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This paper is devoted to the investigation of a kind of generalized Caputo semilinear fractional differential inclusions with deviated-
advanced nonlocal conditions. Solvability of the problem is established by means of the Leray-Schauder’s alternative approach with
the help of the Lagrange mean-value classical theorem. Finally, some examples are given to delineate the efficient of theoretical
results.

1. Introduction

The history of the theory of fractional calculus goes back to
1695 when Leibniz sent a question to L-Hôpital [1].
Although in the starter fractional calculus had an efflores-
cence as a mathematical analysis idea, nowadays, its use has
also sawing into many other subjects of engineering and
science such as biology, physics, mechanics, chemistry, and
bioengineering [2–5].

It is known that differential inclusions are more general
than differential equations and various phenomena of
science, control, and engineering are successfully modeled
as fractional differential inclusions [6, 7].

Recently, fractional differential inclusions with nonlocal
conditions have attracted the attention of many researchers.
In 2011, El-Sayed et al. [8] established the solvability of the
ordinary differential inclusion with deviated-advanced
nonlocal condition.

In the few past years, there has been important works in
fractional differential inclusions with other types of nonlocal
conditions. Detailedly, in 2015, Wang et al. [9] established
the existence of solutions for the Caputo fractional differen-
tial inclusions involving nonlocal conditions. In the second
year, Lian et al. [10] established the solvability of the frac-

tional differential inclusions with nonlocal conditions by
using the measure of noncompactness and several-valued
fixed-point approach. In 2019, Castaing et al. [11] studied
the solvability of a new class of the Riemann–Liouville frac-
tional differential inclusion with nonlocal integral conditions
in a separable Banach space.

η′ tð Þ ∈ F t, η tð Þð Þ, a:e: t ∈ 0, 1ð Þ
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In the above-cited monographs, the Caputo and Rie-
mann–Liouville derivatives were utilized. In 2017, Almeida
[12] obtained the new generalized Caputo fractional deriv-
ative, that is, a Caputo-kind operator of a function with
respect to another function. Indeed, this fractional opera-
tor is more general than Riemann–Liouville, Hadamard,
Erdely Kober, and Caputo operator kinds. More details
about the generalized Caputo fractional operator are found
in [13, 14]. Since then, generalized fractional operators
draw increasing attention due to their advantages, because
the generalized fractional operators will give us new
opportunities to improve the theoretical results and to

model a lot of real-life events. In 2019, Promsakon et al.
[15] established the solvability of a new class of impulsive
fractional boundary value problems involving the general-
ized Caputo fractional derivative. In 2020, Belmor et al.
[16] investigated the solvability of fractional differential
inclusion including the generalized Caputo derivative with
integral nonlocal conditions. There are other works that
showed interest in the generalized Caputo operators; we
mention for example [17–20].

Nowadays, Herzallah and Radwan [21] studied the
fractional version of the system (1) with the classical Caputo
operator, namely

Motivated by the above-cited contributions, in particular
systems (1) and (2), we propose a new fractional differential
inclusion involving generalized Caputo operator, given by

Dα
0+,Qη tð Þ ∈A tð Þη tð Þ + F t, η tð Þð Þ, a:e: t ∈ I = 0, T½ �, T > 0,

〠
l1

i=1
ciη θ tið Þð Þ = β〠

l2

j=1
djη ϕ τið Þð Þ, ci, dj > 0, ti, τj ∈ I,∀i = 1,⋯, l1, j = 1,⋯, l2:

8>><>>:
ð3Þ

where ∗Dα
0+,Q is the generalized Caputo derivative w.r.t. the

function Q such that α ∈ ð0, 1Þ, AðtÞ: DðAÞ ⊆ℝ⟶ℝ is lin-
ear bounded operator and F : I ×ℝ⟶ Pðℝ+Þ. We show the
existence of solution for the proposed system (3). The pro-
posed system (3) is more flexible since it allows us to choose
fractional derivative depending on the particular established
phenomenon. Therefore, the tools of generalized fractional
differential inclusions facilitate the investigation of optimal
controls and stochastic processing, in particular, modeling
of control processes that are considered by selecting a trial
function [7]. Moreover, nonlocal conditions give more
accurate measurements, precise results, and efficient effect
than the classical boundary conditions.

An outline of this paper is as follows. In Section 2, some
bases and results are given needed in the sequel. In Section
3, we study the solvability of the generalized system (3). In
Section 4, we apply the abstract results in order to establish
the existence of solution for some illustrative examples.

2. Preliminaries

In this part, we recall some definitions and theorems that
will be used later. Let ðE, k:kEÞ be a Banach space and P

ðEÞ = fZ ⊂ E : Z ≠∅g. Now, throughout this paper, let

Pbd Eð Þ = Z ∈ P Eð Þ: Z is boundedf g,
Pcp Eð Þ = Z ∈ P Eð Þ: Z is compactf g,
Pcv Eð Þ = Z ∈ P Eð Þ: Z is convexf g,

Pcvp Eð Þ = Pcp Eð Þ ∩ Pcv Eð Þ:

ð4Þ

Let W ⊆ E. The fixed point of set-valued map Ψ : W
⟶ PðEÞ is a point ω ∈W such that ω ∈ΨðωÞ. The graph
of Ψ is defined as

G Ψð Þ = ω1, ω2ð Þ ∈W × E : ω2 ∈Ψ w1ð Þf g: ð5Þ

A selection of Ψ is a single-valued map ψ : W ⟶ E
such that GðψÞ ⊆GðΨÞ.

