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In the present article, we consider a von Kárman equation with long memory. The goal is to study a quadratic cost minimax optimal
control problems for the control system governed by the equation. First, we show that the solution map is continuous under a weak
assumption on the data. Then, we formulate the minimax optimal control problem. We show the first and twice Fréchet
differentiabilities of the nonlinear solution map from a bilinear input term to the weak solution of the equation. With the
Fréchet differentiabilities of the control to solution mapping, we prove the uniqueness and existence of an optimal pair and find
its necessary optimality condition.

1. Introduction

Let Ω be an open bounded domain in R2 with a sufficiently
smooth boundary ∂Ω. We set Q = ð0, TÞ ×Ω, Σ = ð0, TÞ × ∂
Ω. We consider the following von Kárman system with long
memory and the hinged boundary condition in the variables
u and v, representing the deflection of the plate and the Airy’s
stress, respectively:

u″ − γΔu″ + Δ2u +
ðt
0
k t − sð ÞΔ2u sð Þds = u, υ½ � + qu + f inQ,

Δ2υ = − u, u½ � in Q,

u = Δu = υ =
∂υ
∂v

= 0 on Σ,

u 0, xð Þ = u0 xð Þ, u′ 0, xð Þ = u1 xð Þ in Ω,

8>>>>>>>>><
>>>>>>>>>:

ð1Þ
where ′ = ∂/∂t, the vector ν denotes an outward normal,
γ > 0 means a constant related to the rotational inertia,
kð·Þ ∈ C1ð½0, T�Þ is a memory kernel, f is a forcing function,
and [·,·] is the von Kárman bracket given by

υ, o½ � = ∂2υ
∂x21

∂2o
∂x22

+
∂2o
∂x21

∂2υ
∂x22

− 2
∂2υ

∂x1∂x2

∂2o
∂x1∂x2

: ð2Þ

The term qu in Equation (1) represents the reset force
of the elastic plate in the system. This physical situation
naturally leads to the consideration of the bilinear control
problem for the control function q, which is used as a
force to make the state close to a desired state taking into
account. In this motivation, Bradley and Lenhart [1] studied
the bilinear optimal control problem for a Kirchhoff plate
equation (cf. [2]). And it has been studied in [3] the bilin-
ear optimal control problem of velocity term in a Kirchhoff
plate equation.

Motivated by [1, 3] with the above physical background,
we study here the bilinear minimax control problem for
Equation (1) with the control function q based on the Fréchet
differentiabilities of the nonlinear solution map. More
detailed explanations are given as follows:

In our previous study [4], we considered the Dirichlet
boundary value problems of Equation (1) without the term
qu and studied the optimal control problems for the exter-
nal forcing control system by the frameworks in Lions [5].
In [4], we proved and used the Gâteaux differentiability of
the nonlinear solution map to present the necessary opti-
mality conditions for the optimal controls of the specific
observation cases.

In this paper, we show the Fréchet differentiability of the
solution map q⟶ u from the bilinear control input terms to
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the solutions of Equation (1). In most cases, the Gâteaux dif-
ferentiability may be enough to solve a quadratic cost optimal
control problem. However, the Fréchet differentiability of a
solution map is more desirable for studying the problem with
more general cost function like nonquadratic or nonconvex
functions. So, this study is an improvement on a previous
study [4]. Based on the result, we constructed and solved
the bilinear minimax optimal control problems in Equation
(1). The minimax control strategies have been used by many
researchers for various control problems (see Lasiecka and
Triggiani [6] and Li and Yong [7]). As explained in [8], the
minimax control framework is employed to take into account
of the undesirable effects of system disturbance (or noise) in
control inputs such that a cost function achieves its mini-
mum even in the worst disturbances of the system. For the
purpose, we replace the bilinear multiplier q in Equation
(1) by c + η, where c is a control variable that belongs to the
admissible control set Cad, and η is a disturbance (or noise)
that belongs to the admissible disturbance set Dad. We also
introduce the following cost function to be minimized within
C ad and maximized within Dad:

J c, ηð Þ = 1
2

u − zdk k2L2 Qð Þ +
α

2
ck k2L2 Qð Þ −

β

2
ηk k2L2 Qð Þ, ð3Þ

where uis a solution of Equation (1), zd ∈ L2ðQÞ is desired
value, and the positive constants α and β are the relative
weights of the second and third terms on the right hand side
of (3).

Our goal of this paper is to find and characterize the opti-
mal control of the cost function (3) for the worst disturbance
through control input in Equation (1).

This leads to the problem of finding and characterizing
the saddle point (c∗, η∗) ∈C ad ×Dad satisfying

J c∗, ηð Þ ≤ J c∗, η ∗ð Þ ≤ J c, η ∗ð Þ, ∀ c, ηð Þ ∈C ad ×Dad: ð4Þ

In this paper, we use the terminology optimal pair for
such a saddle point (c∗, η∗) in (4). For the study of the exis-
tence of an optimal pair (c∗, η∗) satisfying (4), we can find
results in [8]. In that paper, the author used the minimax the-
orem in infinite dimensions given in Barbu and Precupanu
[9]. And in [10], we extended the result to a quasilinear PDE.

On the other hand, in this paper, we use the method
given in [11] to obtain the uniqueness as well as the existence
of an optimal pair. That is to say, we use the strict convexity
(or concavity) arguments of [12] by proving twice (Fréchet)
differentiability of the solution map. Also, as we will see later,
this method can suggest another condition that ensure strict
convexity (or concavity) of the map from control (or noise)
to the quadratic cost function (3).

Next, we derive an optimality condition for such a (c∗, η∗)
in (4). To derive the condition, we refer to the studies on
bilinear optimal control problems where the state equations
are linear partial differential equations such as the reaction
diffusion equation or Kirchhoff plate equation (see [1, 3, 8,
13] and references therein).

We now explain the content of this paper. In Section 2,
we present notations and some necessary lemmas. In Section

3, we prove the well-posedness of Equation (1) with respect
to u in the Hadamard sense using some previous results. To
name just a few, we can refer to [14–16], and references
therein. Especially, in order to prove the local Lipschitz con-
tinuity of the nonlinear solution map, we employ the energy
equality of Volterra-type integro-differential equation which
is proved in [17]. In Section 4, we shall study the minimax
optimal control problems: at first, we shall show that the
solution map of Equation (1): q⟶ u is the first and twice
Fréchet differentiable; By using twice Fréchet differentiability
of the solution maps c⟶ u and η⟶ u, we prove that the
maps c⟶ J and η⟶ J are strictly convex and concave,
respectively, under the assumptions that α, β are sufficiently
large or T > 0 is sufficiently small. And we also prove that
the maps c⟶ J and η⟶ J are lower and upper semicon-
tinuous, respectively. Consequently, we can prove the
uniqueness and existence of an optimal pair. Next, we derive
the necessary optimality condition of an optimal pair for the
observation case associated with the cost (3).

2. Notations and Preliminaries

Throughout this paper, we use C as a generic constant and
omit the integral variables in any definite integrals without
confusion.

If X is a Banach space, we denote by X ′ its topological
dual, and by h⋅ , ⋅iX ′ ,X the duality pairing between X ′ and X.
We introduce the following abbreviations:

Lp = Lp Ωð Þ, Wk,p =Wk,p Ωð Þ,  ⋅k kp = ⋅k kLp , ð5Þ

where p ≥ 1 and Wk,p is the Lp-based Sobolev spaces for
k ≥ 1. We denote by Hk, the standard Sobolev spaces Wk,2

for k ≥ 1. And Hk
0 means the completions of C∞

0 ðΩÞ in Hk

for k ≥ 1. The duality pairs between Hk
0 and H−k ðk = 1, 2Þ

are abbreviated by h⋅ , ⋅ ik,−k. The scalar product and norm
on L2 are denoted by ð·, · Þ2 and k⋅k2, respectively. Then,
based on the Poincaré inequality and the well-known regu-
larity theory for elliptic boundary value problems (Temam
[18] p. 150), the scalar products on Hk

0 (k = 1, 2) can be given
as follows:

υ, oð Þð ÞH1
0
= ∇υ, ∇oð Þ2,∀υ, o ∈H1

0,

υ, oð Þð ÞH2
0
= Δυ, Δoð Þ2,∀υ, o ∈H2

0:
ð6Þ

Then obviously,

υk kH1
0
= ∇υk k2,∀υ ∈H1

0,  ok kH2
0
= Δok k2, ∀o ∈H2

0: ð7Þ

We define the operator A which stands for the following:

Au = −Δu, V ≡D Að Þ =H2 ∩H1
0, ð8Þ
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and consider the operator Mγ = I + γA. We also define the
operator A as follows:

