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+is paper is devoted to the maximal regularity of sectorial operators in Lebesgue spaces Lp(·) with a variable exponent. By
extending the boundedness of singular integral operators in variable Lebesgue spaces from scalar type to abstract-valued type, the
maximal Lp(·)− regularity of sectorial operators is established.+is paper also investigates the trace of the maximal regularity space
E
1,p(·)
0 (I), together with the imbedding property of E1,p(·)

0 (I) into the range-varying function space C− (I, X1− 1/p(·),p(·)). Finally, a
type of semilinear evolution equations with domain-varying nonlinearities is taken into account.

1. Introduction

Maximal Lp− regularity of sectorial operators is an important
theory, which brings a powerful tool in investigating the
evolution equations in Lp− spaces. Let X be a Banach space
and A be a closed operator defined in X with the dense
domain D(A) and dense range R(A), and let X1 � D(A)

endowed with the graph norm. A is called a sectorial op-
erator, if there are constants M0 > 0 and 0<ω< π/2, such
that the sector

Σω � λ ∈ \C 0{ } : |argλ|≤ π − ω , (1)

is contained in 9(− A), and the inequality

(λI + A)
− 1����

����≤
M

|λ|
, (2)

holds for all λ ∈ Σω. Recall that for a sectorial operator A, its
negative − A generates an analytic C0− semigroup e− tA (refer
to [1], Section 2.5).

Let I � [0, b] with 0< b<∞ or I � [0,∞), and consider
the abstract differential equation

u′(t) + Au(t) � f(t), 0< t≤ b. (3)

We say thatA satisfies themaximal Lp− regularity on I, or
A ∈MRp(I) in symbol, if for all f ∈ Lp(I, X), there is a
unique solution u ∈W1,p(I, X)∪ L1,p(I, X1) of equation (3)
with the initial value u(0) � 0. Using the interpolation
method for the convolution operators with singular kernels,
we know that (see [2, 3], etc.) if A ∈MRq(I) for some
1< q<∞, then A ∈MRp(I) for all 1<p<∞.

In [4, 5], the authors gave a general introduction on the
Lp− regularity of sectorial operators and [6–9] investigated
the maximal Lp− regularity of the second order elliptic and
Stokes operators, made some Lp− or Lp − Lq− estimates for
the parabolic evolution and nonstationary Navier–Stokes
equations. Maximal regularity of sectorial operators in
weighted Lp− spaces was established in [10] and applied in
quasilinear equations in [11, 12]. During the same period,
Chill and Fiorenza [13] dealt with the maximal regularity of
sectorial operators in Orlicz spaces of rearrangement in-
variant Banach functions.

In some concrete situations, the nonlinear term f at-
tached to (3) may be lying in Lp(·)(I, X), so it is natural to
consider the maximal regularity in such spaces. Since p(·) is
a variable exponent, the interpolation method used in [2, 3]
is not suitable anymore. Because of lacking of translation
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invariance, space Lp(·)(I, X) is not arrangement invariant,
hence tools developed in [13] are not applicable directly yet.
In order to establish the maximal Lp(·)− regularity of A, a
recently developed method for the maximal operator and
singular integral operators can be employed. +is method is
associated with the maximal operatorM, the sharp maximal
operator M# and the singular integral operator T attached
with A in Lp− spaces with variable exponents (refer to
[14, 15]). By employing this method, with the aid of the
estimate obtained in [13], in this paper, we will prove that if
A ∈MRq(I) for some 1< q<∞, then A ∈MRp(·)(I) for
all log-Hölder continuous exponents p(·) with
1<p− <p+ <∞, where p+ and p− denote the supremum
and infimum of p(·) on the interval I, respectively.

