Upper and Lower Bounds for Essential Norm of Weighted Composition Operators from Bergman Spaces with Békollé Weights

Elina Subhadarsini and Ajay K. Sharma

1. Introduction and Preliminaries

Let D be the open unit disk in the complex plane \mathbb{C} and $H(D)$ the space of all holomorphic functions on D. For a $\psi \in H(D)$ and φ a holomorphic self-map of D, the weighted composition operator $W_{\psi, \varphi}$ is a linear operator on $H(D)$ defined by $W_{\psi, \varphi}f = \psi(f \circ \varphi)$, $f \in H(D)$. Several authors have studied these weighted composition operators on different spaces of analytic functions, see for example, [1–12] and the related references therein. Recently, Stevic and Sharma [12] characterized boundness and compactness of $W_{\psi, \varphi}$ acting from weighted Bergman spaces $A^p(\sigma)$ to Bloch-type spaces B_μ.

Motivated by results in [12], in this paper, we give upper and lower bounds for essential norm of weighted composition operator $W_{\psi, \varphi}$ acting from weighted Bergman spaces $A^p(\sigma)$ to Bloch-type spaces B_μ.

Let σ be a weight function such that $\sigma/(1 - |z|^2)^{\delta}$ is in the class $B_\mu'\psi(\alpha)$ of Békollé weights, μ a normal weight function, ψ a holomorphic map on D, and φ a holomorphic self-map on D. In this paper, we give upper and lower bounds for essential norm of weighted composition operator $W_{\psi, \varphi}$ acting from weighted Bergman spaces $A^p(\sigma)$ to Bloch-type spaces B_μ.

A continuous function $\sigma : [0, 1) \rightarrow [0, \infty)$ is called a weight or a weight function. We extend it on D by defining $\sigma(z) = \sigma(|z|)$ for all $z \in D$. For $0 < p < \infty$ and σ a weight, denoted by $A^p(\sigma)$ the weighted Bergman space consisting of holomorphic functions f on D such that

$$\|f\|_{A^p(\sigma)} = \left(\int_D |f(z)|^p \sigma(z) dA(z) < \infty \right),$$

where dA is the normalized area measure in D. If $\sigma(z) = \sigma_\psi(\gamma)(z) = (1 - |z|^2)^\gamma$, then $A^p(\sigma)$ is the well-known weighted Bergman space A^p_γ. For $\rho_\psi > 1$ and $\alpha > -1$, the class $B_\rho_\psi'\psi(\alpha)$ of Békollé weights consists of weights σ with the property that there exists a constant $C > 0$ such that

$$\left(\int_{S(\theta, h)} \sigma dA_u \right) \leq C [A_u(S(\theta, h))]^{\rho_\psi} \left(\int_{S(\theta, h)} \sigma^{1/\rho_\psi} dA_u \right)^{-\rho_\psi/\rho_\psi'}. \quad (2)$$

Here, $\alpha > -1, dA_u(z) = (\alpha + 1)(1 - |z|^2)^\alpha dA(z)$ is the probability measure on $D, S(\theta, h) = \{ z = re^{i\theta} : 1 - h < r < 1, |\theta - \phi| < h/2 \}, \theta \in [0, 2\pi], h \in (0, 1)$ is the Carleson square in D, and ρ_ψ' is the conjugate exponent of ρ_ψ, that is, $1/\rho_\psi + 1/\rho_\psi' = 1$.

Recall that a weight μ is normal if there exist positive numbers η and r, $0 < \eta < r$, and $\delta \in [0, 1)$ such that

$$\frac{\mu(r)}{(1 - r)^{\eta}} \text{ is decreasing on } [\delta, 1) \text{ and } \lim_{r \to 1} \frac{\mu(r)}{(1 - r)^{\eta}} = 0,$$

$$\frac{\mu(r)}{(1 - r)^{\eta}} \text{ is increasing on } [\delta, 1) \text{ and } \lim_{r \to 1} \frac{\mu(r)}{(1 - r)^{\eta}} = \infty. \quad (3)$$
It is well known that classical weights $\sigma_\alpha(z) = (1 - |z|^2)^\alpha$, $\alpha > -1$ are normal weights.

