)

Taking into account wu(q) € L*(Q) and (63), we can
employ the linear theory in [17] (cf. [22]) to verify that Equa-
tion (58) admits a unique weak solution z € S(0, T). And also
by using the energy equality to be satisfied by z as in (31) and
following similar estimations in Theorem 9, we can know
by (38) that the weak solution z(=z(w)) of Equation (58)
satisfies

12(w) ”S(O,T) s Cku(q)”LZ(Q) < Clwllo(q) H”(Q)HLZ(Q)

< Cllu(@) 501 1wl () = Cllwllz(q)-
(64)

Hence, from (64), the mapping w e L*®(Q) — z(w) €
S8(0, T) is linear and bounded. We can thus infer that there
exists a T € L(L°(Q),S(0,T)) such that Tw=2z(w) for
each w e L*(Q).
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by Il((i:zilrgfihsee'[fgllllgvsii;fge:rence u(g+w)—u(qg) —z=0. Then, = (g + w)—G[B, u(q + w) + u(q)]
+[u(q+w),=Glz, u(q+w) +u(q)]]
S +10,7(9)] - 2[u(@)~Gle, u(@)] + (4 + w)0 + we
MG+ 40+ ke 40 = [u(q + w),~Gl6, u(q+w) + u(q)]
= [u(q +w), v(q +w)] = [u(q), v(9)] - [z v(9)] — 2[u(q), + [u(q +w) — u(q)—Glz, u(q+w) +u(q)]]
~Glz, u(q)]] + (4 + w)u(q + w) — qu(q) - gz — wu(q) + [u(q),—Glz, u(q+w) +u(q)]] + [0, v(q)]
= [u(g +w), v(q +w) - v(q)] + [0, ( )] —2[u(q),~G[z u(q)]] + (q + w)0 + wz
—2[u(q),=Glz, u(q)]] + 98 + w(u(q + w) —u(q)) = [u(q + w),~G[B, u(q+w)+u(q)]]
[ (q+w),~Glu(q +w), u(q +w)] + [u(q +w) — u(q),~Glz, u(q+w) +u(q)]]
Glu(q), u(q)]] + (6, v(q)] - 2[u(q), + [u(q),~Glz, u(q + w) — u(q)]] + [0, v(q)]
—G[Z: (@)]] + 90 + w(u(q +w) - u(q)) +(q+w)0 +wzinQ,
= [u(g + w),~Glu(q +w) — u(q), u(q+w) +u(q)]] (65)
+[0,v(q)] - 2[u(q):=Glz, u(q)]] + (9 + w)0 + wz
we know that 0 satisfies
M0" + A0+ k « A*0 = E(u(q), u(q +w),0) + (q + w)f +wz+1, +I,inQ,
0=A0=00n2%, (66)
6(0,x)=0,0'(0,x) =0inQ,
in the weak sense, where By Lemma 2 and (11), we have
111112 (q) < Cllu(a +w) = w(@)ll o, 1l co.pv
E(u(q), u(q+w),0) @ lulas o) +uly )|<|32 v I#lle(o.yv)
=l +w) -Gl rw) ru@l+ B Hen (71)
11 _ [U(q + w) _ M(q),—G[Z, u(q + w) + ”(q)H» < C”u(q + w) - u(q)HS(O,T)”Z”S(O,T)
I, = [u(q)~Glz, u(q + w) — u(q)]]- x (||“(‘1 +W)|lsr) * 14(q) HS(O,T))'
From (38), (64) and Theorem 9, we can obtain with (71)
In a similar argument to (63), we know that that
E(u(q) u(g +w), ) GL(V,LZ). (68) ”IIHLZ(Q) SC||wHL°"(Q)||q+w_qHL"O(Q):CHw||L°°(Q)' (72)

Thus with (68), we can apply the energy equality like (31)
to (66) and follow similar estimations as in the Proof of The-
orem 9, to obtain

10llso.7) < Cllwz + 1) + L] 12 g)- (69)
By Theorem 9 and (64), we can deduce as follows.

||wZ||L2(Q) < ”wHL""(Q)HZHLZ(Q) < C||w||Lm(Q)HZ||$(o,T)

(70)

2
S C||w||L°°(Q)

By analogy with (71) and (72), we can deduce

1212(q) < Cllwllzo()- (73)

Hence, from (69) to (73), we can obtain

[0llso,7) < Cllwz + 1) + L[ 12

<C(Ilwzll g * Iz * Il (74)

2
< Cllwllzeo -

This completes the proof.