Au = Δ2u, D Að Þ = u ∈H4 ∩H1
0
��Δu = 0 on Γ

� �
: ð9Þ

We note that

D A1/2� �
= V : ð10Þ

By using again the well-known elliptic regularity theory
(Temam [18] p. 150), we can obtain

υk kH2 ≤ C Δυk k2, ∀υ ∈ V ,  ok kH4 ≤ C Δ2o
�� ��

2, ∀o ∈D Að Þ:
ð11Þ

Therefore, we can employ

υk kV = Δυk k2, ∀υ ∈ V ,  ok kD Að Þ = Δ2o
�� ��

2, ∀o ∈D Að Þ:
ð12Þ

It becomes apparent that each topological imbedding

V ⟶H1
0 ⟶ L2 ⟶H−1 ⟶V ′, ð13Þ

is continuous and compact. According to Adams [19], we
know that when n ≤ 3, the imbedding

V ⟶ C0 �Ω
� �

, ð14Þ

is compact.
It is well known that the biharmonic operator

Δ2 : H4 ∩H2
0 ⟶ L2, ð15Þ

is bijective, and it admits an isometric extension

Δ2 : H2
0 ⟶H−2: ð16Þ

Thus, we can define an operator G ∈ℒ ðL2,H4 ∩H2
0Þðor

ℒ ðH−2,H2
0ÞÞby

Gf = g iff Δ2g = f inΩ, g =
∂g
∂v

= 0 on ∂Ω: ð17Þ

Therefore, from Equation (1), one can also note that

υ = −G u, u½ � ∀u ∈H2
0: ð18Þ

We collect below some results for the Airy stress function
and von Kárman bracket.

Lemma 1. The trilinear form b: V ×V ×V ⟶ R given by

b υ, o, φð Þ ≡ υ, o½ �, φð Þ2, ð19Þ

satisfies the property

b υ, o, φð Þ = b υ, φ, oð Þ, ∀υ, o, φ ∈ V : ð20Þ

Proof. See ([20], Proposition 1.4.2).

Lemma 2. The bilinear forms ðυ, oÞ⟶G½υ, o� from H2 ×H2

into W2,∞ and ðυ, oÞ⟶ ½υ, o� from H1 ×H2 into H−2 are
continuous. We also have the following estimates:

G υ, o½ �k kW2,∞ ≤ C υk kH2 ok kH2 , ∀υ, o ∈H2,

υ, o½ �k kH−2 ≤ C υk kH1 ok kH2 , ∀υ ∈H1, ∀o ∈H2:
ð21Þ

Consequently,

φ,G υ, o½ �½ �k k2 ≤ C φk kH2 υk kH2 ok kH2 , ∀φ, υ, o ∈H2: ð22Þ

Proof. See [15, 20].

3. Well Posedness of a von Kárman
Equation with Long Memory

We introduce the Hilbert space Wð0, TÞ of the weak solu-
tions of Equation (1) given by

W 0, Tð Þ = uju ∈ L2 0, T ; Vð Þ, u′ ∈ L2 0, T ;H1
0

� �
, u″ ∈ L2 Qð Þ

n o
,

ð23Þ

with the norm

uk kw 0,Tð Þ = uk k2L2 0,T ;Vð Þ + u′
�� ��2

L2 0,T ;H1
0ð Þ + u″

�� ��2
L2 Qð Þ

� 	1/2
:

ð24Þ

Definition 3. Function u ∈Wð0, TÞ is called a weak solution
of Equation (1), if it satisfies

Mγu″ ⋅ð Þ, o
D E

V ′ ,V
+ Δu ⋅ð Þ + k ∗ Δu ⋅ð Þ, Δoð Þ2 = u ⋅ð Þ, υ ⋅ð Þ½ � + q ⋅ð Þu ⋅ð Þ + f ⋅ð Þ, oð Þ2,

Δυ ⋅ð Þ, Δφð Þ2 = − u ⋅ð Þ, u ⋅ð Þ½ �, φð Þ2,
for all o, φð Þ ∈ V ×H2

0in the sense of D′ 0, Tð Þ,
u 0ð Þ = u0, u′ 0ð Þ = u1,

8>>>>>><
>>>>>>:

ð25Þ
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where D′ð0, TÞ is the space of distributions on ð0, TÞ.
As indicated in [14], von Kárman nonlinearity is subcrit-

ical; thus, the issues of well-posedness and regularity of weak
solutions are standard.

Theorem 4. If ðu0, u1Þ ∈ V ×H1
0, k ∈ C1ð½0, T�Þ, q ∈ L∞ðQÞ,

and f ∈ L2ðQÞ, then a weak solution u of Equation (1) exists
and satisfies:

u ∈W 0, Tð Þ ∩ L∞ 0, T ; Vð Þ ∩W1,∞ 0, T ;H1
0

� �
: ð26Þ

To show the regularity of a weak solutions of Equation (1),
we need the following lemma.

Lemma 5. Let X, Y be two Banach spaces, X ⊂ Y with dense,
and X being reflexive. Set

Cw 0, T½ � ; Yð Þ = f ∈ L∞ 0, T ; Yð Þj f ⋅ð Þ, ξh iY ,Y ′ ∈ C 0, T½ �ð Þ, ∀ξ ∈ Y ′
n o

:

ð27Þ
Then

L∞ 0, T ; Xð Þ ∩ Cw 0, T½ � ; Yð Þ = Cw 0, T½ � ; Xð Þ: ð28Þ

Proof. See ([21], p. 275).

Corollary 6. Assume that u is a weak solution of Equation (1).
Then, we can assert (after possibly a modification on a set of
measure zero) that

u ∈ Cw 0, T½ � ; Vð Þ, u′ ∈ Cw 0, T½ � ;H1
0

� �
: ð29Þ

Proof. From Dautray and Lions ([22], p. 480), it is clear that
Wð0, TÞ↪Cð½0, T� ;H1

0Þ ∩ C1ð½0, T� ; L2Þ: Therefore, since u
∈Wð0, TÞ ∩ L∞ð0, T ; VÞ ∩W1,∞ð0, T ;H1

0Þ, the proof is
the immediate consequence of Lemma 5 obtained by setting
X = V , Y =H1

0 to have u ∈ Cwð½0, T� ; VÞ and by setting X =
H1

0, Y = L2 to have u′ ∈ Cwð½0, T� ;H1
0Þ.

In the sequel, we give the important energy equality of
weak solutions of Equation (1). It is used to prove the
improved regularity of weak solutions of Equation (1) and
used in all estimations in this paper.

Lemma 7. Assume that u is a weak solution of Equation (1).
Then, for each t ∈ ½0, T�, we have the energy equality

u′ tð Þ�� ��2
2
+ γ ∇u′ tð Þ�� ��2

2
+ Δu tð Þk k22

+
1
2

Δv tð Þk k22 + 2 k ∗ Δu tð Þ, Δu tð Þð Þ2

= 2
ðt
0
k′ ∗ Δu, Δu


 �
2
ds + 2

ðt
0
k 0ð Þ Δuk k22ds + 2

ðt
0
qu, u′


 �
2
ds

+ 2
ðt
0

f , u′

 �

2
ds + u1k k22 + γ ∇u1k k22 + Δu0k k22 +

1
2

Δv0k k22,

ð30Þ

where Δv0 = −Δ−1½u0, u0�:

Proof. By Corollary 6 and the uniform boundedness theo-
rem, we have uðtÞ ∈ V and u′ðtÞ ∈ H1

0 for all t ∈ ½0, T�: Thus,
every function in (30) has meaning for all t ∈ ½0, T�: Then, we
can proceed the proof as in ([17], Proposition 2.1). By
regarding f in ([17], Proposition 2.1) as ½u, v� + qu + f in
Equation (1), we can deduce that the weak solution u of
Equation (1) satisfies

u′ tð Þ�� ��2
2 + γ ∇u′ tð Þ�� ��2

2 + Δu tð Þk k22 + 2 k ∗ Δu tð Þ, Δu tð Þð Þ2
= 2

ðt
0
k′ ∗ Δu, Δu


 �
2
ds + 2

ðt
0
k 0ð Þ Δuk k22ds

+ 2
ðt
0

u, v½ � + qu + f , u′

 �

2
ds + u1k k22 + γ ∇u1k k22 + Δu0k k22:

ð31Þ

From [4], we can have

2
ðt
0

u, v½ �, u′

 �

2
ds = −

1
2

Δv tð Þk k22 +
1
2

Δv0k k22: ð32Þ

Thus, we have (30).
This proves the lemma.

From the energy equalities (30) or (31) together with the
following well-known Gronwall's lemma, we can prove
uniqueness and regularity of weak solutions of Equation (1).