For a normal weight μ, the weighted Bloch-type space \mathcal{B}_μ on D is the space of all functions f in $H(D)$ such that
\[\sup_{z \in D} \mu(z) |f'(z)| < \infty. \]
The space \mathcal{B}_μ is a Banach space with the norm
\[\|f\|_{\mathcal{B}_\mu} = |f(0)| + \sup_{z \in D} \mu(z) |f'(z)|. \]

Throughout this paper, $r \in (0,1)$ is fixed, $p > 0$, $p_0 > 1$, and $\eta > -1$. We also assume that $p_0 \geq p$, σ a weight function such that $\sigma/(1 - |z|^2)^\alpha$ belongs to $B_{p_0}(\alpha)$, $\gamma \geq (\eta + 2)p_0/p - 2$, and $K_1 = 1/(1 - \lambda z)^{\gamma+2}$ be the reproducing kernel of the Bergman space $A^p(\sigma)$. Constants are denoted by C; they are positive and not necessarily the same at each occurrence. The notation $A \lesssim B$ means that A is less than or equal to a constant multiple of B, and $D \geq C$ is a constant multiple of D that is greater than or equal to E. When $A \lesssim B$ as well as $A \geq B$, then we write $A \sim B$.

2. Essential Norm of $W_{\psi\phi} : \mathcal{A}^p(\sigma) \longrightarrow \mathcal{B}_\mu$

In this section, we give upper and lower bounds for the essential norm of weighted composition operator $W_{\psi\phi} : \mathcal{A}^p(\sigma) \longrightarrow \mathcal{B}_\mu$.

Recall that if X and Y are two Banach spaces, then the essential norm $\|T\|_{eX \rightarrow Y}$ of a bounded linear operator $T : X \longrightarrow Y$ is defined as
\[\|T\|_{eX \rightarrow Y} = \inf \{ \|T - K\| : K \text{ is compact from } X \text{ to } Y \}, \]
where $\|T\|$ denotes the usual operator norm. Clearly, T is compact if and only if $\|T\|_{eX \rightarrow Y} = 0$.

Theorem 1. Let $\psi, \phi \in H(D)$, and ϕ be a holomorphic self-map of D such that $|\phi|_{\infty} = 1$. Assume that $W_{\psi\phi} : \mathcal{A}^p(\sigma) \longrightarrow \mathcal{B}_\mu$ is bounded. Then,
\[\|W_{\psi\phi}\|_{e\mathcal{A}^p(\sigma) \rightarrow \mathcal{B}_\mu} \lesssim \limsup_{\psi(z) \to z} \mu(z) |\psi'(z)| \left(\int_{D(\psi(z))} |\sigma dA| \right)^{-1/p} \]
\[\quad + \limsup_{|\psi(z)| \to 1} \frac{\mu(z) |\psi'(z)|}{1 - |\psi(z)|^2} \left(\int_{D(\psi(z))} |\sigma dA| \right)^{-1/p}, \]

where $D_{\psi(z)}(r) = \{ w \in D : |w - \psi(z)| < r(1 - |\psi(z)|) \}$.

To prove the main result of this paper, we need the following lemmas. The next two lemmas can be found in [12].

Lemma 2. The following estimates hold:

1. For each $z \in D$, we have that
\[|f^{(k)}(z)| \leq C \left(\int_{D(z)} \sigma dA \right)^{-1/p} \|f\|_{A^p(\sigma)}^{1/p} \text{ for all } f \in A^p_\sigma \]
\[(7) \]

2. For each $\lambda \in \mathbb{D}$, we have that
\[\|K_\lambda\|_{A^p(\sigma)} \lesssim \left(\int_{D(\lambda)} |\sigma dA| \right)^{1/p} \left(\frac{(1 - |\lambda|^2)^{\gamma+2}}{1 - \lambda z} \right)^{1/p}, \]
\[(8) \]

where $D_\lambda(r) = \{ z \in D : |z - \lambda| < r(1 - |\lambda|) \}$.