To show the uniqueness as well as existence of an optimal
pair, we are going to use the strict convexity arguments in
[12]. To this end, we consider the following results.
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Theorem 13. The map q — u(q) of L*°(Q) into S(0, T) is
twice Fréchet differentiable at q and the twice Fréchet deriva-

tive of u at q in the direction w € L°(Q), say p = D*u(q)(w,
w), is a unique solution of the following problem

t
Myp" + A+ J k(t —s)Apds = G(u(q), p) + F(z, u(q)) + qp + 2wzin Q,
0

p=Ap=0o0n2%,
p(0)=0,p'(0)=0inQ,

where z is the solution of Equation (58), €(u(q),-) is given in
(59), and

F(2u(q)) = 4Gz, u(g)]| + 2u(q)~Clzl].  (76)
To prove Theorem 13, it is sufficient to show the following:

@ llpllser) < C”w”im(Q)"

(ii) ||Du(q + w)w — Du(q)w - pl| 59,1y = o(||wl| 0 (q)) as
[wl e (q) — 0-

Proof. (i) By (38) and (64), we can have the following estimate

15 (2 w(@))l, < Cllu(@ 21217 < Cllw(@ s 12l 50,7
< Cl|w||fo(q)-
(77)

t

Thus by similar arguments in the proof of (i) of Theorem
12, we can show that the weak solution p of Equation (75)
can be estimated as follows:

1Pl s0,1) < ClIF (2 u(q)) +2wz|| 2 o)- (78)
By (70) and (77), we know by (78) that
Pl s,y < CH“’”%@(Q)' (79)

(ii) From Equation (58), we can deduce that x = Du(q +
w)w is the weak solution of the following equation:

M, +A2K+J k(t = 5)A%kds = G (u(q +w), %) + (g + w)r + wu(g +w)inQ,

0
k=Axk=00on2%,

x(0)=0,%"(0)=0in Q.

By previous result, we can verify the following
I€lls0.7) < Cllwll oo (g)- (81)

From Equation (58), Equation (75) and Equation (80),
X = k — z — p satisfies the following equation

t

5
Myx" + APy + J k(t - s)A%xds = Z(u(q), x) + qx + Z I;inQ,
i=1

0
x=Ax=0o0n2%,
x(0)=0,x'(0)=0inQ,

(82)

(80)
in the weak sense, where
I, = [1,=Glu(q + w) — u(q), u(q +w) + u(q)]};
I =2[u(q + w) - u(q),~G[x, u(q + w)]],
I = 2[u(q),=G[x, u(q + w) - u(q)]],
Iy = F(z,u(q)) (= 4[z-Glz, u(q)]] + 2[u(q),~Glz 2])),
I = wx + wo — wz,
(83)



10

where 0 = u(q + w) — u(q) — z. By Theorem 9, (38) and (81),
we can have
1111l < Cllx]l s l|u(g + w) = u(q) |z [|u(q + w) + u(q) ||
<C(lua+ wlisorn + 14@llson)

X [|%lls 0, l14(q + w) = u(@)| 50,1

< CHw”iw(Q)-

(84)
By analogy with (84), we obtain
1111, < Cllwl o g (85)
Also, by analogy with (84), we have
1511, < Cllwl|Ze - (86)
It holds by (77) that
1141, < Cllwlfe g (87)

By (81) and Theorem 12, we can have

Mslly < Clwloqg) (I¥lls0m) * 18050 + I2llsior))

< C(Hw toi) * ||w||;w(Q>).

(88)

By similar arguments to those in the Proof of Theorem 9,
we can deduce that the weak solution y of Equation (82)
satisfies

5
Xl 50y <€ ZIi (89)
i=1 LZ(Q)
From (84) to (89), we can deduce
P (R Sy R C
which implies
Il =0 (I@loq) ) aslwllym g, — 0. (51)

This completes the proof.

Corollary 14. The map g — u(q) of % < L°(Q) into S(0, T)
is twice Gdteaux differentiable at q* and such the twice
Gateaux derivative of u in the direction q—q*, say p=D?
u(q*)(q-9q*,q—q*), is a unique solution of Equation (75)
in which q and w are replaced by q* and q — q*, respectively.

Proof. The proof is immediately followed by Theorem 13.

