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Let o be a weight function such that o/(1—|z|*)" is in the class B, () of Békollé weights, y a normal weight function, y a
holomorphic map on D, and ¢ a holomorphic self-map on D. In this paper, we give upper and lower bounds for essential norm

of weighted composition operator W, , acting from weighted Bergman spaces &/*(0) to Bloch-type spaces %,,.

1. Introduction and Preliminaries

Let D be the open unit disk in the complex plane C and H(D)
the space of all holomorphic functions on D. For a y € H(D)
and ¢ a holomorphic self-map of D, the weighted composition
operator W, is a linear operator on H(D) defined by
Wyof =¥(fog@), f€H(D). Several authors have studied

these weighted composition operators on different spaces of
analytic functions, see for example, [1-12] and the related
references therein. Recently, Stevic and Sharma [12] charac-
terized boundness and compactness of W, , acting from
weighted Bergman spaces &/”(o) to Bloch-type spaces %,
Motivated by results in [12], in this paper, we give upper
and lower bounds for essential norm of a weighted composi-
tion operator acting between these spaces.

A continuous function o : [0,1) — [0,00) is called a
weight or a weight function. We extend it on D by defining
o(z)=0(|z|) for all zeD. For 0<p<oo and o a weight,
denoted by o/f(0) the weighted Bergman space consisting
of holomorphic functions f on D such that

1w = | @Po@da@ <00, ()
D

where dA is the normalized area measure in D. If 0(z) =0,

(z) = (1-12]*)' (y>-1), then (o) is the well-known
weighted Bergman space Al)’,.

For p, > 1 and a > -1, the class B, («) of Békollé weights
consists of weights ¢ with the property that there exists a
constant C > 0 such that

’PO/P,O
J odA, | < CIAL(S(6, b)) J odA | . (2)
S(6.h) S(0.h)

Here,a > —1,dA,(z) = (a+ 1)(1 - |z|*)"dA(z) is the prob-
ability measure on D,S(0,h) = {z=re : 1-h<r<1,6-¢|
<h/2},0 €[0,27], h € (0,1)} is the Carleson square in D, and
p'y is the conjugate exponent of p,, that is, 1/p, + 1/p'y =1.
Recall that a weighty is normal if there exist positive numbers
nand1,0<#%<7,andd € [0, 1) such that

H(r) is decreasingon [, 1) and lim u(r) =0,
(L= r—1(1-r)"
" - 3)
- isincreasing on [6, 1) and lim ¢ - =00
(1-r) =1 (1-r)
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It is well known that classical weights o (z) = (1 - |2[*)",
a > —1 are normal weights.

For a normal weight 4, the weighted Bloch-type space %,
on D is the space of all functions f in H(D) such that
sup,.pi(2)|f' (2)] < 00. The space %, is a Banach space with
the norm

1L, =1£O)] + supp(a)|'(2). @)

Throughout this paper, r € (0,1) is fixed, p >0, p, > 1,
and 7 > —1. We also assume that p, > p, 0 a weight function
such that /(1 - |z|*)" belongs to B, (), y=(n+2)py/p -2,
and K} =1/(1- Xz)wz be the reproducing kernel of the
Bergman space A?(o,,). Constants are denoted by C; they are
positive and not necessarily the same at each occurrence.
The notation A < B means that A is less than or equal to a con-
stant multiple of B, and D > E means that a constant multiple

of D is greater than or equal to E. When A < Baswellas A > B,
then we write A=B.

2. Essential Norm of W, , : &/*(0) — 3,

In this section, we give upper and lower bounds for the essen-
tial norm of weighted composition operator W, , : & (o)
— B,

Recall that if X and Y are two Banach spaces, then the
essential norm | T||, x_y of a bounded linear operator T : X
— Y is defined as

TN, x_y=inf {|IT - K|l : KiscompactfromXtoY}, (5)

where ||T|| denotes the usual operator norm. Clearly, T is
compact if and only if | T||, x_y = 0.