Ψ : E⟶ PðEÞ is closed (convex) valued if ΨðωÞ is
closed (convex) for each ω ∈ E, and Ψ is bounded on
bounded sets if ΨðWÞ =Sω∈WΨðωÞ is bounded for each W
∈ PbdðEÞ, that is, supω∈Wfsup fkzk: z ∈ΨðωÞgg <∞.

Therefore, Ψ is completely continuous if Ψ (W) is
relatively compact for each W ∈ PbdðWÞ. In fact, if Ψ is
completely continuous with nonempty compact values, then
Ψ is upper semicontinuous (u.s.c., for short) if and only if G
(Ψ) is closed.

Let L1ðI, EÞ = fη : I ⟶ E : kηkE : I ⟶ R+ be Lebesgue
integrableg; then L1ðI, EÞ is Banach with the norm kηkL1 =Ð
IkηðtÞkE dt.

Definition 1 [22]. A multivalued function Ψ : I × E⟶ PðEÞ
is called L1−Carathéodory if

(i) t⟶Ψðt, ωÞ is measurable for each ω ∈ E,

(ii) ω⟶Ψðt, ωÞ is u.s.c. for almost all t ∈ I,

Dα
0+η tð Þ ∈ A tð Þη tð Þ + F t, η tð Þð Þ, a:e: t ∈ 0, T½ �, T > 0,

〠
l1

i=1
ciη θ tið Þð Þ = β〠

l2

j=1
djη ϕ τið Þð Þ, ci, dj > 0, ti, τj ∈ 0, Tð Þ,∀i = 1,⋯, l1, j = 1,⋯, l2:
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(iii) for each r ∈ ð0,∞Þ, there exists pr ∈ L
1ðI, R+Þ such

that

kΨðt, ωÞk = sup fkνkE : ν ∈Ψðt, ωÞg ≤ prðtÞ, ∀kωkE ≤ r
and almost every t ∈ I.

Definition 2 [23]. Let CðI, EÞ be the Banach space of all con-
tinuous functions η : I ⟶ E with the norm kηk∞ = supt∈I
kηðtÞkE. Therefore, let Cm ðI, EÞ be the Banach space of all
m−differentiable maps η : I ⟶ E with ηðmÞðtÞ ∈ CðI, EÞ,m
∈ℕ.

Definition 3 [24]. For every η ∈ CðI, EÞ, define the family of L1

−selection of Ψ : I × E⟶ PcvpðEÞ as

S1Ψ,η = ψ ∈ L1 I,ℝð Þ: ψ tð Þ ∈Ψ t, η tð Þð Þ for a:e:t ∈ I� �
: ð6Þ

Therefore, S1Ψ,η is a nonempty set.

Lemma 4 [24]. Let Ψ : I × E⟶ PcvpðEÞ be a L1−Car-
athéodory-multivalued function and Φ : L1 ðI, EÞ⟶ CðI, EÞ
be a continuous linear mapping. Then

Φ ∘ S1Ψ : C I, Eð Þ⟶ Pcvp C I, Eð Þð Þ, η↦Φ S1Ψ,η

� �
, ð7Þ

is a closed graph operator in CðI, EÞ × CðI, EÞ.

An important role is played by the fixed-point principle
to obtain the solvability of various types of operator equa-
tions (see, for example, [25–29]). We will apply the following
fixed-point theorem to obtain the main results.

Theorem 5 [30]. Let Z be a convex closed subset of E,Ω be an
open subset of Z, 0 ∈Ω and Ψ : �Ω⟶ PcvpðZÞ is u.s.c. and
compact operator. Then, either

(1) Ψ has a fixed point in �Ω, or

(2) there exists ω ∈ ∂Ω and λ ∈ ð0, 1Þ with ω ∈ λΨω.

Next, we outline some definitions of the generalized frac-
tional operators [12, 13]. For more details about fractional
operators, the readers are also referred to [1, 31].

Definition 6. Let Q : ða, bÞ⟶ℝ+ be an increasing function
having a derivative Q′ðtÞ ∈ Cðða, bÞ,ℝÞ such that Q′ðtÞ ≠ 0
for all t ∈ ða, bÞ. The left generalized Riemann–Liouville frac-
tional integral of order α ∈ ðn, n + 1Þ for some n ∈ℕ of an
integrable function η : ½a, b�⟶ℝ w.r.t. the function Q is
given by [12]

Jαa+,Q η tð Þ = 1
Γ αð Þ

ðt
a
Q′ ζð Þ Q tð Þ −Q ζð Þð Þα−1η ζð Þdζ, t > a:

ð8Þ

Choosing QðtÞ = ln ðtÞ and replacing in (8), we have the

Hadamard fractional integral, given by [32]

H J
α
a+ η tð Þ = 1

Γ αð Þ
ðt
a

ln t
ζ

� �� �α−1
η ζð Þ dζ

ζ
, a > 0, t > a:

ð9Þ

Choosing QðtÞ = t and replacing in (8), we get the
classical Riemann–Liouville integral, given by [1]

Jαa+ η tð Þ = 1
Γ αð Þ

ðt
a
t − ζð Þα−1η ζð Þdζ, t > a: ð10Þ

The left generalized Riemann–Liouville fractional deriva-
tive of order α ∈ ðn, n + 1Þ for some n ∈ℕ of an integrable
function η : ½a, b�⟶ℝ w.r.t. the function Q is given by [12]