Journal of Function Spaces

Lemma 15. The weak solution p of Equation (75) satisfies

1Pllsor) < C”w”é(o)- (92)

Proof. Let z(w) be the weak solution of Equation (58). Then,
using S(0, T)—C°(Q), we can get from (64) the following:

2@l sy = Cllw@lz ) < Clu@)loay @2 q

S C””(‘J)HS(O,T) w2 q) < C||w||L2(Q)'
(93)

Let p be the weak solution of Equation (75). From the
second inequality in (77) and (78), we can deduce with (38)
and (93) the following:

IPllsr, < C(I1F(@ u@) ) * 102l 12 o))

<C(I1u@lson Il 0n * 122 120
< Cllwll -
(54)

This completes the proof.

4.2. Uniqueness and Existence of an Optimal Pair. To study
the existence of an optimal pair, we present the following
results.

Proposition 16. The solution mapping q — u(q) from B,
to W(0, T) of Equation (53) is continuous from the weakly-
star topology of BB, to the weak topology of W(0, T).

Before we prove Proposition 16, we need the following
compactness lemma.

Lemma 17. Let X, Y, and Z be Banach spaces such that the
embeddings X CY C Z are continuous and the embedding X

C Y is compact. Then, a bounded set of W>®(0, T;X,Z) =
{glgel®(0,T;X),g €L®(0,T;Z)} is relatively compact
in C([0,T];Y).

Proof. See Simon [24].
Proof of Proposition 16. Let q = (¢, 1) € B,q and let q, = (c,,

1,) € B,q be a sequence such that

q, — qweakly — star in 3,4 as n — 0. (95)
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From now on, each state u,, = u(q,,) is the weak solution of

M},u;’ + A, + k= Auy, = [u,,v,) + (¢, +1,)u, + f,

szn =—[u,, u,]inQ,

0
=Au, =v, = av” =0onZ,
v
u, (0, x) = ty(x), u',(0,x) = u;(x) in Q.

If we let p, = (g, uy, f,c, +1,) and 0=(0,0,0,0), then
from Theorem 9, we can know that u(p,) = u,, in Equation
(96) and u(0) =0 in S(0, T') and deduce that the following is
fulfilled:

[(pn) = u(O)ls(o,r) = 14l 50,7y < Cll (o> t1: 5 €+ 1)1 -
(97)

Hence, we can deduce from (97) that u, and u'n
remain in the bounded sets of L*(0, T; V) N W(0, T) and
L*®(0,T;Hy), respectively. Therefore, by using Rellich's

extraction theorem, we can find a subsequence of {u,}, say
again {u, }, and find u € W(0, T) such that

u,, — uweakly in W(0, T) as n — 00, (98)

u,, — uweakly — starin L°(0, T; V)asn — 00.  (99)

u',1 —u' weakly — star in L® (0, T;H(l)) asn — 00.
(100)

Since V—>H, is compact, we can apply Lemma 17 to (99)
and (100) with X = V and Y = Z = H}, to verify that

u, is pre — compact in C([0, T]; Hy). (101)

Hence, we may extract a subsequence, denoted again by
{u,}, such that

u, — ustronglyin C([0, T]; Hy) asn — co.  (102)

By Lemma 2, (11) and (38), we can note for almost t €
[0, T] that
([ 24 (£), 10 (£)] = [1a(2), ()] -2
= ([ (£) = 1a(2)s 14, () + (1)) -2
< Clluy (£) = ()| g || (8) + 1(2) | 2
< C(HunHS(O,T) + ||”||3(0,T)> [ ”Hc([o,T];H},)

< Clluy =l c(po,rymy)- (103)

Therefore, by (102) and (103), we may extract a subse-
quence, denoted again by {[u,, u,]}, such that

(4., u,] — [u, u]strongly in C([0, T]; H™*) as n — o0.

(104)

11

Since G € #(H %, Hj), we can deduce with (104) that
v, (= =Glu,, u,]) — v(= —Glu, u])strongly in C([0, T] ; Hg)
(105)

as n —> 0o. For any ¢ € V, we consider for almost all ¢
€ [0, T] that

| ([t (), v (1)] = [u(t), v(2)], 9),
< | ([ () = (), v (1)) @) + [([w(1), v (£) = v(1)]: §) |-
(106)

By Lemma 1, we note that the right hand side of (106)
equals

[ (14, (£) = (2, [V, (1), 1), | + [ (v () = v (1), [u(t), ¢]), |- (107)

By considering u(t), ¢ € V, we have [u(t), ¢] € L'. And
through (14) we can know that