Theorem 1. Let €(1,00),y € H(D), and ¢ be a holomorphic
self-map of D such that ¢l = 1. Assume that W, , : (o)

— %H is bounded. Then,
~1lp
I Ww<p"e&ﬂ’ )3, =limsupp(z) I([ 0dA>
D,

lo(2)l—1
, ~1p
+ limsup H@) ly()e g ) <J adA) ,
pi-1 1= p(2)] Dy (1)
(6)
where D, (r) ={w €D : |w - ¢(2)|<r(1-lp(z) | ) }.

To prove the main result of this paper, we need the fol-
lowing lemmas. The next two lemmas can be found in [12].

Lemma 2. The following estimates hold:

(1) For each z € D, we have that
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~1lp
odA
) 1/l oo for all f € A (7)

(2) For each A € D, we have that

(fDN) adA) a

Y -
"KA"AP(U)” (1 B |/\|2)7+2

where Dy(r)={z€eD: |z- Al<r(1-|A])}

Lemma 3. For each A € D, the function f, defined as

+(n+ ~lip
1-— |A‘2)1 ('7 2)170/17
fie)= L | oda )
A ( 1 AZ)1+(W+2)p0/p D)

isin AP (o). Moreover, sup) p|If )l (o<1 and f , converges
to zero, uniformly on compact subsets of D as |A | — 1.

The next lemma can be found in [8].

Lemma 4. Let p € (1,00). If a bounded sequence {f;},  in
AP (a) converges to 0 uniformly on compact subsets of D, then
{fit ke also converges to 0 weakly in o (o).

Proof of Theorem 1. Lower bound. Let {(; }
in D such that |¢((;) | —1 as j— 0 and

be a sequence

~1/p
@)y @)l (] o)
Jmeo D¢y (1)
-1/p
=limsup[4(z)|1//'(z)|<J adA) :
lp(z)1-1 Dy (7)

For each j€NN, let y; be defined as y;(z)=1-(1-

1\ -1
[@(C)I)(1-(Z;)z) - Then, y; € H® and supjoy | y;(2) | <
3. Consider the family of functions defined as g,(z) = y;(z)
f o(0) )(2), where f, o)) 18 defined as in (9). Also, by Lemma 3,
sup;llg;llar(s) <1 and {g]}nE]N converges to zero uniformly
on compact subsets of D as j— co. By Lemma 4, g; con-

verges to zero weakly in A (o). Thus, for any compact opera-
tor K:AP(0) — 9B, we have that IKgjllg, — 0 as

j — 00. Moreover,
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' ~ o 1-le(C)
vi(9(¢)) =0,1(2) =—9(¢)) A-le@)
(11)

Y06 = i

Also, g,(¢(C;)) =0 and

~1/p
f«p(cj)(ﬁ"(‘:j)) = <JD( )m adA) . (12)

Now

~1p
foie)@=9() ((n + 2)% ¥ 1) (L . odA)

2\ 1+(n+2)polp
(1-lo@)[) ,
' 2+(n+2 Fo(e) (@
(1_¢(z])z) (n+2)polp ‘P((J)( (]))
“1ip
| adA)
_ ot P ( Dotz )
o) (r+2)% 1) R
(13)
Therefore, from (12) and (13), we have that
9i(9(8)) =V (2(E))fo(z,) (9 C1)) + v (9(6))f i) (9(8)))
“1p
= (¢)) <JD¢( v 0dA2
1= ()]
(14)

Using the facts that]| Ww,(p"e)&[p(g)gh@!‘ > limsupj_mll W

9; —ngll%and
limsupjéooHngll% =0, we have that

v

IWypleario) s, 2limsupu(@) v’ (©)g;(9(53)) +v())9" (4)gj((6)))!