Lemma 8. Let ξð·Þ be a nonnegative, absolutely continuous
function on ½0, T�, which satisfies the differentiable inequality
for a:e:t ∈ ½0, T�:

ξ′ tð Þ ≤ ψ tð Þξ tð Þ + ϕ tð Þ, ð33Þ

where ψ and ϕ are nonnegative, summable functions on ½0, T�.
Then

ξ tð Þ ≤ e
Ð t

0
ψds

ξ 0ð Þ +
ðt
0
ϕds

� 	
, ð34Þ

for all 0 ≤ t ≤ T .

Proof. See ([23], p.624).

Here, we can state the following theorem.

Theorem 9. Assume that ðu0, u1Þ ∈ V ×H1
0, k ∈ C1ð½0, T�Þ,

q ∈ L∞ðQÞ, and f ∈ L2ðQÞ. Then Equation (1) has a unique
weak solution u in Sð0, TÞ ≡Wð0, TÞ ∩ Cð½0, T� ; VÞ ∩ C1

ð½0, T� ;H1
0Þ. Moreover, the solution mapping p = ðu0, u1, q,

f Þ⟶ ðuðpÞ, u′ðpÞ, vðpÞÞ of P ≡V ×H1
0 × L∞ðQÞ × L2ðQÞ

into Cð½0, T� ; VÞ × Cð½0, T� ;H1
0Þ × Cð½0, T� ;W2,∞Þ is locally

Lipschitz continuous.
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Indeed, let p1 = ðu10, u11, q1, f1Þ ∈P and p2 = ðu20, u21, q2,
f2Þ ∈P , we prove this theorem by showing the following
inequality

u p1ð Þ − u p2ð Þk kS 0,Tð Þ + v p1ð Þ − v p2ð Þk kC 0,T½ �;W2,∞ð Þ
≤ C p1 − p2k kP ,

ð35Þ

where C > 0 is a constant depending on the data and

p1 − p2k kP
= u10 − u20

�� ��2
V
+ u11 − u21
�� ��2

H1
0
+ q1 − q2k k2L∞ Qð Þ + f1 − f2k k2L2 Qð Þ


 �1/2
:

ð36Þ

Proof of Theorem 9. Lemma 7 allows us to show the reg-
ularity of u. It is verified from the data conditions that
the right hand side of (30) is continuous in t. Hence, we
have that

t⟶ ∇u′ tð Þ�� ��2
2 + Δu tð Þk k22, ð37Þ

is continuous on ½0, T�: Indeed, u ∈ Cð½0, T� ; VÞ ∩ C1ð½0,
T� ;H1

0Þ:

Therefore, considering results in [15, 16] and [14], we can
deduce that Equation (1) possesses a unique weak solution
u ∈ Sð0, TÞ under the data condition ðu0, u1, f Þ ∈H  ≡V ×
H1

0 × L2ðQÞ such that

uk kS 0,Tð Þ ≤ C u0, u1, fð Þk kH : ð38Þ

Based on the above result, we prove the inequality (35).
For the purpose, we denote u1 − u2 ≡ uðp1Þ − uðp2Þ by ϕ
and v1 − v2 ≡ vðp1Þ − vðp2Þ by Y . Then, we can know from
Equation (1) that ϕ and Y satisfy the following equation in
the weak sense:

Mγϕ″ + Δ2ϕ + k ∗ Δ2ϕ = ϕ, v1½ � + u2, Y½ � + q1ϕ + q1 − q2ð Þu2 + f1 − f2,

Δ2Y = − ϕ, u1 + u2½ � inQ,

ϕ = Δϕ = Y =
∂Y
∂ν

= 0 onΣ,

ϕ 0ð Þ = u10 − u20, ϕ′ 0ð Þ = u11 − u21 inΩ:

8>>>>>>><
>>>>>>>:

ð39Þ

We note that

u2, Y½ � = u2,−G ϕ, u1 + u2½ �½ �: ð40Þ

Just as deriving the equality (31) from Equation (1), we
can know that the weak solution ϕ of Equation (39) satisfies

ϕ′ tð Þ�� ��2
2 + γ ∇ϕ′ tð Þ�� ��2

2 + Δϕ tð Þk k22
= −2 k ∗ Δϕ tð Þ, Δϕ tð Þð Þ2 + 2

ðt
0
k′ ∗ Δϕ, Δϕ


 �
2
ds

+ 2
ðt
0
k 0ð Þ Δϕk k22ds + 2

ðt
0



ϕ, v1½ � + u2, Y½ � + q1ϕ

+ q1 − q2ð Þu2, ϕ′
�
2
ds + 2

ðt
0

f1 − f2, ϕ′

 �

2
ds

+ ϕ′ 0ð Þ�� ��2
2 + γ ∇ϕ′ 0ð Þ�� ��2

2 + Δϕ 0ð Þk k22:

ð41Þ

At first, we note by (13) that:

2
ðt
0
q1ϕ, ϕ′


 �
2
ds

����
���� ≤ 2 q1k kL∞ Qð Þ

ðt
0
ϕk k2 ϕ′

�� ��
2ds

≤ C
ðt
0
Δϕk k2 ϕ′

�� ��
2ds

≤ C
ðt
0

Δϕk k22 + ϕ′
�� ��2

2


 �
ds,

ð42Þ

2
ðt
0

q1 − q2ð Þu2, ϕ′

 �

2
ds

����
����

≤ 2
ðt
0

q1 − q2ð Þu2k k2 ϕ′
�� ��

2ds

≤ q1 − q2ð Þu2k k2L2 Qð Þ +
ðt
0
ϕ′

�� ��2
2ds

≤ q1 − q2k k2L∞ Qð Þ u2k k2L2 Qð Þ +
ðt
0
ϕ′

�� ��2
2ds:

ð43Þ

By u2 ∈ Sð0, TÞ↪L2ðQÞ and (38), we can get from (43)
that

2
ðt
0

q1 − q2ð Þu2, ϕ′

 �

2
ds

����
���� ≤ C q1 − q2k k2L∞ Qð Þ +

ðt
0
ϕ′

�� ��2
2ds:

ð44Þ

For other estimates of the remaining terms on the right
hand side of (41), we can refer to the previous results in [4]
and obtain with (41) and (42)-(44) the following:

ϕ′ tð Þ�� ��2
2 + ∇ϕ′ tð Þ�� ��2

2 + Δϕ tð Þk k22
≤ C ϕ′ 0ð Þ�� ��2

2 + ∇ϕ′ 0ð Þ�� ��2
2 + Δϕ 0ð Þk k22 + q1k




− q2k2L∞ Qð Þ + f1 − f2k k2L2 Qð Þ +
ðt
0

Δϕk k22 + ϕ′
�� ��2

2


 �
ds
�

≤ C p1 − p2k k2P +
ðt
0

Δϕk k22 + ϕ′
�� ��2

2


 �
ds

� 	
:

ð45Þ
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By applying Lemma 8 to (45), we have

∇ϕ′ tð Þ�� ��2
2 + Δϕ tð Þk k22 ≤ C p1 − p2k k2P : ð46Þ

And also, for almost t ∈ ½0, T�, we obtain by Lemma 2 and
(11) that

Y tð Þk k2W2,∞ = −G ϕ tð Þ, u1 tð Þ + u2 tð Þ½ �k k2W2,∞

≤ C Δϕ tð Þk k22 Δ u1 tð Þ + u2 tð Þð Þk k22
≤ C u1k k2S 0,Tð Þ + u2k k2S 0,Tð Þ


 �
Δϕ tð Þk k22:

ð47Þ

By (38), (46), and (47), we can obtain

Y tð Þk k2W2,∞ ≤ C p1 − p2k k2P : ð48Þ

This implies with (46) that

ϕk kC 0,T½ �;Vð Þ∩C1 0,T½ �;H1
0ð Þ + Yk kC 0,T½ �;W2,∞ð Þ ≤ C p1 − p2k kP :

ð49Þ

Since M−1
γ A1/2 ∈LðL2Þ and M−1

γ ∈LðL2, VÞ, by conduct-
ing similar estimations in Equation (39), we can obtain from
(49) that

ϕ″
�� ��

L2 Qð Þ ≤ C p1 − p2k kP: ð50Þ

Hence, by (49) and (50) we can prove (35).
This completes the proof.

