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In this paper, we study the quasilinear Schrödinger equation involving concave and convex nonlinearities. When the pair of
parameters belongs to a certain subset of ℝ2, we establish the existence of a nontrivial mountain pass-type solution and
infinitely many negative energy solutions by using some new techniques and dual fountain theorem. Recent results from the
literature are improved and extended.

1. Introduction and Main Results

In this paper, we are concerned with the following quasi-
linear Schrödinger equations:

−Δu +V xð Þu − Δ uj j2α� �
uj j2α−2u = λg x, uð Þ + μh x, uð Þ, x ∈ℝN ,

ð1Þ

where N ≥ 3, 3/4 < α ≤ 1, λ and μ are the parameters, g, h ∈
CðℝN ×ℝ,ℝÞ, and the potential VðxÞ satisfies the following
assumption:

(V) V ∈ CðℝN ,ℝÞ, 0 <V0 ≔ inf x∈ℝNVðxÞ, and for each
M > 0, measfx ∈ℝN : VðxÞ ≤Mg<+∞, where V0 is a con-
stant and meas denotes the Lebesgue measure in ℝN .

In the last two decades, Equation (1) has been studied
extensively due to its strong physical background. In partic-
ular, under the suitable parameters, Equation (1) can
describe the self-channeling of a high-power ultra-short
laser in matter, for detail [1–3]. In addition, Equation (1)
also appears the superfluid film in plasma physics [4] and
some fluid mechanics [5].

For the case where α = 1, λ = 1, and μ = 1, solutions of (1)
are standing wave solutions of the following quasilinear
Schrödinger equation:

iΨt + ΔΨ −W xð ÞΨ + kΔ h Ψj j2� �� �
h′ Ψj j2� �

Ψ

+ g x,Ψð Þ + h x,Ψð Þ = 0, x ∈ℝN :
ð2Þ

Many researchers focus on the nonlinear quasilinear
Schrödinger Equations (1) and (2). Adachi and Watanabe
[6] discussed the uniqueness of the ground state solutions
for the following quasilinear Schrödinger equations:

−Δu + λu − kΔ uj jαð Þ uj jα−2u = uj jp−1u, x ∈ℝN , ð3Þ

via a dual approach. The Nehari method was adopted to
establish the existence results of ground state solutions by
Liu et al. in [7]. The Lagrange multiplier method was used
in [8] to prove the existence of the ground state solutions.
Recently, Liu et al. in [9] applied a perturbation method to
get the existence of positive solutions and a sequence of high
energy solutions. In [10], Zhang et al. established the exis-
tence of infinite solutions for a modified nonlinear Schrödin-
ger equation by using a symmetric mountain pass theorem as
well as dual approach. Recently, Zhang et al. [11] offered a
new iterative technique to get the existence and nonexistence
of blow-up radial solutions for a Schrödinger equation
involving a nonlinear operator.

Thecommonpointof theaboveworks is that thenonlinear
terms are all superlinear; to our best knowledge, there are few
results on thequasilinear Schrödinger equation involving con-
cave and convex nonlinearities. Furthermore, as mentioned
above, there are few results on the existence of negative
energy solutions. The reason is that the combination of con-
cave and convex will make it difficult to verify the mountain
pass theorem and fountain theorem. Inspired by the above-
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mentioned works, this paper is aimed at considering quasi-
linear Schrödinger Equation (1) involving concave and con-
vex nonlinearities and proving the existence of mountain
pass-type of solution and a sequence of infinitely many solu-
tions with negative energy.