Lemma 3. For each $\lambda \in \mathbb{D}$, the function f_λ defined as
\[f_\lambda(z) = \frac{(1 - |\lambda|^2)^{1/2(p+2)p/p}}{(1 - \lambda z)^{1/2(p+2)p/p}} \left(\int_{D(\lambda)} |\sigma dA| \right)^{-1/p}, \]

is in $A^p(\sigma)$. Moreover, $\sup_{|\sigma| \geq 1} \|f_\lambda\|_{A^p(\sigma)} = 1$ and f_λ converges to zero, uniformly on compact subsets of D as $|\lambda| \longrightarrow 1$.

The next lemma can be found in [8].

Lemma 4. Let $p \in (1, \infty)$. If a bounded sequence $\{f_j\}_{j \in \mathbb{N}}$ in $A^p(\sigma)$ converges to zero uniformly on compact subsets of D, then $\{f_j\}_{j \in \mathbb{N}}$ also converges to 0 weakly in $A^p(\sigma)$.

Proof of Theorem 1. Lower bound. Let $\{\zeta_j\}_{j \in \mathbb{N}}$ be a sequence in D such that $|\phi(\zeta_j)| \longrightarrow 1$ as $j \longrightarrow \infty$ and $\limsup_{j \to \infty} \mu(\zeta_j) |\psi'(\zeta_j)| \left(\int_{D(\zeta_j)} |\sigma dA| \right)^{-1/p} = \limsup_{|\psi(z)| \to 1} \mu(z) |\psi'(z)| \left(\int_{D(\psi(z))} |\sigma dA| \right)^{-1/p}.
\[(10) \]

For each $j \in \mathbb{N}$, let y_j be defined as $y_j(z) = 1 - (1 - |\phi(\zeta_j)|^2)(1 - (\phi(\zeta_j))^{-1}. Then, $y_j \in H^\infty$ and $\sup_{|\sigma| \geq 1} |y_j(z)| \leq 3$. Consider the family of functions defined as $g_j(z) = y_j(z) f_{\phi(\zeta_j)(z)}$, where $f_{\phi(\zeta_j)}$ is defined as in (9). Also, by Lemma 3, $\sup_{|\sigma| \geq 1} \|g_j\|_{A^p(\sigma)} = 1$ and $\{g_j\}_{j \in \mathbb{N}}$ converges to zero uniformly on compact subsets of D as $j \longrightarrow \infty$. By Lemma 4, g_j converges to zero weakly in $A^p(\sigma)$. Thus, for any compact operator $K : A^p(\sigma) \longrightarrow \mathcal{B}_\mu$, we have that $\|Kg_j\|_{\mathcal{B}_\mu} \longrightarrow 0$ as $j \longrightarrow \infty$. Moreover,
\[
\gamma_j(\varphi(\zeta_j)) = 0, \quad \gamma_j'(z) = -\varphi(\zeta_j) \frac{1 - |\varphi(\zeta_j)|^2}{(1 - \varphi(\zeta_j)z)^2},
\]
(11)

Also, \(g_j(\varphi(\zeta_j)) = 0 \) and

\[
f_{\varphi}(\zeta_j)(\varphi(\zeta_j)) = \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p}.
\]
(12)

Now

\[
f_{\varphi}(\zeta_j)(z) = \varphi(\zeta_j) \left(\left(\eta + 2\right) \frac{p_0}{p} + 1\right) \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p} \left(1 - |\varphi(\zeta_j)|^2\right)^{1 + (\eta + 2)p_0/p}
\]
\[
\times \left(1 - \varphi(\zeta_j)z\right)^{2 + (\eta + 2)p_0/p} f_{\varphi}(\zeta_j)(\varphi(\zeta_j))
\]
\[
= \varphi(\zeta_j) \left(\left(\eta + 2\right) \frac{p_0}{p} + 1\right) \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p} \frac{1 - |\varphi(\zeta_j)|^2}{1 - |\varphi(\zeta_j)|^2}.
\]
(13)