Dα
a+,Q η tð Þ = 1

Γ n − αð Þ
1

Q′ tð Þ
d
dt

 !nðt
a
Q′ ζð Þ

� Q tð Þ −Q ζð Þð Þn−α−1η ζð Þdζ t > a:

ð11Þ

Choosing QðtÞ = ln ðtÞ and replacing in (11), we have the
Hadamard fractional derivative, given by [32]

HD
α
a+η tð Þ = 1

Γ n − αð Þ t
d
dt

� �nðt
a

ln t
ζ

� �� �n−α−1
η ζð Þdζ, a > 0, t > a:

ð12Þ

Choosing QðtÞ = t and replacing in (11), we get classical
Riemann–Liouville derivative, given by [31]

Dα
a+η tð Þ = 1

Γ n − αð Þ
d
dt

� �nðt
a
t − ζð Þn−α−1η ζð Þdζ, t > a:

ð13Þ

Definition 7. Let α ∈ ðn, n + 1Þ for some n ∈ℕ and Q ∈ Cn

ðða, bÞ,ℝÞ be an increasing mapping such that Q′ðtÞ ≠ 0
for all t ∈ ða, bÞ. Consider η : ða, bÞ⟶ℝ be an integrable
function. The left generalized Caputo fractional derivative
of order α > 0, α ∈ℝ+, w.r.t. the function Q is given by
[12]

∗Dα
a+,Qη tð Þ = Jn−αa+,Q

1
Q′ tð Þ

d
dt

 !n

η tð Þ, t > a: ð14Þ

Choosing QðtÞ = t and replacing in (14), we obtain the
classical Caputo fractional derivative. Choosing QðtÞ = ln
ðtÞ and replacing in (14), we have the Caputo-Hadamard
fractional derivative, given by [32]

C−HD
α
a+η tð Þ = 1

Γ n − αð Þ
ðt
a

ln ζ

t

� �n−α−1
t
d
dt

� �n

η tð Þ dt
t

= H J
n−α
a+ t

d
dt

� �n

η tð Þ
� �

, a > 0, t > a:

ð15Þ
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Further, the generalized Caputo derivative can be
defined via the generalized Riemann–Liouville fractional
derivative as [13]

∗Dα
a+,Qη tð Þ =Dα

a+,Q η tð Þ − 〠
n−1

k=0

η
k½ �
Q að Þ
k!

Q tð Þ −Q að Þð Þk
" #

, ð16Þ

where η½k�Q ðtÞ = ðð1/Q′ðtÞÞðd/dtÞÞkηðtÞ.
The following lemma, which concerns some properties of

generalized fractional operators, plays a key role in the
sequel.

Lemma 8. [13]. Suppose that η : I ⟶ℝ, then

(1) if η ∈ CðI,ℝÞ, then ∗Dα
0+,QJ

α
0+,QηðtÞ = ηðtÞ,

(2) if η ∈ CnðI,ℝÞ, then

Jα0+,Q
∗Dα

0+,Qη tð Þ = η tð Þ − 〠
n−1

k=0

η
k½ �
Q 0ð Þ
k!

Q tð Þ −Q 0ð Þð Þk,

ð17Þ

(3) if η ∈ CnðI,ℝÞ and α ∈ ð0, 1Þ, then

Jα0+,Q
∗Dα

0+,Qη tð Þ = η tð Þ − η 0ð Þ: ð18Þ

3. Main Results

The differential inclusions using fractional derivatives have
been proven to be of major interest to the academic commu-
nity, not only mathematicians but also researchers in other
fields. There is a motivating way to obtain the solvability of
the differential inclusions; this way is representing the solu-
tion by integral equation.

The solvability of system (3) will be established under the
following hypotheses:

(H1) For all ηðtÞ ∈ I, there exists LA ∈ ð0,∞Þ such that
LA =maxt∈I jAðtÞj.

(H2) ∑l1
i=1ci ≠ β∑l2

j=1dj.
(H3) The function F : I ×ℝ⟶ℝ is L1−Carathéodory

and has nonempty, convex, and compact values.
(H4) The functions θ, ϕ : I ⟶ I are continuous such

that θðtÞ ≤ t and ϕðtÞ ≥ t for all t ∈ I.
(H5) There exists a function p ∈ L1ðI, R+Þ and K > 0 such

that kFðt, ηðtÞÞk ≤ KpðtÞ, and there exists M∗ > 0 such that

Γ α + 1ð ÞM∗

LAM
∗ Q Tð Þ −Q 0ð Þð Þα + KMΓ α + 1ð Þð Þ σβj j∑l2

j=1dj + σj j∑l1
i=1ci + 1

� � > 1,

ð19Þ

where

M = 1
Γ αð Þ

ðT
0
Q′ sð Þ Q Tð Þ −Q sð Þð Þα−1p sð Þds: ð20Þ

The integral representation of the system (3) will be given
in the following lemma.