Throughout this paper, we assume that g and h satisfy the
following assumptions:

(g1) There exist constants 1 < r1 < r2<⋯<rm < 2 and
functions hiðxÞ ∈ L2/2−riðℝN ,ℝ+Þ, ði = 1, 2,⋯,mÞ, such that

g x, uð Þj j ≤ 〠
m

i=1
hi xð Þ uj jri−1: ð4Þ

(g2) There exist σ ∈ ð1, 2Þ, c1 > 0 such thatGðx, uÞ ≥ c1jujσ
for all ðx, uÞ ∈ℝN ×ℝ:

(g3) gðx, uÞ is odd in u.
(h1) 3/4 < α ≤ 1, 4α < p < 2α · 2∗, jhðx, uÞj ≤ Cðjuj +

jujp−1Þ holds for all ðx, uÞ ∈ℝN ×ℝ:
(h2) h ∈ CðℝN ,ℝÞ and hðx, uÞ = oðjujÞ, juj⟶ 0 uni-

formly on ℝN .
(h3) There exists θ > 4 such that

0 <H x, uð Þ≔
ðu
0
h x, sð Þds ≤ u

θ
h x, uð Þ, for all x, uð Þ ∈ℝN ×ℝ:

ð5Þ

(h4) There exists R > 0 such that

inf
x∈ℝN , uj j>R

H x, uð Þ > 0: ð6Þ

(h5) hðx, uÞ is odd in u.

Theorem 1. Assume (V), (g1), and (h1)–(h4) hold. Then, there
exist two positive constants �μ, �λ such that for ðλ, μÞ ∈ ð0,+∞Þ
× ð0, �μ� ∪ ½−�λ, �λ� × ð0,+∞Þ, (1) has at least a nontrivial moun-
tain pass-type solution.

Theorem 2. Assume (V), (g1)–(g3) and (h1)–(h5) hold. Then,
for λ > 0, μ > 0, problem (1) has a sequence of solutions with
negative energy.

Remark 3. (V), (g1), and (h1)–(h3) ensure the compactness of
energy functional. Inspired by [12], we adopt a new approach
to verify the mountain structure; on the other hand, the Tay-
ler expansion technique plays an important role in verifying a
dual fountain theorem. As mentioned above, our results may
be regarded as a generalization and improvement of many
existing results.

The main tools of this paper are variational methods
combined with analysis techniques and suitable estimations;
these methods and techniques are important for dealing with
our equation and establishing the relative energy estimation.
Thus, in order to make readers follow our work more easily,
here, we briefly recall these helpful analysis techniques such
as variational methods, iterative technique, fixed point theo-

rems, and finite element methods. In [13–15], variational
methods and some critical point theorems were employed
to study the existence of solution for various elliptic equa-
tions. The iterative technique [16, 17] was also developed to
establish the existence criterion of solutions as well as the
corresponding convergence analysis for Hessian-type elliptic
equations. In addition, fixed point theorems [18–21] and
finite element methods [21, 22] also provide important theo-
retical and numerical tools for solving various nonlinear
equations.

The rest of this paper is organized as follows: in Section 2,
the variational framework and some lemmas are pre-
sented. Section 3 is devoted to the Proofs of Theorem 10
and Theorem 11.

2. Preliminaries and Functional Setting

In this paper, we make use of the following notations:

H1 ℝN� �
≔ u ∈ L2 ℝN� �

: ∇u ∈ L2 ℝN� �� �
,

uk k2H1 ≔
ð
ℝN

∇uj j2 + u2
� �

,

D1,2 ℝN� �
≔ u ∈ L2

∗
ℝN� �

: ∇u ∈ L2 ℝN� �n o
,

uk k2D1,2 ≔
ð
ℝN

∇uj j2:

ð7Þ

Set E≔ fu ∈H1ðℝNÞ: ÐℝN VðxÞu2 < +∞g; E is a Hilbert
space with inner product ðu, vÞE =

Ð
ℝN ð∇u∇v + VðxÞuvÞ.

By j·jp, we denote the usual Lp norm. BR denotes the open ball
centered at the origin and radius R > 0: Throughout this
paper, C and Ci are used in various places to denote positive
constants, which are not essential to the problem.