4. Quadratic Cost Minimax Control Problems

Let the following be the set of the admissible controls:

Cad = c ∈ L∞ Qð Þjc ≤ c ≤�c a:e:inQf g, ð51Þ

where c and �c are given constants, representing lower and
upper bounds of the admissible control variables, respec-
tively. Let the following be the set of the admissible distur-
bances or noises:

Dad = η ∈ L∞ Qð Þjη ≤ η ≤ �η a:e:inQ
n o

, ð52Þ

where η and �η are given constants, representing lower and
upper bounds of admissible disturbance variables, respec-
tively. For variational analysis, we use the L2ðQÞ norm on
Cad and Dad: For simplicity, we denote by Bad = Cad ×Dad:
From Theorem 9, we can uniquely define the solution map
Bad ⟶ Sð0, TÞ, which maps from q = ðc, ηÞ ∈ Bad to the
weak solution uðqÞ ∈ Sð0, TÞ, where uðqÞ satisfies the follow-
ing equation:

The weak solution uðqÞ of Equation (53) is called the state
of the control system Equation (53).

To study the quadratic cost minimax optimal control
problems for Equation (53), we introduce the following qua-
dratic cost function

J c, ηð Þ = 1
2

u qð Þ − zdk k2L2 Qð Þ +
α

2
ck k2L2 Qð Þ −

β

2
ηk k2L2 Qð Þ, ð54Þ

where zd ∈ L2ðQÞ is the desired value, and the positive con-
stants α and β are the relative weights of the second and third
terms on the right hand side of (54).

As indicated in the introduction, we shall study the mini-
max optimal control problem as follows: we prove the
uniqueness as well as existence of a control c∗ ∈ Cad and a dis-

turbance (or noise) η∗ ∈Dad such that ðc∗, η∗Þ is a saddle
point of the functional Jð·, · Þ of (54). That is,

J c∗, ηð Þ ≤ J c∗, η∗ð Þ ≤ J c, η∗ð Þ,∀ c, ηð Þ ∈ Bad: ð55Þ

Here, we call such ðc∗, η∗Þ in (55) to be an optimal pair
for the minimax optimal control problem with the cost
(54). And we need to characterize ðc∗, η∗Þ in (55) by giving
the necessary optimality condition through adjoint equation
related to Equation (53) and the cost (54). For this purpose,
we have to show the differentiabilities of the control to state
mapping.

4.1. Differentiabilities of the Nonlinear Solution Map. We
study the Fréchet differentiability of the nonlinear solution
map, which is an improvement of the previous results in

Mγu″ qð Þ + Δ2u qð Þ +
ðt
0
k t − sð ÞΔ2u q ; sð Þds = u qð Þ, v qð Þ½ � + c + ηð Þu qð Þ + f ,

Δ2v qð Þ = − u qð Þ, u qð Þ½ � inQ,

u qð Þ = Δu qð Þ = v qð Þ = ∂v qð Þ
∂ν

= 0 onΣ,

u q ; 0, xð Þ = u0 xð Þ, u′ q ; 0, xð Þ = u1 xð Þ inΩ:

8>>>>>>>>><
>>>>>>>>>:

ð53Þ
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[4] and is more desirable for many applications. From Theo-
rem 9, for fixed ðu0, u1, f Þ ∈ V ×H1

0 × L2ðQÞ in Equation
(53), we know that the solution map L∞ðQÞ⟶ Sð0, TÞ
from q ð = c + η in Equation (53)) ∈L∞ (Q) to uðqÞ ∈ Sð0, TÞ
is well defined and continuous.

For our study, we present the following definitions.

Definition 10. The solution map q⟶ uðqÞ of L∞ðQÞ into
Sð0, TÞ is said to be Fréchet differentiable on L∞ðQÞ if for
any q ∈ L∞ðQÞ, there exists a TðqÞ ∈LðL∞ðQÞ, Sð0, TÞÞ
such that, for any w ∈ L∞ðQÞ,

lim
wk kL∞ Qð Þ⟶0

u q +wð Þ − u qð Þ − T qð Þwk kS 0,Tð Þ
wk kL∞ Qð Þ

= 0: ð56Þ

The operator TðqÞ is called the Fréchet derivative of u at
q, which we denote by DuðqÞ:TðqÞw =DuðqÞw ∈ Sð0, TÞ is

called the Fréchet derivative of u at q in the direction of
w ∈ L∞ðQÞ:

Definition 11. Let U be a subset of L∞ðQÞ and q, q∗ ∈ U . The
solution map q⟶ uðqÞ of U into Sð0, TÞ is said to be
Gâteaux differentiable at q∗ in the direction q − q∗ if there
exists a function Duðq∗ ; q − q∗Þ ∈ Sð0, TÞ such that

lim
λ⟶0

u q∗ + λ q − q∗ð Þð Þ − u q∗ð Þ
λ

−Du q∗ ; q − q∗ð Þ
����

����
S 0,Tð Þ

= 0:

ð57Þ

Theorem 12. The solution map q⟶ uðqÞ of L∞ðQÞ into S
ð0, TÞ is Fréchet differentiable on L∞ðQÞ and the Fréchet
derivative of uðqÞ at q in the direction w ∈ L∞ðQÞ, that is to
say z =DuðqÞw, is the weak solution of

We prove this theorem by two steps.

(i) For any w ∈ L∞ðQÞ, Equation (58) admits a unique
weak solution z ∈ Sð0, TÞ, namely, there exists an
operator T ∈LðL∞ðQÞ, Sð0, TÞÞ satisfying Tw =
zð= zðwÞÞ

(ii) We show that kuðq +wÞ − uðqÞ − zkSð0,TÞ ≤ C

kwk2L∞ðQÞ:

Proof. (i) Let

G u qð Þ, zð Þ≔ z,−G u qð Þ, u qð Þ½ �½ � + 2 u qð Þ,−G z, u qð Þ½ �½ �: ð59Þ

Then, we can estimate the right hand side of (59) as fol-
lows. By (11) and Lemma 2 we have

z,−G u qð Þ, u qð Þ½ �½ �k k2 ≤ C zk kH2 u qð Þk k2H2 ≤ C u qð Þk k2S 0,Tð Þ Δzk k2:
ð60Þ

This implies with (38) that

z,−G u qð Þ, u qð Þ½ �½ �k k2 ≤ C Δzk k2: ð61Þ

Similarly, we have

2 u qð Þ,−G z, u qð Þ½ �½ �k k2 ≤ C Δzk k2: ð62Þ

Hence, by (61) and (62), we note that

G u qð Þ, ·ð Þ ∈L V , L2
� �

: ð63Þ

Taking into account wuðqÞ ∈ L2ðQÞ and (63), we can
employ the linear theory in [17] (cf. [22]) to verify that Equa-
tion (58) admits a unique weak solution z ∈ Sð0, TÞ:And also
by using the energy equality to be satisfied by z as in (31) and
following similar estimations in Theorem 9, we can know
by (38) that the weak solution zð= zðwÞÞ of Equation (58)
satisfies

z wð Þk kS 0,Tð Þ ≤ C wu qð Þk kL2 Qð Þ ≤ C wk kL∞ Qð Þ u qð Þk kL2 Qð Þ
≤ C u qð Þk kS 0,Tð Þ wk kL∞ Qð Þ ≤ C wk kL∞ Qð Þ:

ð64Þ

Hence, from (64), the mapping w ∈ L∞ðQÞ↦ zðwÞ ∈
Sð0, TÞ is linear and bounded. We can thus infer that there
exists a T ∈LðL∞ðQÞ, Sð0, TÞÞ such that Tw = zðwÞ for
each w ∈ L∞ðQÞ:

Mγz″ + Δ2z +
ðt
0
k t − sð ÞΔ2zds = z,−G u qð Þ, u qð Þ½ �½ � + 2 u qð Þ,−G z, u qð Þ½ �½ � + qz +wu qð Þ inQ,

z = Δz = 0 onΣ,

z 0ð Þ = 0, z′ 0ð Þ = 0 inΩ:

8>>>><
>>>>:

ð58Þ
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(ii) We set the difference uðq +wÞ − uðqÞ − z = θ. Then,
by noting the following:

Mγθ″ + Δ2θ + k ∗ Δ2θ

= u q +wð Þ, v q +wð Þ½ � − u qð Þ, v qð Þ½ � − z, v qð Þ½ � − 2 u qð Þ,½
−G z, u qð Þ½ �� + q +wð Þu q +wð Þ − qu qð Þ − qz −wu qð Þ

= u q +wð Þ, v q +wð Þ − v qð Þ½ � + θ, v qð Þ½ �
− 2 u qð Þ,−G z, u qð Þ½ �½ � + qθ +w u q +wð Þ − u qð Þð Þ

≡ u q +wð Þ,−G u q +wð Þ, u q +wð Þ½ �½
+G u qð Þ, u qð Þ½ �� + θ, v qð Þ½ � − 2 u qð Þ,½
−G z, u qð Þ½ �� + qθ +w u q +wð Þ − u qð Þð Þ