Therefore, from (12) and (13), we have that

\[
g_j'(\varphi(\zeta_j)) = \gamma_j'(\varphi(\zeta_j)) f_{\varphi}(\zeta_j) (\varphi(\zeta_j)) + \gamma_j(\varphi(\zeta_j)) f_{\varphi}(\zeta_j)'(\varphi(\zeta_j))
\]
\[
= -\varphi(\zeta_j) \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p} \frac{1 - |\varphi(\zeta_j)|^2}{1 - |\varphi(\zeta_j)|^2}.
\]
(14)

Using the facts that \(\|W_{\psi,\varphi}\|_{L^p(\sigma) \to \mathcal{B}_p} \geq \limsup_{j \to \infty} \|W_{\psi,\varphi}\|_{L^p(\sigma) \to \mathcal{B}_p} \geq \limsup_{j \to \infty} K g_j\|_{\mathcal{B}_p} = 0\), and \(\limsup_{j \to \infty} K g_j\|_{\mathcal{B}_p} = 0\), we have that

\[
\|W_{\psi,\varphi}\|_{L^p(\sigma) \to \mathcal{B}_p} \geq \limsup_{j \to \infty} \mu(\zeta_j) |\psi'(\zeta_j) g_j(\varphi(\zeta_j)) + \psi(\zeta_j) f_{\varphi}(\zeta_j)'(\varphi(\zeta_j))| \geq \limsup_{j \to \infty} \mu(\zeta_j) |\psi(\zeta_j) f_{\varphi}(\zeta_j)'(\varphi(\zeta_j))| \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p}.
\]
(15)

Again, let \(\zeta_j\) be a sequence in \(\mathcal{D}\) such that \(|\varphi(\zeta_j)| \to 1\) as \(j \to \infty\) and

\[
\lim_{j \to \infty} \mu(\zeta_j) |\psi(\zeta_j) f_{\varphi}'(\zeta_j)(\varphi(\zeta_j))| \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p} = \limsup_{|\psi(\zeta)| \to 1} \mu(z) |\psi(z) f_{\varphi}'(z)| \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p}.
\]
(16)

For each \(j \in \mathbb{N}\), let \(h_j\) be defined as

\[
h_j(z) = \left\{ \begin{array}{ll}
1 & \text{if } \left(1 - |\varphi(\zeta_j)|^2\right)^{1 + (\eta + 2)p_0/p} \\
\frac{1}{1 + (\eta + 2)p_0/p} \left(1 - |\varphi(\zeta_j)|^2\right)^{2 + (\eta + 2)p_0/p} & \text{if } |\varphi(\zeta_j)| > 1
\end{array} \right.
\]
(17)

Then, by Lemma 3, sup \(\|h_j\|_{L^p(\sigma)} \leq 1\) and \(\{h_j\}_{j \in \mathbb{N}}\) converges to zero uniformly on compact subsets of \(\mathcal{D}\) as \(j \to \infty\). By Lemma 4, \(h_j\) converges to zero weakly in \(A^p(\sigma)\). Thus, for any compact operator \(K : A^p(\sigma) \to \mathcal{B}_p\), we have that \(\|K h_j\|_{\mathcal{B}_p} \to 0\) as \(j \to \infty\). Moreover, \(h_j'(\varphi(\zeta_j)) = 0\) and

\[
h_j(\varphi(\zeta_j)) = \left(\frac{1}{1 + (\eta + 2)p_0/p} + \frac{1}{1 + (\eta + 2)p_0/p} \left(1 - |\varphi(\zeta_j)|^2\right)^{2 + (\eta + 2)p_0/p}\right) \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p}.
\]
(18)