Lemma 9. Let the hypotheses (H1)-(H2) hold. Suppose that
ψ : I ⟶ CðI,ℝÞ, then the solution η(t) of the following
problem

∗Dα
0+,Qη tð Þ = A tð Þη tð Þ + ψ tð Þ, a:e: t ∈ I,

〠
l1

i=1
ciη θ tið Þð Þ = β〠

l2

j=1
djη ϕ τið Þð Þ, ci, dj > 0, ti, τj ∈ I,∀i = 1,⋯, l1, j = 1,⋯l2,

8>><>>:
ð21Þ

is given by

η tð Þ = σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τ j
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψ sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ψ sð Þds,

ð22Þ

where σ = 1/ð∑l1
i=1ci − β∑l2

j=1djÞ.

Proof. Applying the operator Jα0+,Q on both sides of equation
(21). Then, by Lemma 8, we get

Jα0+,Q
∗Dα

0+,Qη tð Þ = Jα0+,Q A tð Þη tð Þ + ψ tð Þ½ �: ð23Þ

Therefore, we obtain

η tð Þ = η 0ð Þ + 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ψ sð Þds:

ð24Þ
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Putting t = θðtiÞ in equation (24), we get

η θ tið Þð Þ = η 0ð Þ + 1
Γ αð Þ

ðθ tið Þ

0
Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðθ tið Þ

0
Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1ψ sð Þds:

ð25Þ

Thus, we have

〠
l1

i=1
ciη θ tið Þð Þ = 〠

li

i=1
ciη 0ð Þ + 〠

l1

i=1
ci

1
Γ αð Þ

ðθ tið Þ

0
Q′ sð Þ Q θ tið Þð Þð

−Q sð ÞÞα−1A sð Þη sð Þds + 〠
l1

i=1
ci

1
Γ αð Þ

ðθ tið Þ

0
Q′ sð Þ

� Q θ tið Þð Þ −Q sð Þð Þα−1ψ sð Þds:
ð26Þ

Putting t = ϕðτjÞ in equation (24), we get

η ϕ τj
� 	� 	

= η 0ð Þ + 1
Γ αð Þ

ðϕ τ jð Þ
0

Q′ sð Þ

� Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τ j
� 	� 	

−Q sð Þ� 	α−1ψ sð Þds:

ð27Þ

Thus, we have

〠
l2

j=1
djη ϕ τj

� 	� 	
= 〠

l2

j=1
djη 0ð Þ + 〠

l2

j=1
dj

1
Γ αð Þ

ðϕ τ jð Þ
0

Q′ sð Þ

� Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1A sð Þη sð Þds

+ 〠
l2

j=1
dj

1
Γ αð Þ

ðϕ τ jð Þ
0

Q′ sð Þ

� Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1ψ sð Þds:

ð28Þ

Hence, we obtain

η 0ð Þ = σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τ j
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψ sð Þds:

ð29Þ

Substituting equation (29) into equation (24), we obtain
the result.

We note that a function η ∈ CðI,ℝÞ is called a solution for
system (3) if there exists a map ψ ∈ L1ðI,ℝÞ such that ψ ∈ F
ðt, ηðtÞÞ a.e. on I and η(t) is given by

η tð Þ = σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψ sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ψ sð Þds,

ð30Þ

where σ = 1/ð∑l1
i=1ci − β∑l2

j=1djÞ.
Now, we establish the solvability of problem (3).

Theorem 10. Suppose that the hypotheses (H1)-(H5) are
satisfied; then the system (3) has at least one solution.

Proof. By hypothesis (H3) and Lemma 4, there exists a single-
value map ψ ∈ S1F,η. Define the multivalued operator ϒ : Cð
I,ℝÞ⟶ PðCðI,ℝÞÞ as

ϒη tð Þ = h ∈ C I,ℝð Þ: h tð Þf

= σβ〠
L2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds

(

+ σβ〠
L2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ sð Þds

− σ〠
l1

i=1
cj

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
cj

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψ sð Þds

+
ðt
0

Q′ sð Þ Q tð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

+
ðt
0

Q′ sð Þ Q tð Þ −Q sð Þð Þα−1
Γ αð Þ ψ sð Þds, ψ ∈ S1F,η

)
:

ð31Þ

Then for every h ∈ϒη and η ∈ CðI,ℝÞ, there exists ψ ∈
S1F,η such that
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h tð Þ = σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψ sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ψ sð Þds:

ð32Þ

Now, we can obtain the proof in 4 steps.
Step 1. ϒη is convex for all η ∈ CðI,ℝÞ. Let h1, h2 ∈ϒη; then
there exists ψ1, ψ2 ∈ S

1
F,η such that for every t ∈ I, we get

h1 tð Þ = σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ1 sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψ1 sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ψ1 sð Þds,

h2 tð Þ = σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ2 sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψ2 sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q − sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q − sð Þð Þα−1ψ2 sð Þds:

ð33Þ

Let 0 ≤ ρ ≤ 1, then

ρh1 + 1 − ρð Þh2ð Þ tð Þ = σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ρψ1 sð Þ + 1 − ρð Þψ2 sð Þð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ρψ1 sð Þ + 1 − ρð Þψ2 sð Þð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1 ρψ1 sð Þ + 1 − ρð Þψ2 sð Þð Þds:

ð34Þ
From (H3), we have F takes convex values. Hence,

ðρh1 + ð1 − ρÞh2Þ ∈ϒη. Thus, S1F,η is convex.
Step 2. ϒ is completely continuous. First, we will prove thatϒ
is bounded. Let r > 0. Define Br = fη ∈ CðI,ℝÞ: kηk∞ ≤ rg
and let η ∈ Br. From (H4), we have that

h tð Þj j ≤ σβ〠
l2

j=1
dj

ðτ j
0

Q′ sð Þ Q τj
� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds







+ σβ〠

l2

j=1
dj

ðτ j
0

Q′ sð Þ Q τj
� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ sð Þds

− σ〠
l1

i=1
ci

ðti
0

Q′ sð Þ Q tið Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðti
0

Q′ sð Þ Q tið Þ −Q sð Þð Þα−1
Γ αð Þ ψ sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ψ sð Þds





,
ð35Þ

for all t ∈ I. Therefore, we get

hk k∞ ≤ σβj j〠
l2

j=1
dj

ðτ j
0

Q′ sð Þ Q τj
� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þj j ηk k∞ds

+ σβj jK〠
l2

j=1
dj

ðτ j
0

Q′ sð Þ Q τj
� 	

−Q sð Þ� 	α−1
Γ αð Þ p sð Þds

+ σj j〠
l1

i=1
ci

ðti
0

Q′ sð Þ Q tið Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þj j ηk k∞ds

+ σj jK〠
l1

i=1
ci

ðti
0

Q′ sð Þ Q tið Þ −Q sð Þð Þα−1
Γ αð Þ p sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1 A sð Þj j ηk k∞ds

+ K
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1p sð Þds
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≤ LAr
Q Tð Þ −Q 0ð Þð Þα

Γ α + 1ð Þ + KM
� �

σβj j〠
l2

j=1
dj + σj j〠

l1

i=1
ci + 1

 !
:

ð36Þ

Hence, ϒ sends bounded sets to bounded sets in CðI,ℝÞ.
Secondly, we will prove ϒ sends Br into equicontinuous

sets of CðI,ℝÞ. Let t∗1 , t∗2 ∈ I such that t∗1 < t∗2 .
Then, for all h ∈ϒη and η ∈ Br , we have

h t∗2ð Þ − h t∗1ð Þ = 1
Γ αð Þ

ðt∗2
0
Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1A sð Þη sð Þds

−
1

Γ αð Þ
ðt∗1
0
Q′ sð Þ Q t∗1ð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt∗2
0
Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1ψ sð Þds

−
1

Γ αð Þ
ðt∗1
0
Q′ sð Þ Q t∗1ð Þ −Q sð Þð Þα−1ψ sð Þds:

ð37Þ

Hence, we get

h t∗2ð Þ − h t∗1ð Þj j ≤ 1
Γ αð Þ

ðt∗1
0
Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1 − Q t∗1ð Þ −Q sð Þð Þα−1

h i
� A sð Þj j ηk k∞ + ψk k∞
� 	

ds + 1
Γ αð Þ

�
ðt∗2
t∗1

Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1 A sð Þj j ηk k∞ + ψk k∞
� 	

ds:

ð38Þ

Next, by the Lagrange mean-value classical theorem,
we obtain

h t∗2ð Þ − h t∗1ð Þj j ≤ α − 1ð Þ t∗2 − t∗1ð ÞQ′ t̂
� 	

Γ αð Þ
ðt∗1
0
Q′ sð Þ

� Q t̂
� 	

−Q sð Þ� 	α−2 LAr + ψk k∞
� 	

ds

+ 1
Γ αð Þ

ðt∗2
t∗1

Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1

� LAr + ψk k∞
� 	

ds,

ð39Þ

where t∗1 < t̂ < t∗2 . As t∗1 ⟶ t∗2 , jhðt∗2 Þ − hðt∗1 Þj⟶ 0. Thus,
ϒðBrÞis equicontinuous. From the Arzela-Ascoli theorem,
we get ϒ is completely continuous.

Step 3. ϒ is u.s.c. We only need to show that ϒ has a
closed graph to be u.s.c. Let ηn ⟶ bη and hn ⟶ ĥ where
hn ∈ϒηn.We need to show that ĥ ∈ϒbη .Associated with hn
∈ϒηn,there exists ψn ∈ S

1
F,ηn such that for all t ∈ I, we have

hn tð Þ = σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þηn sð Þds

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψn sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þηn sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψn sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þηn sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ψn sð Þds:

ð40Þ

We want to show that there exists bψ ∈ S1
F,bη such that for

each t ∈ I, we get

ĥ tð Þ = σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þbη sð Þds

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ bψ sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þbη sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ bψ sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þbη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1 bψ sð Þds:

ð41Þ

Define the linear continuous operator Θ : L1ðI,ℝÞ⟶
CðI,ℝÞ by

Θ ψð Þ tð Þ = σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψ sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ψ sð Þds:

ð42Þ
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Hence, we get

hn tð Þ − ĥ tð Þ



 


 ≤ σβj jLA〠

l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ηn sð Þ − bη sð Þj jds

+ σβj j〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψn sð Þ − bψ sð Þ

 

ds

+ σj jLA〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ηn sð Þ − bη sð Þj jds

+ σj j〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψn sð Þ − bψ sð Þ

 

ds

+ LA
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1 ηn sð Þ − bη sð Þj jds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1 ψn sð Þ − bψ sð Þ

 

ds:

ð43Þ

Thus, hnðtÞ⟶ ĥðtÞ as n⟶∞. From Lemma 4, we can
see Θ○S1F,η is a closed graph in CðI,ℝÞ × CðI,ℝÞ and hn ∈
ΘðS1F,ηnÞ. Since ηn ⟶ bη , then ĥðtÞ satisfies equation (41)

for some ψ ∈ S1
F,bη . Thus, ϒ is an u.s.c.