In order to apply the maximal Lp(·)− regularity theory to
the quasilinear evolution equations, in this paper, we also
make some investigations on the trace of the maximal
regularity space W1,p(·)(I, X)∩L1,p(·)(I, X1). As we know
that, for all subintervals J of I, W1,p−

J (J, X)∩L1,p−
J (J, X1) can

be imbedded into the space C(J, X1− 1/p−
J
,p−

J
) (refer to [5, 10]),

where p−
J � inf t∈Jp(t), and X1− 1/p−

J
,p−

J
� (X, X1)1− 1/p−

J
,p−

J
is

the real interpolation space between X and X1, a question
arises naturally, that is, for arbitrary t ∈ I, whether or not the
trace space of W1,p(·)(I, X)∩L1,p(·)(I, X1) is X1− 1/p(t),p(t)

exactly. +is question was raised in [16] and has had not an
answer until now. +e main obstacle is that the imbedding
bounds of W1,p−

J (J, X)∪L1,p−
J (J, X1)↪C(J, X1− 1/p−

J
,p−

J
) de-

pend on the length of J, and it could not be controlled as the
interval J shrinks to the point t. Here, by using the properties
of the log-Hölder function, together with the theory of
range-varying function spaces developed in [16, 17], we give
this question an affirmative answer. We will show that, in
case that − A generates a exponentially decaying semigroup
and p(·) is a log-Hölder function, then the homogeneous
maximal regularity space W

1,p(·)
0 (I, X)∩L1,p(·)(I, X1) can be

imbedded in C− (J, X1− 1/p(·),p(·)), a range-varying function
space established on the regular Banach space net
Xα,p(α): α ∈ [0, 1] . +is gives an affirmative answer to the
question about the trace of the homogeneous maximal
regularity space.

+is paper is organized as follows. As preliminaries, in
this and the next sections, we make a brief review on the
maximal Lp− regularity of sectorial operators and the
Xθ(·)− valued function spaces. In Section 3, the main results
on singular integral operators with operator-valued kernels
with application to maximal regularity in Lp(·)(I, X) and
time-varying trace of the maximal regularity space are de-
rived. All the results will be applied to a semilinear evolution
equation with the time-dependent nonlinearity at the end of
the paper. +is example implies the wide application of our
work in the study of parabolic partial differential equations
with nonstandard growth.

2. Preliminaries

Given a Banach space X and a sectorial operator A which is
densely defined in X. Let X1 � D(A) endowed with the
graph norm as above, and let I � [0, b] or I � [0,∞).

Given 1< q<∞, define the maximal regularity space

E
1,q

(I) � W
1,q

(I, X)∩L
q

I, X1( , (4)

endowed with the norm ‖u‖E1,q(I) � ‖u‖W1,q(I,X) + ‖u‖Lq(I,X1)

and the homogeneous subspace

E
1,q
0 (I) � u ∈ E1,q

(I), u(0) � 0 . (5)

Under present situations, E1,q(I)↪C(I, X1− 1/q,q) for I �

[0,∞) and E
1,q
0 (I)↪C(I, X1− 1/q,q) for I � [0, b] with the

imbedding bounds independent of b> 0 (refer to [18],
Section 3.4.10).

By the inverse operator theorem of the closed operators,
we can assert that, if A ∈MRq(I), then there is a constant
Cq > 0 such that

‖u‖E1,q(I) ≤Cq‖f‖Lq(I,X), (6)

where f ∈ Lq(I, X) and u ∈ E1,q
0 (I) is the solution of

equation (3). Furthermore, if A ∈MRq(R+), then Cq is
independent of the length of I, and − A generates an ex-
ponentially decaying analytic semigroups e− tA, i.e., there are
constants M0 ≥ 1 and ω> 0 such that

max e
− tA

����
����L X0( ), tAe

− tA
����

����L X0( ) ≤M0e
− ωt

, (7)

for all t≥ 0. In this case, the real interpolation space
X1− 1/q,q � (X, X1)1− 1/q,q has an equivalent norm (cf. [19],
Section 5.1)

‖x‖X1− 1/q,q
� 

1

0
Ae

− sA
x

����
����

q
 

1/q

. (8)

It is well known that (cf. [4, 5, 13]) A has the maximal
Lq− regularity on the interval I if and only if the singular
integral operator T defined through

Tf(t) � 
t

0
Ae

− (t− s)A
f(s)ds, f ∈ C

∞
0 (I, X) (9)

is well defined and can be extended onto Lq(I, X) as a
bounded linear operator.