Thus, using (18), we have that

\[
\|W_{\psi,\varphi}\|_{L^p(\sigma) \to \mathcal{B}_p} \geq \limsup_{j \to \infty} \mu(\zeta_j) |\psi'(\zeta_j) h_j(\varphi(\zeta_j)) + \psi(\zeta_j) f_{\varphi}'(\zeta_j)(\varphi(\zeta_j))| \geq \limsup_{j \to \infty} \mu(\zeta_j) |\psi'(\zeta_j)| \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p}.
\]
(19)

Combining (15) and (19), we have that

\[
\|W_{\psi,\varphi}\|_{L^p(\sigma) \to \mathcal{B}_p} \geq \limsup_{j \to \infty} \mu(\zeta_j) |\psi'(\zeta_j)| \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p} + \limsup_{|\psi(\zeta)| \to 1} \mu(z) |\psi(z) f_{\varphi}'(z)| \left(\int_{D_{\phi}(r)} \sigma dA\right)^{-1/p}.
\]
(20)
Upper bound. Let $f \in \mathcal{A}^p(\sigma)$ be such that $\|f\|_{\mathcal{A}^p(\sigma)} \leq 1$. Let
\[Lf(z) = f(a_jz), \quad (21) \]
where $a_j = j/(j+1)$.