Step 4. There exists an open set Ω ∈ CðI,ℝÞ such that η ∈ δ
ϒη for some δ ∈ ð0, 1Þ and η ∈ ∂Ω.

Let δ ∈ ð0, 1Þ and η ∈ δϒη. Then, there exists ψ ∈ L1ðI,ℝÞ
with ψ ∈ S1F,η such that for all t ∈ I, we have

η tð Þ = δ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds

"

+ σβ〠
l2

j=1
dj

ðϕ τ jð Þ
0

Q′ sð Þ Q ϕ τj
� 	� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðθ tið Þ

0

Q′ sð Þ Q θ tið Þð Þ −Q sð Þð Þα−1
Γ αð Þ ψ sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ψ sð Þds

�
:

ð44Þ

As in the proof of Step 2, we get that

ηk k∞ ≤ δ LA ηk k∞
Q Tð Þ −Q 0ð Þð Þα

Γ α + 1ð Þ + KM
� �
� σβj j〠

l2

j=1
dj + σj j〠

l1

i=1
ci + 1

 !

≤ LA ηk k∞
Q Tð Þ −Q 0ð Þð Þα

Γ α + 1ð Þ + KM
� �
� σβj j〠

l2

j=1
dj + σj j〠

l1

i=1
ci + 1

 !
:

ð45Þ

Hence, we get

Γ α + 1ð Þ ηk k∞
LA ηk k∞ Q Tð Þ −Q 0ð Þð Þα + KMΓ α + 1ð Þ� 	

σβj j∑l2
j=1dj + σj j∑l1

i=1cj + 1
� � ≤ 1:

ð46Þ

From (H5), there exists M∗ such that M∗ ≠ kηk∞. Let
Ω = fη ∈ CðI,ℝÞ: kηk∞ <M∗ + 1g. Thus, there is no η ∈ ∂Ω
such that η ∈ δϒη for δ ∈ ð0, 1Þ. Hence, ϒ : �Ω⟶ PcvpðBrÞ
is u.s.c. From Theorem 5, we deduce that ϒ has a fixed point
η ∈ �Ω which is a solution of the system (3).

Theorem 11. Assume that (H1)-(H4) hold. In addition,
suppose

(H6) there exists a nondecreasing continuous function
Ξ : ½0,∞Þ⟶ ½0,∞Þ and q ∈ CðI,ℝ+Þ such that

F t, η tð Þð Þk k = sup ρj j: ρ ∈W t, ηð Þf g ≤ q tð ÞΞ ρj jð Þ, ð47Þ

for all ðt, ηÞ ∈ I ×ℝ, and there exists κ > 0 such that

Γ α + 1ð Þκ
LAκ + qk k∞Ξ κð Þ� 	

Q Tð Þ −Q 0ð Þð Þα σβj j∑l2
j=1dj + σj j∑l1

1=1ci + 1
� � ≤ 1:

ð48Þ

Then, the system (3) has at least one solution on I.

Proof. Define the multivalued operator ϒ : CðI,ℝÞ⟶ PðC
ðI,ℝÞÞ as in equation (31) of Theorem 10.
Step 1. ϒη is convex for all η ∈ CðI,ℝÞ. By doing the same
steps as in the proof of Theorem 10, we can get that ϒη is
convex for all η ∈ CðI,ℝÞ.
Step 2. ϒ is completely continuous. First, we will prove thatϒ
is bounded. Let r0 > 0. Define Br0

= fη ∈ CðI,ℝÞ: kηk∞ ≤ r0g
and let η ∈ Br0

. From (H4), we have that

h tð Þj j ≤ σβ〠
l2

j=1
dj

ðτ j
0

Q′ sð Þ Q τj
� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þη sð Þds







+ σβ〠

l2

j=1
dj

ðτ j
0

Q′ sð Þ Q τj
� 	

−Q sð Þ� 	α−1
Γ αð Þ ψ sð Þds

− σ〠
l1

i=1
ci

ðti
0

Q′ sð Þ Q tið Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þη sð Þds

− σ〠
l1

i=1
ci

ðti
0

Q′ sð Þ Q tið Þ −Q sð Þð Þα−1
Γ αð Þ ψ sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ψ sð Þds






,
ð49Þ
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for all t ∈ I. Therefore, we get

hk k∞ ≤ σβj j〠
l2

j=1
dj

ðτ j
0

Q′ sð Þ Q τj
� 	

−Q sð Þ� 	α−1
Γ αð Þ A sð Þj j ηk k∞ds

+ σβj j qk k∞Ξ r0ð Þ〠
l2

j=1
dj

ðτ j
0

Q′ sð Þ Q τ j
� 	

−Q sð Þ� 	α−1
Γ αð Þ ds

+ σj j〠
l1

i=1
ci

ðti
0

Q′ sð Þ Q tið Þ −Q sð Þð Þα−1
Γ αð Þ A sð Þj j ηk k∞ds

+ σj j qk k∞Ξ r0ð Þ〠
l1

i=1
ci

ðti
0

Q′ sð Þ Q τj
� 	

−Q sð Þ� 	α−1
Γ αð Þ ds

+ 1
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1 A sð Þj j ηk k∞ds

+ qk k∞Ξ r0ð Þ
Γ αð Þ

ðt
0
Q′ sð Þ Q tð Þ −Q sð Þð Þα−1ds

≤
LAr0 + qk k∞Ξ r0ð Þ

Γ α + 1ð Þ
� �

Q Tð Þ −Q 0ð Þð Þα

� σβj j〠
l2

j=1
dj + σj j〠

l1

i=1
ci + 1

 !
:

ð50Þ

Hence, ϒ sends bounded sets to bounded sets in CðI, RÞ.
Secondly, we will prove ϒ sends Br0

into equicontinuous
sets of CðI,ℝÞ. Let t∗1 , t∗2 ∈ I such that t∗1 < t∗2 .