As preparations for the discussions on the trace of the
space E1,p(·)

0 (I), let us recall the definition and construction
of the abstract-valued function space of the range-varying
type. For the detailed discussions, please refer to [16, 17].

Suppose that A is an ordered topological space with the
order ≺ , in which every order-bounded subset has the order
supremumand order infimum. Suppose alsoA is totally order-
bounded, i.e., there are α± in another order space containingA
such that α− ≺ α≺ α+ for all α ∈ A. Under present situation,A
is called a totally bounded lattice. Let αk ⊆A and α ∈ A, we
say that αk  is approaching α, we mean that αk ≺ β for all
k ∈ N and limk⟶∞αk � β at the same time.

Let Xα: α ∈ A  be a family of Banach spaces attached to
A. We say it is a regular Banach space net, provided the
hypotheses are both fulfilled:

(1) If α≺ β, then Xβ↪Xα, and there is a constant C> 0
independent of α, β such that ‖x‖α ≤C‖x‖β for all
x ∈ Xβ.
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(2) If αk  approaches β, then limk⟶∞‖x‖αk
� ‖x‖β for

all x ∈ Xβ. Moreover, if x ∈ Xαk
for all k ∈ N and

C � supk⟶∞‖x‖αi
<∞, then x ∈ Xβ and ‖x‖β ≤C.

Let I be an interval as above andΛ(I) be the collection of
all bounded subintervals of I. Consider the map θ: I⟶ A.
When we say θ is order-continuous, we mean that for any
nest of intervals Jk ∈ Λ(I): k � 1, 2, . . .  shrinking to t, the
limit

lim
k⟶∞

θ−
Jk

� lim
k⟶∞

θ+
Jk

� θ(t), (10)

always holds, where θ−
J and θ

+
J denote the order infimum and

supremum of θ on J, respectively.
Define

L
0

I, Xθ(·)  � f ∈ L
0
(I, X) : f | J ∈ L

0
J, Xθ−

J
  for all J ∈ Λ(I), andf(t) ∈ Xθ(t) for a.e. t ∈ I . (11)

+is is a linear space according to the addition and scalar
multiplication of functions. Moreover, for all
f ∈ L0(I, Xθ(·)), the composite function t⟼ ‖f(t)‖θ(t) is
measurable.

+ere are two types of range-varying function spaces
derived from L0(I, Xθ(·)), one is of continuous type defined
through

C
−

I, Xθ(·)  � f ∈ L
0

I, Xθ(·) : f | J ∈ C J, Xθ−
J

  for all J ∈ Λ(I), and sup
t∈I

‖f(t)‖θ(t) <∞ , (12)

which is a Banach space equipped with the norm
supt∈I‖f(t)‖θ(t) or equivalently supJ∈Λ(I)‖f | J‖C(J,Xθ−

J
). And

the other is of an integral type defined through

L
p(·)

I, Xθ(·)  � f ∈ L
0

I, Xθ(·)  : ‖f(·)‖θ(·) ∈ L
p(·)

(I) ,

(13)
with the Luxemburg norm

‖f‖Lp(·) I,Xθ(·)( ) � inf λ> 0: 
I

‖f(t)‖θ(t)

λ
 

p(t)

dt≤ 1
⎧⎨

⎩

⎫⎬

⎭,

(14)
where p: I⟶ [1,∞) is a measurable variable exponent. If
θ(t) ≡ 0, then we obtain the familiar Lebesgue–Bochner
space of variable exponent type Lp(·)(I, X0).