Then, by Theorem 6.1 in [3], we have that $L_j : \mathcal{A}^p(\sigma) \rightarrow \mathcal{B}_\mu$ is compact. Since $W_{\psi, \varphi} : \mathcal{A}^p(\sigma) \rightarrow \mathcal{B}_\mu$ is bounded, so $W_{\psi, \varphi} L_j : \mathcal{A}^p(\sigma) \rightarrow \mathcal{B}_\mu$ is compact. Thus, for fixed r in $(0,1)$, we have that
\[\|W_{\psi, \varphi}\|_{\mathcal{L}(\mathcal{A}^p(\sigma) \rightarrow \mathcal{B}_\mu)} \leq \sup_{\|\varphi\|_{\mathcal{H}(\sigma)} \leq 1} \|W_{\psi, \varphi}(I - L_j)f\|_{\mathcal{B}_\mu} \]
\[\leq \sup_{\|\varphi\|_{\mathcal{H}(\sigma)} \leq 1} \left[|W_{\psi, \varphi}(I - L_j)f(0)| + \sup_{|z| \leq r} \|\varphi(z)\| \cdot |W_{\psi, \varphi}(I - L_j)f'(z)| + \sup_{|z| > r} \|\varphi(z)\| \cdot |W_{\psi, \varphi}(I - L_j)f'(z)| \right], \quad (22) \]
where I is the identity operator on $\mathcal{A}^p(\sigma)$. Now
\[|W_{\psi, \varphi}(I - L_j)f'(z)| \leq |\psi(z)| |f(\varphi(z)) - f(a_j \varphi(z))| + |\varphi(z)\psi'(z)| \cdot |f'(\varphi(z)) - f'(a_j \varphi(z))| \]
\[\leq |\psi(z)| |f(\varphi(z)) - f(a_j \varphi(z))| + |\varphi(z)| \cdot |\psi'(z)| |f'(\varphi(z)) - f'(a_j \varphi(z))| \]
\[+ \frac{|\psi(z)| \cdot |\psi'(z)|}{j+1} |f'(a_j \varphi(z))| + |\varphi(z)\psi'(z)| |f'(\varphi(z)) - f'(a_j \varphi(z))|. \]
\[(23) \]
Let $|\varphi(z)| \leq r$ and $\zeta = \varphi(z)$. Let $\Gamma = [a_j \zeta, \zeta]$ be the line segment from $a_j \zeta$ to ζ. Then, $\Gamma \subset D(0,r)$, where $D(0,r) = \{ z : |z| \leq r \}$. Thus, by Lemma 2, we have that
\[|f'(\zeta) - f'(a_j \zeta)| = \left| \int_\Gamma f''(\lambda)d\lambda \right| \leq \left| \frac{\| \varphi \|_{\mathcal{L}(\mathcal{B}_0, \mathcal{B}_0)}}{j+1} \int_{\mathcal{A}(D(0,r))} |f''(\lambda)| \right| \]
\[\leq \left| \frac{\| \varphi \|_{\mathcal{L}(\mathcal{B}_0, \mathcal{B}_0)}}{j+1} \int_{\mathcal{A}(D(0,r))} \left[\left(\int_{D_j(r)} \| \sigma d\lambda \| \right)^{-1/p} \right] \right| \|f\|_{\mathcal{A}^p(\sigma)}. \]
\[(24) \]
Again, let $\gamma_0 = (\eta + 2)p_0/p - 2$. Then, by Lemma 2, we have that
\[1 = |K_{\chi}^{[\eta]}(0)| \leq C \left(\int_{D_j(1/2)} \| \sigma d\lambda \| \right)^{-1/p} \left| \int_{D_j(r)} \| \sigma d\lambda \| \right| \left(\frac{1}{1 - |\lambda|^2} \right)_r, \quad (25) \]
Thus,
\[\left| \frac{1 - |\zeta|^2}{(1 - |\lambda|^2)^{(\eta+2)p_0/p}} \right| \leq \left| \frac{1 - |\zeta|^2}{(1 - |\lambda|^2)^{\gamma_0 \eta+2}} \right| \]
\[\leq \left| \frac{1 - |\zeta|^2}{(1 - |\lambda|^2)^{\gamma_0 \eta+2}} \right| \leq 1. \quad (26) \]
Thus, from (24) and (26), we have that
\[|f'(\zeta) - f'(a_j \zeta)| \leq \left| \frac{\| \varphi \|_{\mathcal{L}(\mathcal{B}_0, \mathcal{B}_0)}}{j+1} \left(\frac{\|f\|_{\mathcal{A}^p(\sigma)}}{1 - |\lambda|^2} \right)^{(\eta+2)p_0/p} \right| \|f\|_{\mathcal{A}^p(\sigma)}. \]
\[(27) \]
Similarly, we can show that
\[|f'(\zeta) - f(a_j \zeta)| \leq \frac{1}{j+1} \left(\frac{\|f\|_{\mathcal{A}^p(\sigma)}}{1 - |\lambda|^2} \right)^{(\eta+2)p_0/p} \|f\|_{\mathcal{A}^p(\sigma)}. \]
\[(28) \]
Also, by Lemma 2 and equation (26), we have that
\[\sup_{|\varphi(z)| \leq r} |f'(a_j \varphi(z))| \leq \sup_{|\varphi(z)| \leq r} \left(\frac{\|f\|_{\mathcal{A}^p(\sigma)}}{1 - |\lambda|^2} \right)^{(\eta+2)p_0/p} \|f\|_{\mathcal{A}^p(\sigma)}. \]
\[(29) \]
Since $W_{\psi, \varphi} : \mathcal{A}^p(\sigma) \rightarrow \mathcal{B}_\mu$ is bounded, so
\[\|W_{\psi, \varphi}f\|_{\mathcal{B}_\mu} \leq \|f\|_{\mathcal{A}^p(\sigma)}. \]
\[(30) \]
for each $f \in \mathcal{A}^p(\sigma)$. By taking, respectively, $f(z) = 1$ and $f(z) = z$ and using the fact that $|\varphi(z)| < 1$, we have that
\[M_1 = \sup_{z \in \mathcal{D}} \mu(|\varphi(z)|) < \coand M_2 = \sup_{z \in \mathcal{D}} \mu(|\psi(z)|) < \infty. \]
\[(31) \]
Combining (23) and (27)-(29), we have that
\[\sup_{\|\varphi(z)\| \leq r} \mu(z) \cdot |\int_{\mathcal{A}(D(0,r))} \left[\int_{D_j(r)} \| \sigma d\lambda \| \right] \left(\frac{1}{1 - |\lambda|^2} \right)_r | \rightarrow 0 \quad \text{as} \quad j \rightarrow \infty. \]
\[(32) \]
Using (28), we have that

\[
|W_{\psi\phi}(I-L) f(0)| \geq |(\psi(0)f(\phi(0)) - \psi(0)f(a,\phi(0)))| \leq \frac{\|\psi(0)f(0)\|}{j+1} \frac{\|f\|_{dP(\sigma)}}{(1-r^2)^{3\gamma \|2j\|_{P_\mu}}}.
\]