= u q +wð Þ,−G u q +wð Þ − u qð Þ, u q +wð Þ + u qð Þ½ �½ �
+ θ, v qð Þ½ � − 2 u qð Þ,−G z, u qð Þ½ �½ � + q +wð Þθ +wz

= u q +wð Þ,−G θ, u q +wð Þ + u qð Þ½ �½ �
+ u q +wð Þ,−G z, u q +wð Þ + u qð Þ½ �½ �
+ θ, v qð Þ½ � − 2 u qð Þ,−G z, u qð Þ½ �½ � + q +wð Þθ +wz

= u q +wð Þ,−G θ, u q +wð Þ + u qð Þ½ �½ �
+ u q +wð Þ − u qð Þ,−G z, u q +wð Þ + u qð Þ½ �½ �
+ u qð Þ,−G z, u q +wð Þ + u qð Þ½ �½ � + θ, v qð Þ½ �
− 2 u qð Þ,−G z, u qð Þ½ �½ � + q +wð Þθ +wz

= u q +wð Þ,−G θ, u q +wð Þ + u qð Þ½ �½ �
+ u q +wð Þ − u qð Þ,−G z, u q +wð Þ + u qð Þ½ �½ �
+ u qð Þ,−G z, u q +wð Þ − u qð Þ½ �½ � + θ, v qð Þ½ �
+ q +wð Þθ +wz inQ;

ð65Þ

we know that θ satisfies

in the weak sense, where

Ξ u qð Þ, u q +wð Þ, θð Þ
= u q +wð Þ,−G θ, u q +wð Þ + u qð Þ½ �½ � + θ, v qð Þ½ �,

I1 = u q +wð Þ − u qð Þ,−G z, u q +wð Þ + u qð Þ½ �½ �,
I2 = u qð Þ,−G z, u q +wð Þ − u qð Þ½ �½ �:

ð67Þ

In a similar argument to (63), we know that

Ξ u qð Þ, u q +wð Þ, ·ð Þ ∈L V , L2
� �

: ð68Þ

Thus with (68), we can apply the energy equality like (31)
to (66) and follow similar estimations as in the Proof of The-
orem 9, to obtain

θk kS 0,Tð Þ ≤ C wz + I1 + I2k kL2 Qð Þ: ð69Þ

By Theorem 9 and (64), we can deduce as follows.

wzk kL2 Qð Þ ≤ wk kL∞ Qð Þ zk kL2 Qð Þ ≤ C wk kL∞ Qð Þ zk kS 0,Tð Þ
≤ C wk k2L∞ Qð Þ:

ð70Þ

By Lemma 2 and (11), we have

I1k kL2 Qð Þ ≤ C u q +wð Þ − u qð Þk kC 0,T½ �;Vð Þ zk kC 0,T½ �;Vð Þ
× u q +wð Þ + u qð Þk kL2 0,T ;Vð Þ

≤ C u q +wð Þ − u qð Þk kS 0,Tð Þ zk kS 0,Tð Þ

× u q +wð Þk kS 0,Tð Þ + u qð Þk kS 0,Tð Þ

 �

:

ð71Þ

From (38), (64) and Theorem 9, we can obtain with (71)
that

I1k kL2 Qð Þ ≤ C wk kL∞ Qð Þ q +w − qk kL∞ Qð Þ = C wk k2L∞ Qð Þ: ð72Þ

By analogy with (71) and (72), we can deduce

I2k kL2 Qð Þ ≤ C wk k2L∞ Qð Þ: ð73Þ

Hence, from (69) to (73), we can obtain

θk kS 0,Tð Þ ≤ C wz + I1 + I2k kL2 Qð Þ

≤ C wzk kL2 Qð Þ + I1k kL2 Qð Þ + I2k kL2 Qð Þ

 �

≤ C wk k2L∞ Qð Þ:

ð74Þ

This completes the proof.
To show the uniqueness as well as existence of an optimal

pair, we are going to use the strict convexity arguments in
[12]. To this end, we consider the following results.

Mγθ″ + Δ2θ + k ∗ Δ2θ = Ξ u qð Þ, u q +wð Þ, θð Þ + q +wð Þθ +wz + I1 + I2 inQ,

θ = Δθ = 0 onΣ,

θ 0, xð Þ = 0, θ′ 0, xð Þ = 0 inΩ,

8>><
>>:

ð66Þ
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Theorem 13. The map q⟶ uðqÞ of L∞ðQÞ into Sð0, TÞ is
twice Fréchet differentiable at q and the twice Fréchet deriva-

tive of u at q in the direction w ∈ L∞ðQÞ, say ρ =D2uðqÞðw,
wÞ, is a unique solution of the following problem

where z is the solution of Equation (58), GðuðqÞ, ·Þ is given in
(59), and

F z, u qð Þð Þ = 4 z,−G z, u qð Þ½ �½ � + 2 u qð Þ,−G z, z½ �½ �: ð76Þ

To prove Theorem 13, it is sufficient to show the following:

(i) kρkSð0,TÞ ≤ Ckwk2L∞ðQÞ;

(ii) kDuðq +wÞw −DuðqÞw − ρkSð0,TÞ = oðkwkL∞ðQÞÞ as
kwkL∞ðQÞ ⟶ 0.

Proof. (i) By (38) and (64), we can have the following estimate

F z, u qð Þð Þk k2 ≤ C u qð Þk kH2 zk k2H2 ≤ C u qð Þk kS 0,Tð Þ zk k2S 0,Tð Þ
≤ C wk k2L∞ Qð Þ:

ð77Þ

Thus by similar arguments in the proof of (i) of Theorem
12, we can show that the weak solution ρ of Equation (75)
can be estimated as follows:

ρk kS 0,Tð Þ ≤ C F z, u qð Þð Þ + 2wzk kL2 Qð Þ: ð78Þ

By (70) and (77), we know by (78) that

ρk kS 0,Tð Þ ≤ C wk k2L∞ Qð Þ: ð79Þ

(ii) From Equation (58), we can deduce that κ = Duðq +
wÞw is the weak solution of the following equation:

By previous result, we can verify the following

κk kS 0,Tð Þ ≤ C wk kL∞ Qð Þ: ð81Þ

From Equation (58), Equation (75) and Equation (80),
χ = κ − z − ρ satisfies the following equation

Mγχ″ + Δ2χ +
ðt
0
k t − sð ÞΔ2χds = G u qð Þ, χð Þ + qχ + 〠

5

i=1
Ii inQ,

χ = Δχ = 0 onΣ,

χ 0ð Þ = 0, χ′ 0ð Þ = 0 inΩ,

8>>>><
>>>>:

ð82Þ

in the weak sense, where

I1 = κ,−G u q +wð Þ − u qð Þ, u q +wð Þ + u qð Þ½ �½ �,

I2 = 2 u q +wð Þ − u qð Þ,−G κ, u q +wð Þ½ �½ �,

I3 = 2 u qð Þ,−G κ, u q +wð Þ − u qð Þ½ �½ �,

I4 =F z, u qð Þð Þ = 4 z,−G z, u qð Þ½ �½ � + 2 u qð Þ,−G z, z½ �½ �ð Þ,

I5 =wκ +wθ −wz,

ð83Þ

Mγρ″ + Δ2ρ +
ðt
0
k t − sð ÞΔ2ρds = G u qð Þ, ρð Þ +F z, u qð Þð Þ + qρ + 2wz inQ,

ρ = Δρ = 0 onΣ,

ρ 0ð Þ = 0, ρ′ 0ð Þ = 0 inΩ,

8>>>><
>>>>:

ð75Þ

Mγκ″ + Δ2κ +
ðt
0
k t − sð ÞΔ2κds =G u q +wð Þ, κð Þ + q +wð Þκ +wu q +wð Þ inQ,

κ = Δκ = 0 onΣ,

κ 0ð Þ = 0, κ′ 0ð Þ = 0 inΩ:

8>>>><
>>>>:

ð80Þ
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where θ = uðq +wÞ − uðqÞ − z: By Theorem 9, (38) and (81),
we can have

I1k k2 ≤ C κk kH2 u q +wð Þ − u qð Þk kH2 u q +wð Þ + u qð Þk kH2

≤ C u q +wð Þk kS 0,Tð Þ + u qð Þk kS 0,Tð Þ

 �

× κk kS 0,Tð Þ u q +wð Þ − u qð Þk kS 0,Tð Þ
≤ C wk k2L∞ Qð Þ:

ð84Þ

By analogy with (84), we obtain

I2k k2 ≤ C wk k2L∞ Qð Þ: ð85Þ

Also, by analogy with (84), we have

I3k k2 ≤ C wk k2L∞ Qð Þ: ð86Þ

It holds by (77) that

I4k k2 ≤ C wk k2L∞ Qð Þ: ð87Þ

By (81) and Theorem 12, we can have

I5k k2 ≤ C wk kL∞ Qð Þ κk kS 0,Tð Þ + θk kS 0,Tð Þ + zk kS 0,Tð Þ

 �

≤ C wk k2L∞ Qð Þ + wk k3L∞ Qð Þ

 �

:

ð88Þ

By similar arguments to those in the Proof of Theorem 9,
we can deduce that the weak solution χ of Equation (82)
satisfies

χk kS 0,Tð Þ ≤ C 〠
5

i=1
Ii

�����
�����
L2 Qð Þ

: ð89Þ

From (84) to (89), we can deduce

χk kS 0,Tð Þ ≤ C wk k3L∞ Qð Þ + wk k2L∞ Qð Þ

 �

, ð90Þ

which implies

χk kS 0,Tð Þ = o wk kL∞ Qð Þ

 �

as wk kL∞ Qð Þ ⟶ 0: ð91Þ

This completes the proof.