Discussions in [16] tell us that, if we take [0, 1) as the totally
bounded lattice, then Xα ≔ Xα,1/(1− α): α ∈ (0, 1), andX0 �

X is a regular Banach space net. Hence, for the continuous
exponent p: I⟶ (1,∞), we obtain the linear space
L0(I, X1− 1/p(·),p(·)) and the Banach space C− (I, X1− 1/p(·),p(·)).
We can also construct the maximal regularity space with
variable exponent E1,p(·)(I) � W1,p(·)(I, X) ∩Lp(·)(I, X1)

with the norm ‖u‖
E
1,p(·)

0 (I)
� ‖u′‖Lp(·)(I,X) + ‖u‖Lp(·)(I,X1) and

homogeneous subspace E
1,p(·)
0 (I) � W

1,p(·)
0 (I, X)∩ Lp(·)

(I, X1). All of them will be applied in the coming arguments.

3. Main Results and Proofs

We firstly focus on boundedness of the singular integral
operator with operator-valued kernel on Lp(·)(RN, X).

Let X and Y be two Banach spaces, Υ � (x, y): x, y

∈ RN, x≠y}, and let k: Υ⟶L(Y, X) is a locally inte-
grable function. Define a linear operator T as follows:

Tf(x) � 
RN

k(x, y)f(y)dy, f ∈ C
∞
0 R

N
, Y , x∈ supp(f).

(15)

T is called a singular integral operator of strong (q, q)

type, provided it can be extended onto Lq(RN, X) to
Lq(RN, Y) for some 1< q<∞, and there is a C1 > 0 such
that

‖Tf‖Lq RN,X( ) ≤C1‖f‖Lq RN,Y( ), (16)

for all f ∈ Lq(RN, X).
If there are constants C2 > 0, δ > 0 such that

‖k(x, y)‖L(Y,X) ≤
C2

|x − y|N
, x≠y, (17)

‖k(x, y) − k(z, y)‖L(Y,X) ≤
C2|x − z|δ

|x − y|− N− δ, |x − z|≤
|x − y|

2
,

(18)

‖k(y, x) − k(y, z)‖L(Y,X) ≤
C2|x − z|δ

|x − y|− N− δ, |x − z|≤
|x − y|

2
,

(19)

then k is called a standard kernel. Here assumption (17) tells us
that k(x, y) is a singular kernel, and (18) and (19) together
imply that k(x, y) is locally Hölder continuous in some way.
All of them are connected to the strong (q, q) boundedness of
T in case that k is a scalar kernel. And under the strong (q, q)

assumption of T, we only use (18) to deal with the strong
(p(·), p(·)) property of T for the operator-valued kernel.

We say k satisfies the Hörmander’s integral condition, if
there is another constant C3 > 0 such that for every cube Q
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with sides parallel to the coordinate axes and all y, z ∈ Q, we
have


RN\2Q

|k(x, y) − k(x, z)|dx≤C3, (20)

where 2Q represents the cube with the same center and
double sides of Q.

Similar to the scalar case, for the operator-valued kernel,
we have [13].

Lemma 1. Under Hörmander’s integral condition (20), a
singular integral operator Tof strong (q, q) type is also of weak
(1, 1) type in the sense that

m x ∈ RN
: ‖Tf(x)‖X > λ  ≤

C4

λ
‖f‖L1 RN,Y( ), (21)

for all f ∈ Lq(RN, Y)∩L1(RN, Y) and some constant
C4 � C(N, q, C1, C3)> 0.

+e following lemma is a natural extension of [20, 21] of
the standard kernel from the scalar type to the operator-

value type. For the convenience of the reader, we state it here
and give it a complete proof.

Lemma 2. Let T be an operator defined through (15) with the
standard kernel k. Suppose that T can be extended as a weak
(1, 1) type operator as above and 0< s< 1, then for all
f ∈ C∞0 (RN; Y), the scalar function ‖Tf(·)‖s

X lies in the
space BMO(RN), and there is a constant
C5 � C(N, s, δ, C4)> 0 such that

M
#

‖Tf‖
s
X( (x)≤C5(Mf)

s
(x)≕C5 M ‖f‖Y( ( 

s
(x),

(22)

for all x ∈ RN.