Using (31), (32), and (33), we have that

\[
\sup_{\|f\|_{dP(\sigma)} \leq 1} \left| \sup_{|\psi(\phi)|<r} \left[|W_{\psi\phi}(I-L) f(0)| + |W_{\psi\phi}(I-L) f'(z)| \right] \right| \rightarrow 0
\]

as \(j \rightarrow \infty\). The last term in the right-hand side of (22) is dominated by

\[
\sup_{|\psi(\phi)|<r} \mu(z) |\psi'(z)| \left\{ \left| f(\psi(z)) + f'(a,\phi(z)) \right| \right\} + \sup_{|\psi(\phi)|<r} \mu(z) |\psi'(z)| \left\{ \left| f'(\psi(z)) + a, f'(a,\phi(z)) \right| \right\},
\]

which is further dominated by a constant multiple of

\[
\sup_{|\psi(\phi)|<r} \mu(z) |\psi'(z)| \left\{ \left(\int_{D_{\psi(\phi)}} \sigma dA \right)^{-1/p} \right\} \left(\int_{D_{\psi(\phi)}} \sigma dA \right)^{-1/p} + \sup_{|\psi(\phi)|<r} \mu(z) |\psi'(z)| \left\{ \left(\int_{D_{\psi(\phi)}} \sigma dA \right)^{-1/p} \right\} \left(\int_{D_{\psi(\phi)}} \sigma dA \right)^{-1/p}
\]

Using (34) and (37) in (22), we have that

\[
\|W_{\psi\phi}\|_{L^p(\sigma) \rightarrow \mathcal{B}_\mu} \leq \sup_{|\psi(\phi)|<r} \mu(z) |\psi'(z)| \left(\int_{D_{\psi(\phi)}} \sigma dA \right)^{-1/p} + \sup_{|\psi(\phi)|<r} \mu(z) |\psi'(z)| \left(\int_{D_{\psi(\phi)}} \sigma dA \right)^{-1/p}.
\]

Finally, letting \(r \rightarrow 1\), then we get

\[
\|W_{\psi\phi}\|_{L^p(\sigma) \rightarrow \mathcal{B}_\mu} \leq \limsup_{|\psi(\phi)|<1} \mu(z) |\psi'(z)| \left(\int_{D_{\psi(\phi)}} \sigma dA \right)^{-1/p} + \limsup_{|\psi(\phi)|<1} \mu(z) |\psi'(z)| \left(\int_{D_{\psi(\phi)}} \sigma dA \right)^{-1/p}.
\]

Combining (20) and (39), we get the desired result.

Corollary 5. Let \(p \in (1,\infty)\), \(\psi \in H(D)\), and \(\phi\) be a holomorphic self-map of \(D\), such that \(\|\psi\|_{C^\infty} = 1\). Let \(W_{\psi\phi} : \mathcal{A}^p(\sigma) \rightarrow \mathcal{B}_\mu\) be a holomorphic self-map of \(D\), such that \(\|\psi\|_{C^\infty} = 1\). Let \(W_{\psi\phi} : \mathcal{A}^p(\sigma) \rightarrow \mathcal{B}_\mu\) is compact if and only if the following conditions are satisfied:

1. \(\limsup_{|\psi(\phi)|<1} \mu(z) |\psi'(z)| \left(\int_{D_{\psi(\phi)}} \sigma dA \right)^{-1/p} = 0\)
2. \(\limsup_{|\psi(\phi)|<1} \mu(z) |\psi'(z)| \left(\int_{D_{\psi(\phi)}} \sigma dA \right)^{-1/p} = 0\)

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

We would like to thank the anonymous referee for pointing out several errors in the earlier version of the paper. The second author is thankful to DST(SERB) for the project grant (Grant No. MTR/2018/000479) under MATRICS scheme.

References

