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Let σ be a weight function such that σ/ð1 − jzj2Þα is in the class Bp0
ðαÞ of Békollé weights, μ a normal weight function, ψ a

holomorphic map on D, and φ a holomorphic self-map on D. In this paper, we give upper and lower bounds for essential norm
of weighted composition operator Wψ,φ acting from weighted Bergman spaces ApðσÞ to Bloch-type spaces Bμ:

1. Introduction and Preliminaries

LetD be the open unit disk in the complex planeℂ andHðDÞ
the space of all holomorphic functions on D. For a ψ ∈HðDÞ
and φ a holomorphic self-map ofD, theweighted composition
operator Wψ,φ is a linear operator on HðDÞ defined by
Wψ,φ f = ψð f ∘ φÞ, f ∈HðDÞ. Several authors have studied
these weighted composition operators on different spaces of
analytic functions, see for example, [1–12] and the related
references therein. Recently, Stevic and Sharma [12] charac-
terized boundness and compactness of Wψ,φ acting from
weighted Bergman spaces ApðσÞ to Bloch-type spaces Bμ:

Motivated by results in [12], in this paper, we give upper
and lower bounds for essential norm of a weighted composi-
tion operator acting between these spaces.

A continuous function σ : ½0, 1Þ⟶ ½0,∞Þ is called a
weight or a weight function. We extend it on D by defining
σðzÞ = σð∣z ∣ Þ for all z ∈D. For 0 < p <∞ and σ a weight,
denoted by ApðσÞ the weighted Bergman space consisting
of holomorphic functions f on D such that

fk kpAp σð Þ =
ð
D

f zð Þj jpσ zð ÞdA zð Þ <∞, ð1Þ

where dA is the normalized area measure in D: If σðzÞ = σγ

ðzÞ = ð1 − jzj2Þγðγ>−1Þ, then ApðσÞ is the well-known
weighted Bergman space Ap

γ.
For p0 > 1 and α > −1, the class Bp0

ðαÞ of Békollé weights
consists of weights σ with the property that there exists a
constant C > 0 such that

ð
S θ,hð Þ

σdAα

 !
≤ C Aα S θ, hð Þð Þ½ �p0

ð
S θ,hð Þ

σp′0/p0dAα

 !−p0/p′0
: ð2Þ

Here,α > −1,dAαðzÞ = ðα + 1Þð1 − jzj2ÞαdAðzÞ is the prob-
ability measure on D,Sðθ, hÞ = fz = reiϕ : 1 − h < r < 1,∣θ − ϕ∣
<h/2g, θ ∈ ½0, 2π�, h ∈ ð0, 1Þg is the Carleson square in D, and
p′0 is the conjugate exponent of p0, that is, 1/p0 + 1/p′0 = 1:
Recall that a weightμ is normal if there exist positive numbers
η and τ, 0 < η < τ, and δ ∈ ½0, 1Þ such that

μ rð Þ
1 − rð Þη is decreasing on δ, 1½ Þ and lim

r→1
μ rð Þ
1 − rð Þη = 0,

μ rð Þ
1 − rð Þτ is increasing on δ, 1½ Þ and lim

r→1
μ rð Þ
1 − rð Þτ =∞:

ð3Þ
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It is well known that classical weights σαðzÞ = ð1 − jzj2Þα,
α > −1 are normal weights.

For a normal weight μ, the weighted Bloch-type spaceBμ

on D is the space of all functions f in HðDÞ such that
supz∈DμðzÞj f ′ðzÞj <∞. The spaceBμ is a Banach space with
the norm

fk kBμ
= f 0ð Þj j + sup

z∈D
μ zð Þ f ′ zð Þ�� ��: ð4Þ

Throughout this paper, r ∈ ð0, 1Þ is fixed, p > 0, p0 > 1,
and η > −1. We also assume that p0 ≥ p, σ a weight function

such that σ/ð1 − jzj2Þα belongs to Bp0
ðαÞ, γ ≥ ðη + 2Þp0/p − 2,

and Kγ
λ = 1/ð1 − �λzÞγ+2 be the reproducing kernel of the

Bergman space ApðσγÞ: Constants are denoted by C; they are
positive and not necessarily the same at each occurrence.
The notationA ≲ Bmeans thatA is less than or equal to a con-
stant multiple of B, and D ≳ E means that a constant multiple
ofD is greater than or equal to E. WhenA ≲ B as well as A ≳ B,
then we write A≍B.