Corollary 14. The map q⟶ uðqÞ ofU ⊂ L∞ðQÞ into Sð0, TÞ
is twice Gâteaux differentiable at q∗ and such the twice
Gâteaux derivative of u in the direction q − q∗, say ρ =D2

uðq∗Þðq − q∗, q − q∗Þ, is a unique solution of Equation (75)
in which q and w are replaced by q∗ and q − q∗, respectively.

Proof. The proof is immediately followed by Theorem 13.

Lemma 15. The weak solution ρ of Equation (75) satisfies

ρk kS 0,Tð Þ ≤ C wk k2L2 Qð Þ: ð92Þ

Proof. Let zðwÞ be the weak solution of Equation (58). Then,
using Sð0, TÞ↪C0ð�QÞ, we can get from (64) the following:

z wð Þk kS 0,Tð Þ ≤ C wu qð Þk kL2 Qð Þ ≤ C u qð Þk kC0 �Qð Þ wk kL2 Qð Þ

≤ C u qð Þk kS 0,Tð Þ wk kL2 Qð Þ ≤ C wk kL2 Qð Þ:

ð93Þ

Let ρ be the weak solution of Equation (75). From the
second inequality in (77) and (78), we can deduce with (38)
and (93) the following:

ρk kS 0,Tð Þ ≤ C F z, u qð Þð Þk kL2 Qð Þ + wzk kL2 Qð Þ

 �

≤ C u qð Þk kS 0,Tð Þ zk k2S 0,Tð Þ + wk kL2 Qð Þ zk kS 0,Tð Þ

 �

≤ C wk k2L2 Qð Þ:

ð94Þ

This completes the proof.

4.2. Uniqueness and Existence of an Optimal Pair. To study
the existence of an optimal pair, we present the following
results.

Proposition 16. The solution mapping q⟶ uðqÞ from Bad
to Wð0, TÞ of Equation (53) is continuous from the weakly-
star topology of Bad to the weak topology of Wð0, TÞ:

Before we prove Proposition 16, we need the following
compactness lemma.

Lemma 17. Let X, Y , and Z be Banach spaces such that the
embeddings X ⊂ Y ⊂ Z are continuous and the embedding X
⊂ Y is compact. Then, a bounded set of W1,∞ð0, T ; X, ZÞ =
fg ∣ g ∈ L∞ð0, T ; XÞ, g′ ∈ L∞ð0, T ; ZÞg is relatively compact
in Cð½0, T� ; YÞ:

Proof. See Simon [24].

Proof of Proposition 16. Let q = ðc, ηÞ ∈ Bad and let qn = ðcn,
ηnÞ ∈ Bad be a sequence such that

qn ⟶ qweakly − star inBad as n⟶∞: ð95Þ
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From now on, each state un = uðqnÞ is the weak solution of

Mγun″ + Δ2un + k ∗ Δ2un = un, vn½ � + cn + ηnð Þun + f ,

Δ2vn = − un, un½ � inQ,

un = Δun = vn =
∂vn
∂ν

= 0 onΣ,

un 0, xð Þ = u0 xð Þ, u′n 0, xð Þ = u1 xð Þ inΩ:

8>>>>>>><
>>>>>>>:

ð96Þ

If we let pn = ðu0, u1, f , cn + ηnÞ and 0 = ð0, 0, 0, 0Þ, then
from Theorem 9, we can know that uðpnÞ = un in Equation
(96) and uð0Þ = 0 in Sð0, TÞ and deduce that the following is
fulfilled:

u pnð Þ − u 0ð Þk kS 0,Tð Þ = unk kS 0,Tð Þ ≤ C u0, u1, f , cn + ηnð Þk kP :
ð97Þ

Hence, we can deduce from (97) that un and u′n
remain in the bounded sets of L∞ð0, T ; VÞ ∩Wð0, TÞ and
L∞ð0, T ;H1

0Þ, respectively. Therefore, by using Rellich's
extraction theorem, we can find a subsequence of fung, say
again fung, and find u ∈Wð0, TÞ such that

un ⟶ uweakly inW 0, Tð Þ as n⟶∞, ð98Þ

un ⟶ uweakly − star inL∞ 0, T ; Vð Þas n⟶∞: ð99Þ
u′n ⟶ u′ weakly − star in L∞ 0, T ;H1

0
� �

as n⟶∞:

ð100Þ
Since V↪H1

0 is compact, we can apply Lemma 17 to (99)
and (100) with X =V and Y = Z =H1

0 to verify that

un is pre − compact inC 0, T½ � ;H1
0

� �
: ð101Þ

Hence, we may extract a subsequence, denoted again by
fung, such that

un ⟶ u strongly inC 0, T½ � ;H1
0

� �
as n⟶∞: ð102Þ

By Lemma 2, (11) and (38), we can note for almost t ∈
½0, T� that

un tð Þ, un tð Þ½ � − u tð Þ, u tð Þ½ �k kH−2

= un tð Þ − u tð Þ, un tð Þ + u tð Þ½ �k kH−2

≤ C un tð Þ − u tð Þk kH1 un tð Þ + u tð Þk kH2

≤ C unk kS 0,Tð Þ + uk kS 0,Tð Þ

 �

un − uk kC 0,T½ �;H1
0ð Þ

≤ C un − uk kC 0,T½ �;H1
0ð Þ: ð103Þ

Therefore, by (102) and (103), we may extract a subse-
quence, denoted again by f½un, un�g, such that

un, un½ �⟶ u, u½ �strongly inC 0, T½ � ;H−2� �
as n⟶∞:

ð104Þ

Since G ∈LðH−2,H2
0Þ, we can deduce with (104) that

vn = −G un, un½ �ð Þ⟶ v = −G u, u½ �ð Þstrongly inC 0, T½ � ;H2
0

� �
ð105Þ

as n⟶∞: For any ϕ ∈ V , we consider for almost all t
∈ ½0, T� that

un tð Þ, vn tð Þ½ � − u tð Þ, v tð Þ½ �, ϕð Þ2
�� ��

≤ un tð Þ − u tð Þ, vn tð Þ½ �, ϕð Þ2
�� �� + u tð Þ, vn tð Þ − v tð Þ½ �, ϕð Þ2

�� ��:
ð106Þ

By Lemma 1, we note that the right hand side of (106)
equals

un tð Þ − u tð Þ, vn tð Þ, ϕ½ �ð Þ2
�� �� + vn tð Þ − v tð Þ, u tð Þ, ϕ½ �ð Þ2

�� ��: ð107Þ

By considering uðtÞ, ϕ ∈ V , we have ½uðtÞ, ϕ� ∈ L1. And
through (14) we can know that

H2
0↪L∞, ð108Þ

and therefore

L1↪H−2: ð109Þ

Thus, by Lemma 2, (109), (11), and (38), we can have as
follows:

right hand side of 4:54ð Þ
≤ C un tð Þk k2H2 ϕk kH2 un tð Þ − u tð Þk k2

+ vn tð Þ − v tð Þk kH2
0

u tð Þ, ϕ½ �k kH−2

≤ C unk k2C 0,T½ �;Vð Þ Δϕk k2 un tð Þ − u tð Þk k2



+ vn tð Þ − v tð Þk kH2
0
uk kC 0,T½ �;H1

0ð Þ Δϕk k2
�

≤ C unk k2S 0,Tð Þ + uk kS 0,Tð Þ

 �


un tð Þ − u tð Þk k2
+ vn tð Þ − v tð Þk kH2

0

�
Δϕk k2

≤ C un − uk kC 0,T½ �;L2ð Þ + vn − vk kC 0,T½ �;H2
0ð Þ
�

Δϕk k2:



ð110Þ

Thus, from (102), (105), and (110), we may extract a sub-
sequence, if necessary, denoted again by f½un, vn�g, such that

un, vn½ �⟶ u, v½ � strongly inC 0, T½ � ; V ′

 �

as n⟶∞:

ð111Þ

From (95) and (101), we can obtain

cn + ηnð Þun ⟶ c + ηð Þuweakly inL2 Qð Þ as n⟶∞: ð112Þ

We replace un by unk in Equation (96), if necessary, and
take k⟶∞. Then, by the standard arguments in Dautray
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and Lions ([22], pp.561-565), we conclude that the limit y is
a weak solution of

Mγu″ + Δ2u + k ∗ Δ2u = u, v½ � + c + ηð Þu + f ,

Δ2v = − u, u½ � inQ,

u = Δu = v =
∂v
∂ν

= 0 onΣ,

u 0, xð Þ = u0 xð Þ, u′ 0, xð Þ = u1 xð Þ inΩ:

8>>>>>>><
>>>>>>>:

ð113Þ

Moreover, from the uniqueness of the weak solutions,
we conclude that u = uðqÞ in Wð0, TÞ, which implies that
uðqnÞ⟶ uðqÞ weakly in Wð0, TÞ.