Proof. Take any f ∈ C∞0 (RN; Y) and x0 ∈ RN. Without loss
of generality, assume that Mf(x0)> 0. Let Q be a cube
containing x0 with sides parallel to the coordinate axes.
Consider the split f � f1 + f2, f1 � fχ2Q. For the first part
f1, we have

1
|Q|


Q

Tf1(x)
����

����
s

X
dx �

s

|Q|

∞

0
λs− 1

m x ∈ Q: Tf1(x)
����

����X
> λ  dλ

≤
s

|Q|


t

0
λs− 1

|Q|dλ + 
∞

t
λs− 1

C4 f1
����

����L1 RN;Y( )

λ
dλ⎛⎝ ⎞⎠

� t
s

+
C4t

s− 1

1 − s

1
|Q|


2Q

‖f(y)‖Ydy

≤ t
s

+
2NC4

1 − s
Mf x0( t

s− 1
.

(23)

Take t � Mf(x0), and we obtain

1
|Q|


Q

Tf1
����

����
s

Y
dx≤ 1 +

2nC1

1 − s
 (Mf)

s
x0( . (24)

For the second part f2, we have

1
|Q|


Q

Tf2(x)
����

����X
− Tf2 x0( 

����
����X



sdx

≤
1

|Q|


Q
Tf2(x) − Tf2 x0( 

����
����X
dx 

s

.

(25)

Notice that for all x ∈ Q, by (18),

Tf2(x) − Tf2 x0( 
����

����X
≤

RN\2Q
k(x, y) − k x0, y( 

����
����L(Y,X)

‖f(y)‖Ydy

≤ 
∞

j�1

2j+1Q∖2jQ

x − x0



δ

|x − y|N+δ‖f(y)‖Ydy

≤ 
∞

j�1
2(j− 1)δ


2j+1Q∖2jQ

‖f(y)‖Y

2jr( )
N

dy

≤ 2N


∞

j�1
2(j− 1)δ

·
1

2j+1Q| |

2j+1Q

‖f(y)‖Ydy

≤
2N

1 − 2δ
Mf x0( ,

(26)
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where r denotes the radius of Q, we obtain
1

|Q|


Q
Tf2(x)

����
����X

− Tf2 x0( 
����

����X



sdx≤

2N

1 − 2δ
 

s

(Mf)
s

x0( .

(27)

Putting the above two estimates together, we obtain
1

|Q|


Q
‖Tf(x)‖X − Tf2 x0( 

����
����X



sdx≤C(Mf)

s
x0( ,

(28)

for some constant C5 � C(N, s, δ, C4), which means that
‖Tf‖s

Y ∈ BMO(RN), and estimate (22) holds.
Given a variable exponent p: RN⟶ [1,∞). We say p

is log-Hölder continuous, or symbolically p ∈ Plog(RN), if
there are constants C0 > 0 and p∞ ≥ 1 such that

|p(x) − p(y)|≤
C0

log e +|x − y|− 1 
,

p(x) − p∞


≤
C0

log(e +|x|)
,

(29)

for all x, y ∈ RN. □

Remark 1. If Ω is a bounded domain of RN, then p is log-
Hölder continuous on Ω, if and only if the first inequality of
(29) is satisfied.

Next lemma is an important result in harmonic analysis,
and it was first proved in [14] for bounded exponents and
later extended to general cases in some literatures. For the
complete proof with detail discussions, please refer to [15].

Lemma 3. Assume that Plog(RN) and p− > 1, then the
maximal operator M is bounded from Lp(·)(RN) to
Lp(·)(RN), i.e., there is a constant C6 � C(N, p− , C0)> 0 such
that

‖Mf‖Lp(·) RN( ) ≤C6‖f‖Lp(·) RN( ). (30)

Furthermore, under the extra assumption p+ <∞, for
the sharp operator M#, there is another constant
C7 � C(p±, C6)> 0 for which estimate

‖f‖Lq RN( ) ≤C7 M
#

f
�����

�����Lq RN( )
, (31)

for all f ∈ Lq(RN) (refer to [22], P.148).
Putting all the facts together, we obtain the following.