2. Essential Norm of Wψ,φ : ApðσÞ⟶Bμ

In this section, we give upper and lower bounds for the essen-
tial norm of weighted composition operator Wψ,φ : ApðσÞ
⟶Bμ:

Recall that if X and Y are two Banach spaces, then the
essential norm ∥T∥e,X→Y of a bounded linear operator T : X
⟶ Y is defined as

∥T∥e,X→Y = inf ∥T − K∥ : K is compact fromX toYf g, ð5Þ

where ∥T∥ denotes the usual operator norm. Clearly, T is
compact if and only if ∥T∥e,X→Y = 0:

Theorem 1. Let ∈ð1,∞Þ,ψ ∈HðDÞ, and φ be a holomorphic
self-map of D such that ∥φ∥∞ = 1. Assume that Wψ,φ : ApðσÞ
⟶Bμ is bounded. Then,

∥Wψ,φ∥e,Ap σð Þ→Bμ
≍ limsup

∣φ zð Þ∣→1
μ zð Þ∣ψ′ zð Þ∣

ð
Dφ zð Þ rð Þ

σdA

 !−1/p

 

+ limsup
∣φ zð Þ∣→1

μ zð Þ ∣ ψ zð Þφ′ zð Þ ∣
1 − φ zð Þj j2

ð
Dφ zð Þ rð Þ

σdA

 !−1/p

,

ð6Þ

where DφðzÞðrÞ = fw ∈D : ∣w − φðzÞ∣<rð1−∣φðzÞ ∣ Þg.

To prove the main result of this paper, we need the fol-
lowing lemmas. The next two lemmas can be found in [12].

Lemma 2. The following estimates hold:

(1) For each z ∈D, we have that

f kð Þ zð Þ
��� ��� ≤ C

Ð
Dz rð Þ σdA

� �−1/p
1 − zj j2� �k fk kAp σð Þfor all f ∈ A

p
σ ð7Þ

(2) For each λ ∈D, we have that

∥Kγ
λ∥Ap σð Þ≍

Ð
Dλ rð Þ σdA

� �1/p
1 − λj j2� �γ+2 , ð8Þ

where DλðrÞ = fz ∈D : ∣z − λ∣<rð1−∣λ ∣ Þg

Lemma 3. For each λ ∈D, the function f λ defined as

f λ zð Þ = 1 − λj j2� �1+ η+2ð Þp0/p

1 − �λz
� �1+ η+2ð Þp0/p

ð
Dλ rð Þ

σdA

 !−1/p

ð9Þ

is inApðσÞ:Moreover, supλ∈D∥f λ∥ApðσÞ≍1 and f λ converges
to zero, uniformly on compact subsets of D as ∣λ ∣⟶1:

The next lemma can be found in [8].

Lemma 4. Let p ∈ ð1,∞Þ. If a bounded sequence f f kgk∈ℕ in
ApðσÞ converges to 0 uniformly on compact subsets of D, then
f f kgk∈ℕ also converges to 0 weakly in ApðσÞ.

Proof of Theorem 1. Lower bound. Let fζjgj∈ℕ be a sequence

in D such that ∣φðζjÞ ∣⟶1 as j⟶∞ and

limsup
j→∞

μ ζj
� �

ψ′ ζj
� ��� �� ð

Dφ ζ jð Þ rð Þ
σdA

 !−1/p

= limsup
∣φ zð Þ∣→1

μ zð Þ∣ψ′ zð Þ∣
ð
Dφ zð Þ rð Þ

σdA

 !−1/p

:

ð10Þ

For each j ∈ℕ, let γj be defined as γjðzÞ = 1 − ð1 −
jφðζjÞj2Þð1 − �φðζjÞzÞ

−1
: Then, γj ∈H

∞ and supj∈ℕ ∣ γjðzÞ ∣ ≤
3: Consider the family of functions defined as gjðzÞ = γjðzÞ
f φðζ jÞðzÞ, where f φðζ jÞ is defined as in (9). Also, by Lemma 3,

supj∥gj∥ApðσÞ ≲ 1 and fgjgn∈ℕ converges to zero uniformly

on compact subsets of D as j⟶∞: By Lemma 4, gj con-
verges to zero weakly in ApðσÞ: Thus, for any compact opera-
tor K : ApðσÞ⟶Bμ, we have that ∥Kgj∥Bμ

⟶ 0 as

j⟶∞: Moreover,
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γ j φ ζj
� �� �

= 0, γj′ zð Þ = − �φ ζj
� � 1 − φ ζj

� ��� ��2
1 − �φ ζj

� �
z

� �2 ,

γ′j φ ζj
� �� �

=
− �φ ζj
� �

1 − φ ζj
� ��� ��2 :

ð11Þ

Also, gjðφðζjÞÞ = 0 and

f φ ζ jð Þ φ ζj
� �� �

=
ð
Dφ ζ jð Þ rð Þ

σdA

 !−1/p

: ð12Þ

Now

f φ ζ jð Þ′ zð Þ = �φ ζj
� �

η + 2ð Þ p0
p

+ 1
� � ð

Dφ ζ jð Þ rð Þ
σdA

 !−1/p

�
1 − φ ζj

� ��� ��2� �1+ η+2ð Þp0/p

1 − �φ ζj
� �

z
� �2+ η+2ð Þp0/p

f φ ζ jð Þ′ φ ζj
� �� �

= �φ ζj
� �

η + 2ð Þ p0
p

+ 1
� � Ð

Dφ ζ jð Þ rð Þ σdA
� �−1/p

1 − φ ζj
� ��� ��2 :

ð13Þ

Therefore, from (12) and (13), we have that

gj
′ φ ζj
� �� �

= γ′j φ ζj
� �� �

f φ ζ jð Þ φ ζ j
� �� �

+ γj φ ζ j
� �� �

f φ ζ jð Þ′ φ ζj
� �� �

= − �φ ζj
� � Ð

Dφ ζ jð Þ rð Þ σdA
� �−1/p

1 − φ ζ j
� ��� ��2 :

ð14Þ

Using the facts that∥Wψ,φ∥e,ApðσÞ→Bμ
≳ limsupj→∞∥ Wψ,φ

gj − Kgj∥Bμ
and

limsupj→∞∥Kgj∥Bμ
= 0, we have that

∥Wψ,φ∥e,Ap σð Þ→Bμ
≳ limsup

j→∞
μ ζj
� �

∣ψ′ ζð Þgj φ ζj
� �� �

+ ψ ζj
� �

φ′ ζj
� �

gj
′ φ ζj
� �� �

∣

≥ limsup
j→∞

μ ζj
� �

∣ψ ζj
� �

φ′ ζj
� �

∣

Ð
Dφ ζ jð Þ rð Þ σdA

� �−1/p

1 − φ ζj
� ��� ��2 :

ð15Þ

Again, let ζj be a sequence in D such that ∣φðζjÞ ∣⟶1 as
j⟶∞ and

lim
j→∞

μ ζj
� �

∣ψ ζj
� �

φ′ ζ j
� �

φ ζj
� �

∣
ð
Dφ ζ jð Þ rð Þ

σdA

 !−1/p

= limsup
∣φ zð Þ∣→1

μ zð Þ∣ψ zð Þφ′ zð Þφ zð Þ∣
ð
Dφ zð Þ rð Þ

σdA

 !−1/p

:

ð16Þ

For each j ∈ℕ, let hj be defined as

hj zð Þ = 1
1 + η + 2ð Þp0/p

1 − φ ζj
� ��� ��2� �1+ η+2ð Þp0/p

1 − �φ ζj
� �

z
� �1+ η+2ð Þp0/p

8><
>:
−

1
2 + η + 2ð Þp0/p

1 − φ ζj
� ��� ��2� �2+ η+2ð Þp0/p

1 − �φ ζj
� �

z
� �2+ η+2ð Þp0/p

9>=
>;

�
ð
Dφ ζ jð Þ rð Þ

σdA

 !−1/p

:

ð17Þ

Then, by Lemma 3, supj∥hj∥ApðσÞ ≲ 1 and fhjgn∈ℕ con-
verges to zero uniformly on compact subsets of D as j⟶
∞: By Lemma 4, hj converges to zero weakly in ApðσÞ: Thus,
for any compact operator K : ApðσÞ⟶Bμ, we have that ∥
Khj∥Bμ

⟶ 0 as j⟶∞:Moreover, hj′ðφðζjÞÞ = 0 and

hj φ ζj
� �� �

= 1
1 + η + 2ð Þp0/pð Þ 2 + η + 2ð Þp0/pð Þ

ð
Dφ ζ jð Þ rð Þ

σdA

 !−1/p

:

ð18Þ

Thus, using (18), we have that

∥Wψ,φ∥e,Ap σð Þ→Bμ
≳ limsup

j→∞
μ ζj
� �

∣ψ′ ζ j
� �

hj φ ζ j
� �� �

+ ψ ζ j
� �

φ′ ζj
� �

hj′ φ ζj
� �� �

∣

≳ limsup
j→∞

μ ζj
� �

∣ψ′ ζ j
� �

∣
ð
Dφ ζ jð Þ rð Þ

σdA

 !−1/p

:

ð19Þ

Combining (15) and (19), we have that

∥Wψ,φ∥e,Ap σð Þ→Bμ
≳ limsup

∣φ zð Þ∣→1
μ zð Þ∣ψ′ zð Þ∣

ð
Dφ zð Þ rð Þ

σdA

 !−1/p

+ limsup
∣φ zð Þ∣→1

μ zð Þ ∣ ψ zð Þφ′ zð Þ ∣
1 − φ zð Þj j2

�
ð
Dφ zð Þ rð Þ

σdA

 !−1/p

:

ð20Þ

3Journal of Function Spaces



Upper bound. Let f ∈ApðσÞ be such that ∥f ∥ApðσÞ ≤ 1. Let

Lj f zð Þ = f ajz
� �

, ð21Þ

where aj = j/ðj + 1Þ:
Then, by Theorem 6.1 in [3], we have that Lj : A

pðσÞ
⟶ApðσÞ is compact. Since Wψ,φ : ApðσÞ⟶Bμ is
bounded, so Wψ,φLj : A

pðσÞ⟶Bμ is compact. Thus, for
fixed r in ð0, 1Þ, we have that

∥Wψ,φ∥e,Ap σð Þ→Bμ
≤ sup

∥f ∥Ap σð Þ≤1
∥Wψ,φ I − Lj

� �
f ∥Bμ

≤ sup
∥f ∥Ap σð Þ≤1

∣Wψ,φ I − Lj

� �
f 0ð Þ∣+ sup

z∈D
μ zð Þ ∣

	

� Wψ,φ I − Lj

� �
f

� �′ zð Þ ∣



≤ sup
∥f ∥Ap σð Þ≤1

∣Wψ,φ I − Lj

� �
f 0ð Þ∣+ sup

∣φ zð Þ∣≤r
μ zð Þ ∣

"

� Wψ,φ I − Lj

� �
f

� �′ zð Þ∣+ sup
∣φ zð Þ∣>r

μ zð Þ ∣

� Wψ,φ I − Lj

� �
f

� �′ zð Þ ∣
#
,

ð22Þ

where I is the identity operator on ApðσÞ. Now

Wψ,φ I − Lj

� �
f

� �′ zð Þ�� ≤ ψ′ zð Þ�� f φ zð Þð Þ − f ajφ zð Þ� ��� + ψ zð Þφ′ zð Þ���� ��
� f ′ φ zð Þð Þ − aj f ′ ajφ zð Þ� �n o��

≤ ψ′ zð Þ�� ��f φ zð Þð Þ − f ajφ zð Þ� ���
+ ∣ψ zð Þφ′ zð Þ ∣

j + 1 f ′ ajφ zð Þ� ��� ��
+ ψ zð Þφ′ zð Þ�� ��f ′ φ zð Þð Þ − f ′ ajφ zð Þ� ���:

ð23Þ

Let ∣φðzÞ ∣ ≤r and ζ = φðzÞ: Let Γ = ½ajζ, ζ� be the line
segment from ajζ to ζ. Then, Γ ⊂Dð0, rÞ, where Dð0, rÞ =
fz : ∣z∣≤rg. Thus, by Lemma 2, we have that

∣f ′ ζð Þ − f ′ ajζ
� �

∣ = ∣
ð
Γ

f ′′ λð Þdλ∣ ≤ ∣ζ ∣
j + 1 sup

λ∈D 0,rð Þ
∣f ′′ λð Þ∣

≲
∣ζ ∣
j + 1 sup

λ∈D 0,rð Þ

Ð
Dλ rð Þ σdA

� �−1/p
1 − λj j2� �2 ∥f ∥Ap σð Þ:

ð24Þ

Again, let γ0 = ðη + 2Þp0/p − 2: Then, by Lemma 2, we
have that

1 = ∣Kγ0
ζ 0ð Þ∣ ≤ C

ð
D0 1/2ð Þ

σdA

 !−1/p

∥Kγ0
ζ ∥Ap σð Þ≍

Ð
Dζ rð Þ σdA

� �1/p
1 − ζj j2
� �γ0+2 :

ð25Þ

Thus,

1 − ζj j2
� � η+2ð Þp0/p

Ð
Dζ rð Þ σdA

� �1/p ≤
1 − ζj j2
� �γ0+2
Ð
Dζ rð Þ σdA

� �1/p ≲ 1: ð26Þ

Thus, from (24) and (26), we have that

∣f ′ ζð Þ − f ′ ajζ
� �

∣

≲
∣ζ ∣
j + 1 sup

λ∈D 0,rð Þ

1
1 − λj j2� �4+ η+2ð Þp0/p

1 − λj j2� �2+ η+2ð Þp0/p

Ð
Dλ rð Þ σdA

� �1/p ∥f ∥Ap σð Þ

≲
∣ζ ∣
j + 1

1
1 − rj j2� �4+ η+2ð Þp0/p

∥f ∥Ap σð Þ:

ð27Þ

Similarly, we can show that

∣f ζð Þ − f ajζ
� �

∣ ≲
∣ζ ∣
j + 1

1
1 − rj j2� �3+ η+2ð Þp0/p

∥f ∥Ap σð Þ: ð28Þ

Also, by Lemma 2 and equation (26), we have that

sup
∣φ zð Þ∣≤r

∣f ′ ajζ
� �

∣ ≲ sup
∣φ zð Þ∣≤r

Ð
Dajφ zð Þ rð Þ σdA

� �−1/p

1 − a2j φ zð Þj j2 ∥f ∥Ap σð Þ

≲
1

1 − a2j rj j2
� �1+ η+2ð Þp0/p

∥f ∥Ap σð Þ:

ð29Þ

Since Wψ,φ : ApðσÞ⟶Bμ is bounded, so

∥Wψ,φ f ∥Bμ
≲ ∥f ∥Ap σð Þ ð30Þ

for each f ∈ApðσÞ: By taking, respectively, f ðzÞ = 1 and
f ðzÞ = z and using the fact that ∣φðzÞ ∣ <1, we have that

M1 = sup
z∈D

μ zð Þ∣ψ′ zð Þ∣ <∞andM2 = sup
z∈D

μ zð Þ∣ψ zð Þφ′ zð Þ∣ <∞:

ð31Þ

Combining (23) and (27)-(29), we have that

sup
∥f ∥Ap σð Þ≤1

sup
∣φ zð Þ∣≤r

μ zð Þ∣ Wψ,φ I − Lj

� �
f

� �′ zð Þ∣⟶ 0 as j⟶∞:

ð32Þ
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Using (28), we have that

∣Wψ,φ I − Lj

� �
f 0ð Þ∣ = ∣ψ 0ð Þf φ 0ð Þð Þ − ψ 0ð Þf ajφ 0ð Þ� �

∣

≲
∣ψ 0ð Þφ 0ð Þ ∣

j + 1
∥f ∥Ap σð Þ

1 − r2ð Þ3+ η+2ð Þp0/p
:

ð33Þ

Using (31), (32), and (33), we have that

sup
∥f ∥Ap σð Þ≤1

sup
∣φ zð Þ∣≤r

∣Wψ,φ I − Lj

� �
f 0ð Þ∣+∣ Wψ,φ I − Lj

� �
f

� �′ zð Þ ∣
h i

⟶ 0

ð34Þ

as j⟶∞: The last term in the right-hand side of (22) is
dominated by

sup
∣φ zð Þ∣>r

μ zð Þ∣ψ′ zð Þ∣ ∣f φ zð Þð Þ∣+∣f ajφ zð Þ� �
∣

� 

+ sup

∣φ zð Þ∣>r
μ zð Þ∣ψ zð Þφ′ zð Þ∣ ∣f ′ φ zð Þð Þ∣+aj ∣ f ′ ajφ zð Þ� �

∣
n o

,

ð35Þ

which is further dominated by a constant multiple of

sup
∣φ zð Þ∣>r

μ zð Þ∣ψ′ zð Þ∣

�
ð
Dφ zð Þ rð Þ

σdA

 !−1/p

+
ð
Dajφ zð Þ rð Þ

σdA

 !−1/p( )
∥f ∥Ap σð Þ

+ sup
∣φ zð Þ∣>r

μ zð Þ∣ψ zð Þφ′ zð Þ∣

Ð
Dφ zð Þ rð Þ σdA

� �−1/p
1 − φ zð Þj j2 +

Ð
Dajφ zð Þ rð Þ σdA

� �−1/p

1 − a2j φ zð Þj j2

8>>><
>>>:

9>>>=
>>>;
∥f ∥Ap σð Þ:

ð36Þ

Letting j⟶∞ in (36), we get

limsup
j→∞

sup
∥f ∥Ap σð Þ≤1

sup
∣φ zð Þ∣>r

μ zð Þ∣ Wψ,φ I − Lkð Þf� �′ zð Þ∣

≲ sup
∣φ zð Þ∣>r

μ zð Þ∣ψ′ zð Þ∣
ð
Dφ zð Þ rð Þ

σdA

 !−1/p

+ sup
∣φ zð Þ∣>r

μ zð Þ∣ψ zð Þφ′ zð Þ∣
Ð
Dφ zð Þ rð Þ σdA

� �−1/p
1 − φ zð Þj j2 :

ð37Þ

Using (34) and (37) in (22), we have that

∥Wψ,φ∥e,Ap σð Þ→Bμ
≲ sup

∣φ zð Þ∣>r
μ zð Þ∣ψ′ zð Þ∣

ð
Dφ zð Þ rð Þ

σdA

 !−1/p

+ sup
∣φ zð Þ∣>r

μ zð Þ∣ψ zð Þφ′ zð Þ ∣
1 − φ zð Þj j2

ð
Dφ zð Þ rð Þ

σdA

 !−1/p

:

ð38Þ

Finally, letting r⟶ 1, then we get

∥Wψ,φ∥e,Ap σð Þ→Bμ
≲ limsup

∣φ zð Þ∣→1
μ zð Þ∣ψ′ zð Þ∣

ð
Dφ zð Þ rð Þ

σdA

 !−1/p

+ limsup
∣φ zð Þ∣→1

μ zð Þ ∣ψ zð Þφ′ zð Þ ∣
1 − φ zð Þj j2

ð
Dφ zð Þ rð Þ

σdA

 !−1/p

:

ð39Þ

Combining (20) and (39), we get the desired result.

Corollary 5. Let p ∈ ð1,∞Þ,ψ ∈HðDÞ, and φ be a holomorphic
self-map of D, such that ∥φ∥∞ = 1. Let Wψ,φ : ApðσÞ⟶Bμ

is bounded. Then, Wψ,φ : ApðσÞ⟶Bμ is compact if and
only if the following conditions are satisfied:

(1) limsup∣φðzÞ∣→1μðzÞ ∣ ψ′ðzÞ ∣ ð
Ð
DφðzÞðrÞ σdAÞ

−1/p = 0

(2) limsupjφðzÞj→1μðzÞ ∣ ðψðzÞφ′ðzÞ∣/1 − jφðzÞj2Þ
ðÐDφðzÞðrÞ σdAÞ

−1/p = 0
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