Then, for all h ∈ϒη and η ∈ Br0
, we have

h t∗2ð Þ − h t∗1ð Þ = 1
Γ αð Þ

ðt∗2
0
Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1A sð Þη sð Þds

−
1

Γ αð Þ
ðt∗1
0
Q′ sð Þ Q t∗1ð Þ −Q sð Þð Þα−1A sð Þη sð Þds

+ 1
Γ αð Þ

ðt∗2
0
Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1ψ sð Þds

−
1

Γ αð Þ
ðt∗1
0
Q′ sð Þ Q t∗1ð Þ −Q sð Þð Þα−1ψ sð Þds:

ð51Þ

Hence, we get

h t∗2ð Þ − h t∗1ð Þj j ≤ LAro + qk k∞Ξ r0ð Þ� 	
Γ αð Þ

ðt∗1
0
Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1 − Q t∗1ð Þ −Q sð Þð Þα−1




 


ds
+ LAro + qk k∞Ξ r0ð Þ� 	

Γ αð Þ
ðt∗2
t∗1

Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1ds

≤
LAro + qk k∞Ξ r0ð Þ� 	

Γ αð Þ
ðt∗1
0
Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1 − Q t∗1ð Þ −Q sð Þð Þα−1

h i
ds

+ LAro + qk k∞Ξ r0ð Þ� 	
Γ αð Þ

ðt∗2
t∗1

Q′ sð Þ Q t∗2ð Þ −Q sð Þð Þα−1ds

≤
LAro + qk k∞Ξ r0ð Þ� 	

Γ α + 1ð Þ Q t∗2ð Þ −Q 0ð Þð Þα − Q t∗1ð Þ −Q 0ð Þð ÞαÞ½ �:

ð52Þ

In view of continuity of Q, we have jhðt∗2 Þ − hðt∗1 Þj⟶ 0
as t∗1 ⟶ t∗2 . Thus, ϒ is completely continuous.
Step 3.ϒ is u.s.c. As in the proof of Theorem 10, we have that
ϒ is an u.s.c.

Step 4. There exists an open set Ω ∈ CðI,ℝÞ such that η/δ ∈
ϒη for some δ ∈ ð0, 1Þ and η ∈ ∂Ω.

Let δ ∈ ð0, 1Þ and η ∈ δϒη. Then, there exists ψ ∈ L1ðI,ℝÞ
with ψ ∈ S1F,η such that for all t ∈ I, we have η ∈ δYη satisfies
(44). As in the proof of Step 2, we have that

ηk k∞ ≤ δ
LA ηk k∞ + qk k∞Ξ ηk k∞

� 	
Γ α + 1ð Þ

� �
Q Tð Þ −Q 0ð Þð Þα

� σβj j〠
l2

j=1
dj + σj j〠

l1

i=1
ci + 1

 !

≤
LA ηk k∞ + qk k∞Ξ ηk k∞

� 	
Γ α + 1ð Þ

� �
Q Tð Þ −Q 0ð Þð Þα

� σβj j〠
l2

j=1
dj + σj j〠

l1

i=1
ci + 1

 !
:

ð53Þ

Hence, we get

Γ α + 1ð Þ ηk k∞
LA ηk k∞ + qk k∞Ξ ηk k∞

� 	� 	
Q Tð Þ −Q 0ð Þð Þα σβj j∑l2

j=1dj + σj j∑l1
1=1ci + 1

� � ≤ 1:

ð54Þ

From (H6), there exists κ such that κ ≠ kηk∞. Let Λ = fη
∈ CðI,ℝÞ: kηk∞ < κ + 1g. Thus, there is no η ∈ ∂Λ such that
η ∈ δϒη for δ ∈ ð0, 1Þ. Hence, ϒ : �Λ⟶ PcvpðBr0

Þ is u.s.c.

From Theorem 5, we deduce that ϒ has a fixed point η ∈ �Λ
which is a solution of the system (3).

Putting QðtÞ = t in (3), we have the following result.

Corollary 12. Assume that (H1)-(H4) hold. In addition,
suppose

(H7) there exists a nondecreasing continuous function
Ξ : ½0,∞Þ⟶ ½0,∞Þ and q ∈ CðI,ℝ+Þ such that

F t, η tð Þð Þk k = sup ρj j: ρ ∈W t, ηð Þf g ≤ q tð ÞΞ ρj jð Þ, ð55Þ

for all ðt, ηÞ ∈ I ×ℝ, and there exists κ∗ > 0 such that

Γ α + 1ð Þκ∗

LAκ∗ + qk k∞Ξ κ∗ð Þ� 	
Tα σβj j ∑

l2

j=1
dj + σj j ∑

l1

i=1
ci + 1

 ! ≤ 1:

ð56Þ

Then the system (2) has at least one solution on I.