Theorem 1. Let T be a singular integral operator of strong
(q, q) type for some 1< q<∞ with the standard kernel k
satisfying Hörmander’s integral condition and p ∈ Plog(RN)

be a variable exponent satisfying 1<p− ≤p+ <∞. =en, T is
bounded from Lp(·)(RN; Y) to Lp(·)(RN; X) with the bounds
C8 � C(N, p±, δ, C1, C2, C3)> 0.

Proof. Take a constant exponent s such that 0< s< 1, and
then the variable exponent p(·)/s is also log-Hölder con-
tinuous the same constant C0, and (p(·)/s)− � p− /s> 1 and

(p(·)/s)+ � p+/s<∞. +us, combining (22), (30), and (31),
we can deduce that

‖Tf‖Lp(·) RN;X( ) � ‖Tf‖
s
X

����
����
1/s
Lp(·)/s RN( )

≤C7 M
#

‖Tf‖
s
X( 

�����

�����
1/s

Lp(·)/s RN( )

≤C5C7 M
s

‖f‖Y( 
����

����
1/s
Lp(·)/s RN( )

� C5C7‖Mf‖Lp(·) RN;Y( )

≤C8‖f‖Lp(·) RN;Y( ),

(32)

where the constant C8 � C6C5C7 � C(N, p±, δ, C1,

C2, C3). □

Remark 2. +is conclusion is a natural extension of that in
[15], Section 1.6.3 for the singular integral operator from the
scalar type to the abstract-valued type. For another treat-
ment of the extension, please refer to [23].

Now we can establish the maximal Lp(·)− regularity for
the sectorial operator A. Define

K(t) �
Ae− tA, if t> 0,

0, if t≤ 0.

⎧⎨

⎩ (33)

Straight calculations show that k(t, s) � K(t − s) is a
standard kernel satisfying Hörmander’s integral condition,
and Tf can be expressed by K∗f, where f

f(t) �
f(t), if t ∈ I,

0, if t ∈ R\I,
 (34)

is the zero extension of f. In this setting, A ∈MRq(I) is
equivalent to say that T is a singular integral operator of
strong (q, q) type.

Given a variable exponent p ∈ P(I) satisfying the log-
Hölder condition (29) with RN replaced by I and
1<p− ≤p+ <∞. From [15], Section 4.1, we know that p has
an extension p ∈ P(R) with the same constant C0 and
p± � p±. Analogous to E1,q(I) and E

1,q
0 (I), define the

maximal Lp(·)− regularity space E1,p(·)(I) and its closed
subspace E

1,p(·)
0 (I) with the norm

‖u‖E1,p(·)(I) � ‖u‖W1,p(·)(I,X) +‖u‖Lp(·) I,X1( ). (35)

Applying +eorem 1, we can drive the following.

Theorem 2. Assume that A ∈MRq(I) for some 1< q<∞
and p ∈ P(I) with 1<p− ≤p+ <∞. =en, A satisfies the
maximal Lp(·)− regularity on I, that is, for all f ∈ Lp(·)(I, X),
there is a unique function u ∈ E1,p(·)(I) solving (3) with
u0 � 0, and satisfying

‖u‖E1,p(·)(I) ≤C‖f‖Lp(·) I,X1( ), (36)

with the constant C> 0 depending on A, C0, Cq, and p±.
In the following paragraphs, we turn our attention to the

trace of E1,p(·)(I). Here and after we need assumption (7) for
the semigroup e− tA. Denote by cE1,p(·)(I) the trace space of
E1,p(·)(I), that is,
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cE
1,p(·)

(I) � u0 ∈ X: ∃ u ∈ E1,p(·)
(I) s.t. u(0) � u0 ,

(37)

with the norm

u0
����

����cE1,p(·)(I)
� inf ‖u‖E1,p(·)(I): u ∈ E1,p(·)

(I), u(0) � u0 .