j—oo
~1p
SN ()
= limsupu(3) v (¢)e' () | ——g—.
ico J /) ( ) 1- |(p(<-])‘

(15)

Again, let ¢ f be a sequence in D such that |¢({ j) | —1 as
j— 00 and

3
-1/p
&) Gl ([, o)
DW(‘))(r) (16)
~1/p
= limsupu(2)ly(2)9’ (2)p(2)] (J adA) .
lp(z)I-1 Diy(z) (1)
For each j € N, let h; be defined as
2\ 1+(+2)polp
. 1 (1=le@)l)
Y7 1+ (n+2)po/p (1 (_(“j)z)l+(”+2)p°/P
2\ 2+(1+2)p/p
1 ()P (17)
2+ (n+2)pylp (1 (2] Z)2+(f1+2)po/p

Then, by Lemma 3, sup,l|hll»(;) <1 and {h;} _  con-
verges to zero uniformly on compact subsets of D as j —
0. By Lemma 4, h; converges to zero weakly in A?(c). Thus,

for any compact operator K : A?(¢) — 9B,,, we have that ||

Kh;ll 5, — 0as j — oo. Moreover, hi{¢({;)) =0 and

. “1p
W)= T G 2mn e o) <[ Dy UdA) '

(18)

Thus, using (18), we have that
Wy gl o) cn, 2 limsuppa(8) 1y (8)hi( ()
j—oo
+y(8)e" (C)rile(E)) |
~1/p
2 limsupy((j)lu/' (®] (J adA> .
Jmee ' OL
(19)

Combining (15) and (19), we have that

=1/p
" Wy/,q)"e,&ﬂ’(o) ZM > limSllPH(Z)h//’(Z)' (J " )
Dw( )\

lp(z)|—1

!
+ limsup u(z) ly(z)e EZ) |
lpl-1 1= p(z)]

~lip
. (J adA> )
Dy (r)



Upper bound. Let f € &/? (o) be such that ||f]| »(,) < 1. Let

Lif(z)=f(a2), (21)

where a; = j/(j + 1).

Then, by Theorem 6.1 in [3], we have that L, : &/ (o)
— d/?(0) is compact. Since W, :d’(0) — B, is
bounded, so W, L; : /?(0) — 9B,, is compact. Thus, for

127
fixed r in (0, 1), we have that

Wy plewro)-a, < sup Wy (I-L;)flg,

Hf",qﬂ’(g)Sl
< sup {I Wy, (I- Lj)f(0)|+ supu(z) |
”f",g}?(g)ﬁl zeD

(Wya1- L)1) @)1

< sup [IWWP (I=L;)f(0)l+ sup u(z) |
1l (o) <1 lp(2)l<r
Wy (I=L)f) (2)|+ sup u(z) |

lp(2)|>r
Wy 1-)1)' (2 l],

(22)
where [ is the identity operator on @/# (). Now

|(Wyp(I=L))f)'(2) < ! 9(2) |+|W(Z)¢'(Z)H

)
L v@e (91
]H |f< @)l

+w(2)9' (2)||f (9(2)) - f' (aj0(2))]-

(23)

Let |p(z) | <r and {=¢(z). Let I'=[a,(,{] be the line
segment from a,{ to {. Then, I' ¢ D(0, r), where D(0,r) =
{z : |z|<r}. Thus, by Lemma 2, we have that

7@ -F (af)1=1] 5 0= 5L s 1)

J+ 1aep(or)
1p
A
S |C7| su (J"DA(T)d)"f"AP
J*theoon  (1- AP’ “
(24)

Again, let y, =
have that

(7+2)py/p —2. Then, by Lemma 2, we

Journal of Function Spaces

(JD{ adA) v

NESE

-1/p
1=K (0)l<C (J adA) KL Lae o
Dy(1/2)

(25)
Thus,
2)polp 2\ Yo+2
(1-1F)" Ps(lmw e o9
(L%v>”dA) (Vi 4)