This completes the proof.
We now study the uniqueness and existence of an opti-

mal pair.

Theorem 18. For sufficiently large α and β in (54) there exists
unique ðc∗, η∗Þ ∈ Bad such that ðc∗, η∗Þ satisfies (55).

We prove this Theorem by showing:

(i) For sufficiently large α and β in (54), we prove the
maps c⟶ Jðc, ηÞ and η⟶ Jðc, ηÞ are strictly con-
vex and strictly concave, respectively

(ii) We prove the existence of an optimal pair by showing
the maps c⟶ Jðc, ηÞ and η⟶ Jðc, ηÞ are lower
semicontinuous and upper semicontinuous, respectively

Proof. (i) Let Pη be the map c⟶ Jðc, ηÞ and let Qc be the
map η⟶ Jðc, ηÞ: To obtain the unique existence of an opti-

mal pair in the minimax optimal control problem, we show
the map Pη is strictly convex and lower semicontinuous for
all η ∈Dad and the map Qc is strictly concave and upper
semicontinuous for all c ∈ Cad: As in [11] (cf. [12]), to show
the strict convexity and the strict concavity of each map, we
verify the following second Gâteaux derivative conditions

D2Pη c1 + ξ c2 − c1ð Þð Þ c2 − c1, c2 − c1ð Þ > 0,∀c1 ≠ð Þc2 ∈ Cad,
ð114Þ

D2Qc η1 + ξ η2 − η1ð Þð Þ η2 − η1, η2 − η1ð Þ < 0,∀η1 ≠ð Þη2 ∈Dad,
ð115Þ

where 0 < ξ < 1: For sufficiently large α in (54), we first
prove the convexity of Pη by showing (114). For simplicity,
we denote uðc1 + ξðc2 − c1ÞÞ, zðc1 + ξðc2 − c1ÞÞ and ρðc1 + ξð
c2 − c1ÞÞ by uðξÞ, zðξÞ, and ρðξÞ, respectively. We calculate

DPη c1 + ξ c2 − c1ð Þð Þ c2 − c1ð Þ

= lim
l⟶0

J c1 + ξ + lð Þ c2 − c1ð Þ, ηð Þ − J c1 + ξ c2 − c1ð Þ, ηð Þ
l

=DcJ c1 + ξ c2 − c1ð Þ, ηð Þ c2 − c1ð Þ

=
ðT
0
u ξð Þ − zd , z ξð Þð Þ2ds + α

ðT
0
c1 + ξ c2 − c1ð Þð Þ, c2 − c1Þ2dt:

ð116Þ

From Corollary 14 we know that the map q⟶ uðqÞ is
twice Gâteaux differentiable at q = c1 + ξðc2 − c1Þ in the direc-
tion c2 − c1: Thus from (116), we can obtain the second
Gâteaux derivative of Pη as follows:

where ρðξÞ is the weak solution of Equation (75) in which q
and w are replaced by c1 + ξðc2 − c1Þ and c2 − c1, respectively.
Then, by Lemma 15 and (117), we can deduce that

D2Pη c1 + ξ c2 − c1ð Þð Þ c2 − c1, c2 − c1ð Þ

≥ − ρ ξð Þk kC 0,T½ �;L2ð Þ
ðT
0

u ξð Þ − zdk k2ds

+ z ξð Þk k2L2 Qð Þ + α c2 − c1k k2L2 Qð Þ

≥ −C
ffiffiffiffi
T

p
ρ ξð Þk kS 0,Tð Þ u ξð Þ − zdk kL2 Qð Þ

+ z ξð Þk k2L2 Qð Þ + α c2 − c1k k2L2 Qð Þ

≥ α − C
ffiffiffiffi
T

p
u ξð Þ − zdk kL2 Qð Þ


 �

� c2 − c1k k2L2 Qð Þ + z ξð Þk k2L2 Qð Þ:

ð118Þ

Hence, we can verify that there exists sufficiently large
αlðT ,P, Bad, zdÞ > 0 such that (114) is satisfied for any α >
αlðT ,P, Bad, zdÞ: Therefore, the map Pη is strictly convex
for sufficiently large α > 0.

Similarly, we can show that there exist a sufficiently
large βlðT ,P, Bad, zdÞ > 0 such that (115) is satisfied for
any β > βlðT ,P, Bad, zdÞ. This also indicates the strict con-
cavity of Qc:

(ii) Next, we prove the existence of an optimal pair ðc∗,
η∗Þ ∈ Bad by verifying that Pη is lower semicontinuous for
all η ∈Dad and Qc is upper semicontinuous for all c ∈ Cad:
Let fcng ⊂ Cad be a minimizing sequence of J . Thus

lim inf
n⟶∞

J cn, ηð Þ = inf
c∈Cad

J c, ηð Þ: ð119Þ

D2Pη c1 + ξ c2 − c1ð Þð Þ c2 − c1, c2 − c1ð Þ = lim
μ⟶0

DcJ c1 + ξ + μð Þ c2 − c1ð Þ, ηð Þ c2 − c1ð Þ −DcJ c1 + ξ c2 − c1ð Þ, ηð Þ c2 − c1ð Þ
μ

=
ðT
0
u ξð Þ − zd , ρ ξð Þð Þ2ds + z ξð Þk k2L2 Qð Þ + α c2 − c1k k2L2 Qð Þ,

ð117Þ
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Since fcng is bounded in L∞ðQÞ ⊂ L2ðQÞ, we can extract a
subsequence fcnkg ⊂ fcng such that

cnk ⟶ c∗ weakly in L2 Qð Þ as k⟶∞: ð120Þ

Then, by Proposition 16, we obtain

u cnk , η
� �

⟶ u c∗, ηð Þweakly inW 0, Tð Þ as k⟶∞, ð121Þ

∀η ∈Dad: Since we know from Dautray-Lions ([22],
p.480) that Wð0, TÞ↪Cð½0, T� ;H1

0Þ ∩ C1ð½0, T� ; L2Þ and the
embedding H1

0↪L2 is compact, we can use Lemma 17 in
which X =H1

0, Y = Z = L2 to have from (121) that the
sequence fuðcnk , ηÞg is relatively compact in Cð½0, T� ; L2Þ.
Thus, we can choose a subsequence of fcnkg, if necessary, still
denoted by fcnkg such that

u cnk , η
� �

⟶ u c∗, ηð Þ strongly inC 0, T½ � ; L2� �
as k⟶∞,

ð122Þ

∀η ∈Dad: Therefore, we can deduce for the same subse-
quence fcnkg given above that

u cnk , η
� �

⟶ u c∗, ηð Þ strongly in L2 Qð Þ as k⟶∞, ð123Þ

∀η ∈Dad: Since the norm is weakly lower semicontinu-
ous, we can verify by (120) and (123) that the map Pη :

c⟶ Jðc, ηÞ is lower semicontinuous for all η ∈Dad: Hence,
we know that

J0 ηð Þ = lim inf
n⟶∞

J cn, ηð Þ ≥ J c∗, ηð Þ, ∀η ∈Dad: ð124Þ

But since J0ðηÞ ≤ Jðc∗, ηÞ, we have

J0 ηð Þ = J c∗, ηð Þ = inf
c∈Cad

J c, ηð Þ, ∀η ∈Dad: ð125Þ

By similar arguments, we can prove that Qc is upper
semicontinuous for all c ∈ Cad: Thus, we can also know that
there exists η∗ ∈Dad such that

J0 η∗ð Þ = sup
η∈Dad

J0 ηð Þ: ð126Þ

From (125) and (126), we can conclude that ðc∗, η∗Þ ∈
Bad is an optimal pair for the cost (54).