Hi>L™, (108)
and therefore
L'>H™2 (109)

Thus, by Lemma 2, (109), (11), and (38), we can have as
follows:

right hand side of (4.54)

< Cltty ()12 1@l 124, (£) = (D)1
+{va(t) = vl 2 [[141), Bl 12

< C (Il 1A 140 (6) = (2
1% () = (O g 1l o) 14911

< C(lall3om * Ilsr) ) (e (8) = w(8)]
+1va(0) = v(0) ) 14011

< C (It = ulle(oray * I = Vllc(oyeny ) 14911

(110)

Thus, from (102), (105), and (110), we may extract a sub-
sequence, if necessary, denoted again by {[u,,, v,]}, such that

[u,,v,] — [u, v] strongly in C([O, T); V’) asn — 0.
(111)
From (95) and (101), we can obtain
(¢, +1,) 4, — (c+n)uweaklyin L*(Q)asn —> oco. (112)

We replace u, by u, in Equation (96), if necessary, and
take k — 00. Then, by the standard arguments in Dautray
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and Lions ([22], pp.561-565), we conclude that the limit y is
a weak solution of

M " + Au+ ks Au=[u,v]+ (c+nu+f,

Ay = —[u, u]inQ,

v (113)
u=Au=v=—=0o0n2,

ov

u(0, %) = up(x), u' (0,x) = u; (x) in Q.

Moreover, from the uniqueness of the weak solutions,
we conclude that u=u(q) in W(0, T), which implies that
u(q,) — u(q) weakly in W(0, T).

This completes the proof.
We now study the uniqueness and existence of an opti-
mal pair.

Theorem 18. For sufficiently large o and f3 in (54) there exists
unique (c*,n*) € B, such that (c*, n*) satisfies (55).
We prove this Theorem by showing:

(i) For sufficiently large o and [3 in (54), we prove the
maps ¢ — J(c,n) and n— J(c,n) are strictly con-
vex and strictly concave, respectively

(ii) We prove the existence of an optimal pair by showing
the maps ¢c— J(c,n) and n— J(c,n) are lower
semicontinuous and upper semicontinuous, respectively

Proof. (i) Let P, be the map ¢ — J(c,#7) and let Q. be the
map 1 — J(c, ). To obtain the unique existence of an opti-
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mal pair in the minimax optimal control problem, we show
the map P, is strictly convex and lower semicontinuous for

all €D,y and the map Q, is strictly concave and upper
semicontinuous for all c € C 4. As in [11] (cf. [12]), to show
the strict convexity and the strict concavity of each map, we
verify the following second Géteaux derivative conditions

szn(cl +&(c, =) (e — ey —¢1) > 0Vey (#)6; €Cy,s
(114)

D*Q. (1, +&(m, —m) (1, = 11> 11y = 1y) < 091, ()77, € Doy
(115)

where 0 < £ < 1. For sufficiently large « in (54), we first
prove the convexity of P, by showing (114). For simplicity,

we denote u(c; +&(c, — ¢1)), z(c; +&(c, — ¢;)) and p(c; +&(
¢, —¢;)) by u(&), z(&), and p(&), respectively. We calculate

DP,(c; + &, =) —¢p)
lim J(ey+(§+1)(cy —ci)om) = J(ey +§(c, = ¢1), 1)

1—0 l
=D J(c; +&(c; —¢1)sn)(c; =)
- J (u(E) - 2 2(E))ds + j (61 +E(6 — 1)) € — )yl

(116)

From Corollary 14 we know that the map g — u(q) is
twice Gateaux differentiable at g = ¢; + &(c, — ¢;) in the direc-
tion ¢, —¢,. Thus from (116), we can obtain the second
Gateaux derivative of P, as follows:

D.J(c; + (§+p)(c, —c1)m)(c,—¢;) = DJ(c; +&(c, — 1), m) (e, — 1)

szq(cl +e(e-a))a-c6-q) =[}in0

0

where p(&) is the weak solution of Equation (75) in which ¢
and w are replaced by ¢; + &(c, — ¢;) and ¢, — ¢;, respectively.
Then, by Lemma 15 and (117), we can deduce that

DZPU(CI +8(e—o))(e@ -6 -q)
T
=Pl |, 14(6) =2l
+ ||Z(f)||iz(o) +alle, - ClHiZ(Q)
2 ~CVT)p(&) 50 14(8) = Zall 2
+ HZ(E)HiZ(Q) +afle, - CIH%Z(Q)

> (a _ Cﬁ”u(f) - ZdHLZ(Q))

(118)

2
“les _CIHIZ](Q) +[12(E)122 )

T
J (4(E) - 2 PE)) s + [2() 2 g + @2 — 122 g

“ (117)

Hence, we can verify that there exists sufficiently large
o) (T, P, B4, z;) >0 such that (114) is satisfied for any a >
(T, P, B,g> 24)- Therefore, the map P, is strictly convex
for sufficiently large a > 0.