Thus, from (24) and (26), we have that

F'(©) = f'(a0)]

|(| sup 1 (1- M|2>2+<W+2>p0/p e,
]+ j+1p " +(1+2)polp lp ¢
epr) (1-AP)" (fw )

[q 1

< FW "f"AP
(27)
Similarly, we can show that
[q 1

|f(() _f(ajC)l < — 73 "f"MP (28)

j+ (1_ ‘T| )3+ n+2)py

Also, by Lemma 2 and equation (26), we have that

“1p
A
(‘[Dajgo(z) (1‘) Gd )
I e

sup |f' (a0)l< sup

o(2)<r o@lsr - ajle(2)]” (29)
1
< 1+,1Jr2p,p||f||dp
(1 —ajlr| )
Since W, : &/*(0) — 9B, is bounded, so

IWy s, < U (30)

for each f e o/f(0). By taking, respectively, f(z)=1 and
f(z) =z and using the fact that |¢(z) | <1, we have that

M, = su[gy(z)ll//'(z)l <ooand M, = sug//t(z)ltp(z)(p'(z)l < 00.
(31)

Combining (23) and (27)-(29), we have that

sup  sup u(2)l(W,,(I-L;)f) (z)| — 0asj— co.
"f"srlp(d)gl lp(z)l<r

(32)
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Using (28), we have that

Wy (I=L;)f(0) = ly(0)f (#(0)) — y(0)f (a;0(0))]

_ ¥(0)9(0) | N ere o (33)
Tl (1)l

Using (31), (32), and (33), we have that

sup sup [[Wy, (1= L;)f(0)I+](W

1l () <1 |¢( )I<r

as j— 00. The last term in the right-hand side of (22) is
dominated by

|¢S<ul|)>r“ @HIf (@) (aj0(2)) | }
+ sup () y(2)e' (I (9()l+a; 1 (ap()) 1
lp(2)|>r

(35)
which is further dominated by a constant multiple of

sup p(2)ly’ ()|
lp(z)|>r

~1ip ~1p
. { (J adA> + (J adA> }||f||g,p<(,>
Dyz) (r) Daj<p(z>(’)

+ sup u(2)ly(2)9’ (2)l

lo(2)1>r
o “1p
odA) (f Dy oo (1) 0dA>
. e

(I,

¢(Z)
I 1l oo (o
1= lp(z)” 1-alp(z) “
(36)
Letting j — co in (36), we get
limsup sup sup y(z)l(W (I—Lk)f)’(z)l
J=00 fll g o) <tlp(z )|>f
“1p
< sup p(2)ly'(2)] J odA
lp(2)l>r Dy () (37)
=y
! (I Dyz) (1) adA) )
+ sup u(z)ly(2)e (2)l >
lp(z) > 1-o(2)|

5
Using (34) and (37) in (22), we have that
“1p
IWyglearioia, < sup w(2)ly'(2)] (J adA)
lp(z)l>r o (1)
| -l/p
+ sup p(z)l v(2)e (Z)Z <J O'dA) .
lo(z >|>r 1-o(2)|
(38)
Finally, letting r — 1, then we get
~1p
IWyolleer )3, < limsupy(z )|1/’,(Z)|<J “dA>
lp(2)l-1 () (7)
’ -1/p
+limsupy(z)w J odA .
lp(z)| -1 1- ‘(P(Z)l Dy (r)
(39)

Combining (20) and (39), we get the desired result.

Corollary 5. Let p € (1,00), y € H(D), and ¢ be a holomorphic
self-map of D, such that ||¢ll, = 1. Let W, , : o/*(0) — B,
is bounded. Then, W, : d(0) — 9B, is compact if and
only if the following conditions are satisfied:

(1) limsupy,,,) (2 ID adA -

(2) limsupy,,) _,4(2) | (y(2)9' (Z)I/I - lo(2)")
ID , 0dA) h=p
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