It follows from ([23], Lemma 2.1) that the embedding E
↪LrðℝNÞ(2 ≤ r < 2∗) is compact, and there is ηr > 0 such that
jujr ≤ ηrkuk for all u ∈ E: The energy functional J : E⟶ℝ
is given by

J uð Þ = 1
2

ð
ℝN

∇uj j2 +V xð Þu2� �
+ 1
4α

ð
ℝN

∇ ∣u2α
� ��� ��2

−
ð
ℝN

λG x, uð Þ + μH x, uð Þð Þ

= 1
2

ð
ℝN

∇uj j2 +V xð Þu2� �
+ α

ð
ℝN

uj j2 2α−1ð Þ ∇uj j2

−
ð
ℝN

λG x, uð Þ + μH x, uð Þð Þ:

ð8Þ

According to [6], we can make the change of variable by
v = f −1ðuÞ, where f is defined by

f ′ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2α f tð Þj j2 2α−1ð Þ

q , f −tð Þ = −f tð Þ on t ∈ 0, +∞½ Þ:

ð9Þ
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After the change of variables, we obtain the following
functional:

I vð Þ≔ J f vð Þð Þ = 1
2

ð
ℝN

∇vj j2 +V xð Þf 2 vð Þ� �
−
ð
ℝN

λG x, f vð Þð Þ + μH x, f vð Þð Þð Þ,
ð10Þ

which is well defined in E under the assumptions (V), (h1),
(h2), and (g1). Moreover, the critical points of the functional
I correspond to the weak solutions of the following equation:

−Δv = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2α f vð Þj j2 2α−1ð Þ

q g x, f vð Þð Þ + h x, f vð Þð ÞV xð Þf vð Þ½ � inℝN :

ð11Þ

It is shown in [24] that if v ∈ E is a critical point of the
function I, then u = f ðvÞ ∈ E and u is a solution of (1). The
function f ðtÞ enjoys some properties given in [25]. The
Mountain Pass lemma in [26] allows us to find Cerami-
type sequence.

Lemma 4. Assume (V), (h1), (h2), and (g1) hold. Then, I ∈
C1ðE,ℝÞ and

I ′ vð Þ,w
D E

=
ð
ℝN

∇v∇w + V xð Þf vð Þf ′ vð Þw
� 	

−
ð
ℝN

λg x, f vð Þð Þf ′ vð Þw + μh x, f vð Þð Þf ′ vð Þw
� 	

,

ð12Þ

for all w ∈ E and ψ′ : E⟶ E∗ is compact, where ψðvÞ =Ð
ℝℕ Gðx, f ðvÞÞ:

Proof. The proof is standard; we omit it here.
Let X be a Banach space with the norm k·k and X =
�⊕ ∞
i=1Xi and dim Xi < +∞ for each i ∈ℕ: Further, we set

Yk = ⊕
i=1

k
Xi,

Zk = �⊕
i=k

∞Xi:
ð13Þ

Lemma 5 ([27]). Let Φ ∈ C1ðX,ℝÞ satisfies Φð−uÞ =ΦðuÞ:
Assume that, for every k > k0, there exists ρk > γk > 0 such that

(A1) ak ≔ infu∈Zk ,kuk=ρkΦðuÞ ≥ 0.
(A2) bk ≔maxu∈Yk ,kuk=γkΦðuÞ < 0.
(A3) dk ≔ infu∈Zk ,kuk≤ρkΦðuÞ⟶ 0 as k⟶ +∞.
(A4) Φ satisfies the ðCÞc condition for every c ∈ ½dk0 , 0Þ.
Then Φ has a sequence of negative critical values con-

verging to 0.

Remark 6. If 1 < p < 2∗, then we have

βk ≔ sup
u∈Zk , uk k=1

uj jp ⟶ 0, k⟶∞: ð14Þ

3. Proof of Main Results

Lemma 7. If kvnk2 ⟶ +∞, then kvnk20 ≔
Ð
ℝN ðj∇vj2 +V

ðxÞf 2ðvÞÞ⟶ +∞, as n⟶∞:

Proof. If not, there exists a positive constant C > 0 such that
kvnk2 ⟶ +∞ and kvnk20 ≤ C, as n⟶∞: Then, ðkvnk20Þ/
ðkvnk2Þ⟶ 0: Set wn = vn/kvnk and hn = ð f 2ðvnÞÞ/ðkvnk2Þ,
one has