Choosing QðtÞ = ln ðtÞ in system (3) and changing the
interval I with the interval Ie = ½1, e� in (3) and in all condi-
tions (H1)-(H4), we obtain the following Caputo–Hadamard
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fractional system

C−HD
α
1+η tð Þ ∈ A tð Þη tð Þ + F t, η tð Þð Þ, a:e: t ∈ Ie = 1, e½ �,

〠
l1

i=1
ciη θ tið Þð Þ = β〠

l2

j=1
djη ϕ τið Þð Þ, ci, dj > 0, ti, τj ∈ Ie,∀i = 1,⋯, l1, j = 1,⋯, l2:

8>><>>:
ð57Þ

The following result is a direct consequence of
Theorem 11.

Corollary 13. Assume that (H1)-(H4) hold on Ie. In addition,
suppose

(H8) there exists a nondecreasing continuous function
Ξ : ½0,∞Þ⟶ ½0,∞Þ and q ∈ CðIe,ℝ+Þ such that

F t, η tð Þð Þk k = sup ρj j: ρ ∈W t, ηð Þf g ≤ q tð ÞΞ ∣ρ ∣ð Þ, ð58Þ

for all ðt, ηÞ ∈ Ie ×ℝ, and there exists bκ > 0 such that

Γ α + 1ð Þbκ
LAbκ + qk k∞Ξ bκð Þ� 	

σβj j∑l2
j=1dj + σj j∑l1

i=1ci + 1
� � ≤ 1: ð59Þ

Then, the system (57) has at least one solution on Ie.

4. Applications

In the following examples, we point to how applied the
abstract results in particular systems.

Example 14. Consider the following generalized fractional
differential inclusion

∗D
2
5
0+,Qη tð Þ − cos η tð Þð Þ

t2 + 100 ∈ 0, η tð Þj j
η tð Þj j+t2 + 1 + 3t2 + 6t4

� �
, a:e: t ∈ 0, 1½ �,

〠
2

i=1
4iη t4i
� 	

= 9
4〠

3

j=1
3−jη τj

� 	0:25� �
, ti, τj ∈ 0, 1½ �, ∀i = 1, 2 ; j = 1, 2, 3:

8>>>><>>>>:
ð60Þ

Let QðtÞ = ðt2 + tÞ/2. Here, we get α = 2/5,

A tð Þη tð Þ = cos η tð Þð Þ
t2 + 100 ,

F t, ηð Þ = 0, η tð Þj j
η tð Þj j + t2+1 + 3t2 + 6t4

� �
,

θ : 0, 1½ �⟶ 0, 1½ �, θ tð Þ = t4,
ϕ : 0, 1½ �⟶ 0, 1½ �, ϕ tð Þ = t0:25

ð61Þ

From given information, we obtain that LA = 0:01, T
= 1,l1 = 2,l2 = 3,∑2

i=14i = 5/16,∑3
j=13−j = 7/8,β = 2:25. Hence,

σ = −0:6037735849. In addition, it has kFðt, ηÞk ≤ 10.
Thus, pðtÞ = 1, K = 10 and M = 1:1273957159. Then, there
exists a constant M∗ such that M∗ ∈ ð25:53,∞Þ satisfying
the inequality of (H5).

By Theorem 10, we know the system (60) has at least one
solution.

Example 15. Consider the following generalized fractional
differential inclusion

∗D
2
3
0+,Qη tð Þ − cos η tð Þð Þ

t2 + 100 ∈ 0, t η tð Þj j
t + 1

� �
, a:e: t ∈ 0, 1½ �,

〠
2

i=4
4iη t4i
� 	

= 9
4〠

3

j=1
3−jη τj

� 	0:25� �
, ti, τj ∈ 0, 1½ �,∀i = 1, 2 ; j = 1, 2, 3:

8>>>><>>>>:
ð62Þ

Let QðtÞ = ffiffiffiffiffiffiffiffiffi
t + 1

p
. Here, we get α = 2/3,

A tð Þη tð Þ = cos n tð Þð Þ
t2 + 100

F t, ηð Þ = 0, t η tð Þj j
t + 1

� �
,

θ : 0, 1½ �⟶ 0, 1½ �, θ tð Þ = t4,
ϕ : 0, 1½ �⟶ 0, 1½ �, ϕ tð Þ = t0:25:

ð63Þ

Thus, LA = 0:01, T = 1, l1 = 2, l2 = 3, ∑2
i=14i = 5/16, ∑3

j=1
3−j = 7/8, and β = 2:25. Therefore, σ = −0:6037735849. In
addition, it has kFðt, ηÞk ≤ ðt/t + 1ÞjηðtÞj Further, qðtÞ = t/
ðt + 1Þ,kqk∞ = 1, and Ξðkηk∞Þ = kηk∞. The condition
(H6) of Theorem 11 is satisfied with κ ∈ ð0:5558151022,∞Þ.
Consequently, all the hypotheses of Theorem 11 are satisfied.
Thus, the problem (62) has at least one solution.

5. Conclusions

In this paper, we established the solvability of fractional dif-
ferential inclusions involving the generalized Caputo opera-
tor by applying Leray-Schauder’s alternative approach with
the help of the Lagrange mean-value classical theorem. The
proposed system studied in the present work is more practi-
cal and more generalized. The results given in this paper
extended and developed some previous works. We presented
some examples to illustrate the solvability results.
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