Similarly, we can show that there exist a sufficiently
large B/(T, P, B,g»z;) >0 such that (115) is satisfied for
any > B,(T,P, B,y z;). This also indicates the strict con-
cavity of Q.

(ii) Next, we prove the existence of an optimal pair (c*,
") € B,y by verifying that P, is lower semicontinuous for
all e D,y and Q, is upper semicontinuous for all c € C 4.
Let {c, } c C,q be a minimizing sequence of J. Thus

lim inf J(c,, %) = i%f J(c.n). (119)
n—~oo ce ad



Journal of Function Spaces

Since {c, } is bounded in L*(Q) ¢ L*(Q), we can extract a
subsequence {c, }  {c,} such that

¢, — ¢ weakly in L*(Q)ask — co.

(120)
Then, by Proposition 16, we obtain
u(c,,»n) — u(c", n)weakly in W(0, T) as k — oo, (121)

VneD,y. Since we know from Dautray-Lions ([22],
p.480) that W(0, T)—>C([0, T]; Hy) n C*([0, T] ; L?) and the
embedding H)—L? is compact, we can use Lemma 17 in
which X=H,, Y=Z=L* to have from (121) that the
sequence {u(c, ,7)} is relatively compact in C([0, T]; L?).
Thus, we can choose a subsequence of {c, }, if necessary, still
denoted by {c,, } such that

”(an> 1) — u(c", i) strongly in C([0, T] ;L2) ask — oo,
(122)

Vn € D,4. Therefore, we can deduce for the same subse-
quence {c, } given above that

u(c, 1) — u(c*, n) strongly in L*(Q) ask — oo, (123)

Vn € D,,. Since the norm is weakly lower semicontinu-
ous, we can verify by (120) and (123) that the map P, :
c—> J(c,n) is lower semicontinuous for all 77 € D, . Hence,
we know that

Jo(n) =lim infJ(c,, 1) = J(c*, 1), Vi € Dyg.

n—-00

(124)

t
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But since ], () < J(c*, %), we have

Jo(n)=J(c",n) = inf J(c,n), ¥ € Dy.

ceCyy

(125)

By similar arguments, we can prove that Q. is upper
semicontinuous for all ¢ € C 4. Thus, we can also know that
there exists #* € D,4 such that

Jo(n*) = sup Jo(n). (126)

WEDad

From (125) and (126), we can conclude that (c*,n*) €
B,4 is an optimal pair for the cost (54).

This completes the proof.

Remark 19. Assuming that T > 0 is sufficiently small, instead
of assuming « and f are large enough, we can also obtain
strict convexity and strict concavity of the maps P, and Q,,

respectively.

4.3. Necessary Condition of an Optimal Pair. In this subsec-
tion, we study the necessary optimality condition to be satis-
fied by an optimal pair of the minimax optimal control
problem with the cost (54).

From Theorem 12, we know that the solution map
q— u(q) from B,y to S(0, T) is Fréchet differentiable at
q* =(c*,n*),and the Fréchet derivative of u(g)at g=g* in
the direction w=(h,1) € [L®(Q))’;say z=Du(q*)w is a
unique weak solution of the following equation:

M,z" +A22+J k(t—s)Azds = G(u(q"),2) + (" + 17 )z + (h+ Du(q") inQ,

0
z=Az=0o0n2,

2(0)=0,z'(0)=0in(,

where G(u(q*), z) is defined in (59). By Equation (127), we
introduce the following adjoint equation corresponding to
the cost function (54):

(127)

T
M,p" + A%+ J k(o = t)A%pdo = G(u(q"), p) + (" +7")p+u(q") ~24in Q

t

p=A4Ap=0onZ,
p(T)=0,p'(T)=0in Q.

(128)
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Proposition 20. Equation (128) admits a unique solution
peS(0,T).

Proof. Changing the variable f to T — t in Equation (128), we
can complete the proof by referring to the results in [4, 17].