Ð
ℝℕ ðj∇wnj2 +VðxÞhnðxÞÞ⟶ 0: Hence,

ð
ℝℕ

∇wnj j2 ⟶ 0,
ð
ℝℕ

V xð Þhn xð Þ⟶ 0,
ð
ℝℕ

V xð Þw2
n xð Þ⟶ 1:

ð15Þ

It follows from [25]; for each ε > 0, there exists C2 inde-
pendent of n such that measðΩnÞ < ε, where Ωn ≔ fx ∈
ℝℕ : jvnðxÞj ≥ C2g: One has

ð
ℝℕ\Ωn

V xð Þw2
n ≤ C3

ð
ℝℕ\Ωn

V xð Þ f
2 vnð Þ
vnk k2

≤ C3

ð
ℝℕ

V xð Þhn xð Þ⟶ 0:
ð16Þ

On the other hand, there exists ε > 0 such that when-
ever Ω′ ⊂ RN and measðΩ′Þ < ε,

Ð
Ω
′VðxÞw2

n ≤ 1/2: Thus,
ð
ℝℕ

V xð Þw2
n =

ð
ℝℕ\Ωn

V xð Þw2
n +

ð
Ωn

V xð Þw2
n ≤ o 1ð Þ + 1

2 ,

ð17Þ

which contradicts with (15).

Lemma 8. Suppose (V), (g1), and (h1)–(h4) hold. Then, there
exists two positive constants �μ, �λ, such that (i) for ðλ, μÞ
∈ ð0, +∞Þ × ð0, �μ� ∪ ½−�λ, �λ� × ð0, +∞Þ; there exist ρ > 0, η >
0 such that inf fIðvÞ: v ∈ E, kvk = ρg > η; (ii) there exists e ∈
E with kek > ρ such that IðeÞ < 0.

Proof.

(i) For r > 0, v ∈ Sr = fv ∈ E : kvk = rg, when r is large
enough, by simple computation, one has

I vð Þ ≥ vk k20
1
4 − λj jC4 vk krm−2 − μ

C5
p

vk kp−2

 �

: ð18Þ

Let mðsÞ = jλjC4s
rm−2 + μðC5/pÞsp−2, mðsÞ is bounded

below; thus, mðsÞ admits a minimizer s0 = ððjλjC4pð2 − rmÞÞ/
ðμC5ðp − 2ÞÞÞ1/ðp−rmÞ, then
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inf
s∈ 0,+∞ð Þ

m sð Þ =m s0ð Þ = μ 2−rmð Þ/ p−rmð Þ · λj j p−2ð Þ/ p−rmð Þ

� C4
C4p 2 − rmð Þ
C5 p − 2ð Þ


 � rm−2ð Þ/ p−rmð Þ"

+ C5
p

C4p 2 − rmð Þ
C5 p − 2ð Þ


 � p−2ð Þ/ p−rmð Þ#
:

ð19Þ

Let K ≔ C4ðC4pð2 − rmÞ/C5ðp − 2ÞÞðrm−2Þ/ðp−rmÞ + ðC5/pÞ
ðC4pð2 − rmÞ/C5ðp − 2ÞÞðp−2Þ/ðp−rmÞ: For all μ > 0 and

λj j ≤ 1
4μ 2−rmð Þ/ p−rmð ÞK


 � p−rmð Þ/ p−2ð Þ
≔ �λ ð20Þ

or for all λ > 0 and

μ ≤
1

4λ p−2ð Þ/ p−rmð ÞK


 � p−rmð Þ/ 2−rmð Þ
≔ �μ, ð21Þ

one has mðs0Þ < 1/4: For kvk = s0, there exists s′ > 0 such that
kvk0 ∈ ðs′, s0�: Thus, there exists ρ > 0 such that inf v∈Sρ IðvÞ >
0 = Ið0Þ

(ii) The conclusion is easy to check, and we omit it here.

Lemma 9. Suppose (V), (g1), and (h1)–(h3) hold. Then I sat-
isfies the ðCÞc condition

Proof.