This completes the proof.

Remark 19. Assuming that T > 0 is sufficiently small, instead
of assuming α and β are large enough, we can also obtain
strict convexity and strict concavity of the maps Pη and Qc,
respectively.

4.3. Necessary Condition of an Optimal Pair. In this subsec-
tion, we study the necessary optimality condition to be satis-
fied by an optimal pair of the minimax optimal control
problem with the cost (54).

From Theorem 12, we know that the solution map
q⟶ uðqÞ from Bad to Sð0, TÞ is Fréchet differentiable at
q∗ = ðc∗, η∗Þ,and the Fréchet derivative of uðqÞ at q = q∗ in
the direction w = ðh, lÞ ∈ ½L∞ðQÞ�2,say z =Duðq∗Þw is a
unique weak solution of the following equation:

where Gðuðq∗Þ, zÞ is defined in (59). By Equation (127), we
introduce the following adjoint equation corresponding to
the cost function (54):

Mγz″ + Δ2z +
ðt
0
k t − sð ÞΔ2zds = G u q∗ð Þ, zð Þ + c∗ + η∗ð Þz + h + lð Þu q∗ð Þ inQ,

z = Δz = 0 onΣ,

z 0ð Þ = 0, z′ 0ð Þ = 0 inΩ,

8>>>><
>>>>:

ð127Þ

Mγp″ + Δ2p +
ðT
t
k σ − tð ÞΔ2pdσ = G u q∗ð Þ, pð Þ + c∗ + η∗ð Þp + u q∗ð Þ − zd inQ,

p = Δp = 0 onΣ,

p Tð Þ = 0, p′ Tð Þ = 0 inΩ:

8>>>><
>>>>:

ð128Þ
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Proposition 20. Equation (128) admits a unique solution
p ∈ Sð0, TÞ:

Proof. Changing the variable t to T − t in Equation (128), we
can complete the proof by referring to the results in [4, 17].

We now discuss the first-order optimality conditions for
the minimax optimal control problem (55) for the quadratic
cost function (54).

Theorem 21. If α and β in the cost (54) are large enough or
T > 0 is sufficiently small, then an optimal control c∗ ∈ Cad
and a disturbance η∗ ∈Dad , namely, an optimal pair q∗ =
ðc∗, η∗Þ ∈ Bad satisfying (55) can be given by:

c∗ =max c, min −
u q∗ð Þp

α
,�c


 �
 �
,

η∗ =max η, min
u q∗ð Þp

β
, �η


 �
 �
,

ð129Þ

where p is the weak solution of Equation (128), c and �c
are constants given in (51), and η and �η are constants given
in (52).

Proof. Let q∗ = ðc∗, η∗Þ ∈ Bad be an optimal pair in (55) with
the cost (54) and uðq∗Þ be the corresponding weak solution
of Equation (53).

From Theorem 12, it is clear that the map q = ðc, ηÞ
⟶ uðqÞ is Gâteaux differentiable at q∗ = ðc∗, η∗Þ in the
direction w = ðh, lÞ ∈ ½L∞ðQÞ�2 with q∗ + εw ∈ Bad for suffi-
ciently small ε > 0: Indeed, we have

u q∗ + εwð Þ − u q∗ð Þ
ε

⟶ z = z wð Þð Þstrongly inS 0, Tð Þ as ε⟶ 0+,

ð130Þ

where z =Duðq∗Þw is a unique weak solution of Equation
(127). Therefore, by (130), we can get the Gâteaux derivative
of the cost (54) at q = q∗ in the direction w = ðh, lÞ as follows:

DJ c∗, η∗ð Þ h, lð Þ
= lim

ε⟶0+
J c∗ + εh, η∗ + εlð Þ − J c∗, η∗ð Þ

ε

= lim
ε⟶0+

1
2

ðT
0

u q∗ + εwð Þ + u q∗ð Þ − 2zd ,
u q∗ + εwð Þ − u q∗ð Þ

ε

� 	
2
dt

+ lim
ε⟶0+

α

2

ðT
0
2 c∗, hð Þ2 + ε hk k22
� �

dt −
β

2

ðT
0
2 η∗, lð Þ2 + ε lk k22
� �

dt
� �

=
ðT
0
u q∗ð Þ − zd , zð Þ2dt + α

ðT
0
c∗, hð Þ2dt − β

ðT
0
η∗, lð Þ2dt,

ð131Þ

where z =Duðq∗Þw is a solution of Equation (127).

Before we proceed to the calculations, by making use of
the fact that G is a self adjoint operator, we can note by
Lemma 1 and (109) that

G u q∗ð Þ, ϕð Þ, φð Þ2
= ϕ,−G u q∗ð Þ, u q∗ð Þ½ �½ �, φð Þ2 + 2 u q∗ð Þ,−G ϕ, u q∗ð Þ½ �½ �, φð Þ2
= ϕ, φ,−G u q∗ð Þ, u q∗ð Þ½ �½ �ð Þ2 + 2 −G ϕ, u q∗ð Þ½ �, φ, u q∗ð Þ½ �h i2,−2
= ϕ, φ,−G u q∗ð Þ, u q∗ð Þ½ �½ �ð Þ2 + 2 ϕ, u q∗ð Þ½ �,−G φ, u q∗ð Þ½ �h i−2,2
= ϕ, φ,−G u q∗ð Þ, u q∗ð Þ½ �½ �ð Þ2 + 2 ϕ, u q∗ð Þ,−G φ, u q∗ð Þ½ �½ �ð Þ2
= ϕ, G u q∗ð Þ, φð Þð Þ2,∀φ, ϕ ∈ V :

ð132Þ

We multiply both sides of the weak form of Equation
(128) by z which is a solution of Equation (127), and inte-
grate it over ½0, T�. Then, we have

ðT
0

Mγp″, z
D E

V′,V
dt +

ðT
0
Δp, Δzð Þ2dt

+
ðT
0

ðT
t
k σ − tð ÞΔpdσ, Δz

� 	
2
dt

=
ðT
0
G u q∗ð Þ, pð Þ + c∗ + η∗ð Þp, zð Þ2dt

+
ðT
0
u q∗ð Þ − zd , zð Þ2dt: ð133Þ

By Fubini's theorem, we can know that

ðT
0

ðT
t
k σ − tð ÞΔpdσ, Δz

� 	
2
dt

=
ðT
0

ðt
0
k t − sð ÞΔzds, Δp

� 	
2
dt

=
ðT
0

ðt
0
k t − sð ÞΔ2zds, p

� �
V′,V

dt: ð134Þ

From (132), (134) and terminal values of the weak solu-
tion p of Equation (128), we can obtain the following by inte-
gration by parts of (133):

ðT
0

p, Mγz″ + Δ2z +
ðt
0
k t − sð ÞΔ2zdt

� �
V ,V ′

dt

=
ðT
0
p, G u q∗ð Þ, zð Þ + c∗ + η∗ð Þzð Þ2dt

+
ðT
0
u q∗ð Þ − zd , zð Þ2dt: ð135Þ

Since z is the solution of Equation (127), we can obtain
the following from (135):

ðT
0
u q∗ð Þ − zd , zð Þ2dt =

ðT
0

h + lð Þu q∗ð Þ, pð Þ2dt: ð136Þ
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Therefore, we can deduce that (131) and (136) imply

DJ c∗, η∗ð Þ h, lð Þ =
ðT
0
αc∗ + u q∗ð Þp, hð Þ2dt

+
ðT
0
−βη∗ + u q∗ð Þp, lð Þ2dt: ð137Þ

Since q∗ = ðc∗, η∗Þ ∈ Bad is an optimal pair in (55), we
know

DcJ c∗, η∗ð Þ hð Þ ≥ 0,Dη J c∗, η∗ð Þ lð Þ ≤ 0, h, lð Þ ∈ L∞ Qð Þ½ �2:
ð138Þ

Therefore, we can obtain the following from (137) and
(138):

ðT
0
αc∗ + u q∗ð Þp, hð Þ2dt ≥ 0,

ðT
0
−βη∗ + u q∗ð Þp, lð Þ2dt ≤ 0,

ð139Þ
where ðh, lÞ ∈ ½L∞ðQÞ�2: By considering the signs of the
variations h and l in (139), which depend on c∗ and η∗,
respectively, we can deduce from (139) that

c∗ =max c, min −
u q∗ð Þp

α
,�c


 �
 �
,

η∗ =max η, min
u q∗ð Þp

β
, �η


 �
 �
:

ð140Þ

This completes the proof.
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