We now discuss the first-order optimality conditions for
the minimax optimal control problem (55) for the quadratic
cost function (54).

Theorem 21. If « and f3 in the cost (54) are large enough or
T > 0 is sufficiently small, then an optimal control ¢* €C,,
and a disturbance n* € D,;, namely, an optimal pair q* =
(c*,n*) € B,y satisfying (55) can be given by:

¢* = max {g, min {_ ”(‘Z)P,C}},
7" = max {ﬂ, min {”(Cg)p,ﬂ}}’

where p is the weak solution of Equation (128), ¢ and ¢
are constants given in (51), and n and 7] are constants given

in (52).

(129)

Proof. Let g* = (¢*, n1*) € B,4 be an optimal pair in (55) with
the cost (54) and u(q*) be the corresponding weak solution
of Equation (53).

From Theorem 12, it is clear that the map g=(c, )
—> u(q) is Gateaux differentiable at ¢* = (¢*,#*) in the
direction w = (h, 1) € [L°(Q)]* with ¢* + ew € B,y for suffi-
ciently small € > 0. Indeed, we have

u(q" +ew)—u(q")

—> z(=z(w))strongly in (0, T) ase — 0%,
€

(130)

where z=Du(g*)w is a unique weak solution of Equation
(127). Therefore, by (130), we can get the Gateaux derivative
of the cost (54) at g = ¢* in the direction w = (h, I) as follows:

DI ") (1)

~ lim J(c* +eh,n* +el)—J(c*,n")
e—0" &
(T * ok
= lim 7J <u(q*+sw)+u(q*)—22d, M) dt
e—0* 2 0 P s

iy (2] e sy £ or o, epuiyar

e—0"
T

T T
j (") —zd,z>zdt+ajo (c*,h»dt—ﬁjo (1 1)t

0

(131)

where z = Du(g*)w is a solution of Equation (127).
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Before we proceed to the calculations, by making use of
the fact that G is a self adjoint operator, we can note by
Lemma 1 and (109) that

(G(u(q")¢),9),
= ([¢=Glu(q"), u(q")]], @), + 2([u(q7)~G[¢ u(q")]], ),
= (¢, [9:=Glu(q"), u(q")]]), + 2(-Gl¢ u(q)], [ u(@)]),
= (¢ [p=Glu(q"), u(q")]]), + 2([¢> u(q")]:= Gl u(q")])_,,
= (¢ [p=Glu(q"), w(q")]]), +2(¢, [(q")=Gle, u(q")]]),
=(0:G(u(q" ) 9)) Vg peV
(132)

We multiply both sides of the weak form of Equation
(128) by z which is a solution of Equation (127), and inte-
grate it over [0, T]. Then, we have

T ) T
JO <Myp , z> V,,th + JO (Ap, Az),dt

T /T
+ (J k(a—t)Apdo,Az) dt

t 2

T

=| (F(u(q):p)+ (" +17)p z),dt
0

- zd,z)zdt.

+| (uq") (133)

0

By Fubini's theorem, we can know that

T T
J (J k(o—t)Apda,Az) dt
0 t 2
T t
=J (J K(t - s) Azds, Ap) dt
0 0 2
T t
=J <J k(t—s)Azzds,p> dt.
0 0 Vv

From (132), (134) and terminal values of the weak solu-
tion p of Equation (128), we can obtain the following by inte-
gration by parts of (133):

(134)

i

('A%

JZ <p, MZ"+ Nz + J;k(t - S)AZZdt> dt
[ .52+ @ e
(135)

[t

0

-2y 2),dt.

Since z is the solution of Equation (127), we can obtain
the following from (135):

T T
j <u<q*>—zd,z>2dt=j ((h+Du(q")p)ydt.  (136)

0 0
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Therefore, we can deduce that (131) and (136) imply
T
DI ) D= | (o + (g )t

0

T
+J (=Pn* +u(q")p, ),dt.  (137)

0
Since q* = (c*,n*) € B,y is an optimal pair in (55), we
know
DJ(¢", ") (h) 20, D, J(c", ") () <O, (1) € L¥(Q)].
(138)

Therefore, we can obtain the following from (137) and
(138):

T T
|, (e +utgip madez0, | (B s utqp D<o,
0

0 (139)

where (h,1) € [L°(Q)]>. By considering the signs of the
variations h and [ in (139), which depend on ¢* and #*,
respectively, we can deduce from (139) that

¢* = max { min {W}}
g {157}

This completes the proof.

(140)
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