(1) Let fvng be a ðCÞc sequence of I, that is, IðvnÞ⟶ c,
ð1 + kvnkÞI ′ðvnÞ⟶ 0: By Lemma 7, after some
direct computation, one gets that the sequence fvng
is bounded

(2) Passing to a subsequence if necessary, assume that
vn ⇀ v in E. First, through a proof by contradiction
with the help of α ∈ ð3/4, 1�, there exists C4 > 0
such thatð

ℝN
∇ vn − vð Þj j2 +V xð Þ f vnð Þf ′ vnð Þ − f vð Þf ′ vð Þ

� 	
vn − vð Þ

h i
≥ C4 vn − vk k2:

ð22Þ

On the other hand, by Lemma 4, ψ′ is compact, kψ′
ðvnÞ − ψ′ðvÞk⟶ 0, and

ψ′ vnð Þ − ψ′ vð Þ, vn − v
D E

⟶ 0 as n⟶∞, ð23Þ

lim
n→∞

ð
ℝN

h x, f vnð Þð Þf ′ vnð Þ − h x, f vð Þð Þf ′ vð Þ
� 	

vn − vð Þ = 0:

ð24Þ

Therefore, by (22)–, one has

o 1ð Þ = I ′ vnð Þ − I ′ vð Þ, vn − v
D E

≥ C6 vn − vk k2 + o 1ð Þ, ð25Þ

which implies kvn − vk⟶ 0 as n⟶∞

Proof of Theorem 10. As a consequence of Lemmas 8 and 9
and Mountain Pass theorem, we get the desired result.

Proof of Theorem 11. Since E is a reflexive and separable
Banach space, there exist fejg ⊂ E and fe∗j g ⊂ E∗ such

that E = �spanfej : j = 1, 2,⋯g, E∗ = �spanfe∗j : j = 1, 2,⋯g in
which

ei, e∗j
D E

=
1, i = j,
0, i ≠ j:

(
ð26Þ

Set Ej = spanfejg, Yk = ⊕ k
i=1Ei, Zk = �⊕ ∞

i=kEi: We will use
Dual Fountain theorem Lemma 5 to prove Theorem 2. Set

Q vð Þ≔ 1
2

ð
ℝN

∇vj j2 +V xð Þf 2 vð Þ� �
, ð27Þ

Q is a C2-functional on E. Now, by the Taylor formula and
some simple computation, we get

Q vð Þ =Q 0ð Þ + Q′ 0ð Þ, v
D E

+ 1
2 Q″ 0ð Þv, v
D E

+ o vk k2� �
= 1
2

ð
ℝN

∇vj j2 +V xð Þv2� �
dx + o vk k2� �

, as vk k⟶ 0:

ð28Þ

On the other hand, on Zk, for kvk small enough,
Ð
ℝN jGðx,

f ðvÞÞj ≤ C6jvjr12 : Thus, by Remark 6 and simple computation,
there exists C > 0 such that

I vð Þ ≥ vk k2 C
8 − λC6β

r1
k vk kr1−2


 �
, ð29Þ

which implies (A1) holds. By (g2), for kvk which is small enough,
we have

I vð Þ = 1
2

ð
ℝN

∇vj j2 + 1
2

ð
ℝN

V xð Þf 2 vð Þ − λ
ð
ℝN

G x, f vð Þð Þ

− μ
ð
ℝN

H x, f vð Þð Þ ≤ 1
2 vk k2 − C vj jσσ + μC2 vj j22:

ð30Þ

Since Yk is a finite dimensional space, (A2) is satisfied for
every γk > 0 which small enough, when λ > 0, μ > 0. From (29),
for k > k0, v ∈ Zk, kvk ≤ ρk,

I vð Þ ≥ −λC6β
r1
k vk kr1 ≥ −λC6β

r1
k ρ

r1
k , ð31Þ
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since βk ⟶ 0 and ρk ⟶ 0 as k⟶∞; condition (A3) is also
checked. (A4) follows from Lemma 9. Thus, by using Lemma 5,
we get the desired results and complete the proof.
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