(38)

Proposition 1. Suppose that p ∈ Plog(R+) with 1<p− ≤p+

<∞, then

cE
1,p(·)

R
+

(  � X1− 1/p(0),p(0), (39)

with the equivalent norms.

Proof. Firstly, for all u0 ∈ X1− 1/p(0),p(0) with ‖u0‖X1− 1/p(0),p(0)

≤ 1, we have ‖u0‖X≤C for some constant C> 0 independent
of u0, and 

1
0 ‖e− tAu0‖

p(0)dt≤ 1. Consider the split


∞

0
Ae

− tA
u0

����
����

p(t)
dt � 

1

0
+ 
∞

1
  Ae

− tA
u0

����
����

p(t)
dt ≔ I1 + I2.

(40)

For the second part, we have

I2 ≤ 
∞

1

M0

t
e

− ωt
u0

����
����X

 
p(t)

dt≤
1

ωp−
max M0C( 

p+

, 1 .

(41)

Define E � t ∈ [0, 1]: p(t)≤p(0) , let p1(t) � p(t)χE +

p(0)(1 − χE) and p2(t) � p(t)(1 − χE) + p(0)χE, then both
of p1 and p2 are log-Hölder continuous with the same
constant C0. +us, for the first part I1, we have

I1 ≤ 
1

0
Ae

− tA
u0

����
����

p1(t)
dt + 

1

0
Ae

− tA
u0

����
����

p2(t)
dt ≔ I1,1 + I1,2,

(42)
where

I1,1 ≤ 
1

0
Ae

− tA
u0

����
����

p(0)
dt + 1 −

p−

p(0)
 ≤ 2,

I1,2 ≤ 
1

0
Ae

− tA
u0

����
����

p(0) M u0
����

����X

t
 

p2(t)− p(0)

dt

≤max M0C( 
p+− p−

, 1  
1

0
Ae

− tA
u0

����
����

p(0)
t
− C0/log(e+1/t)( )dt

≤max M0C( 
p+− p−

, 1 e
C0 .

(43)
Putting all the parts together, we obtain


∞
0 ‖e− tAu0‖

p(t)dt≤C with the constant C> 0 independent
of u0. And by scaling arguments, we have ‖e− tAu0‖E1,p(·)(R+)

≤C‖u0‖X1− 1/p(0),p(0)
, which in turn yields ‖u0‖cE1,p(·)(R+)≤

C‖u0‖X1− 1/p(0),p(0)
.

Conversely, suppose that u ∈ E1,p(·)(R+) with
‖u‖E1,p(·)(R+) ≤ 1 and u(0) � u0. By the unit ball property, we

have 
1
0 ‖Au(t)‖p(t)dt≤ 1 and ‖u′‖Lp(·)([01],X) ≤ 1. By

imbedding W1,p(·)(R+, X)↪C([0, 1], X), we get the esti-
mate ‖u‖C([0,1],X) ≤C for some constant C> 0 independent of
u. Notice that

u0 � u(t) − 
t

0
u′(s)ds, (44)

we have

Ae
− tA

u0
����

����Lp(0)([0,1],X)
≤ Ae

− tA
u

����
����Lp(0)([0,1],X)

+ Ae
− tA


t

0
u′(s)ds

�������

�������Lp(0)([0,1],X)

.

(45)

Since


1

0
Ae

− tA
u(t)

����
����

p(0)
dt

≤M
p(0)
0 

E
‖Au(t)‖

p(t) u(t)

t

�������

�������

p(0)− p(t)

dt

+ M
p(0)
0 

[0,1]\E
‖Au(t)‖

p(0)dt

≤M
p(0)
0 max 1, ‖u‖C([0,1],X) 

p(0)− p−

· 
1

0
‖Au(t)‖

p(t)
t
− C0/log(e+1/t)( )dt

+ M
p(0)
0 

1

0
‖Au(t)‖

p(t)dt + 1 

≤M
p+

0 e
C0 max 1, C{ }

p+− p−

+ 2 ,


1

0
Ae

− tA


t

0
u′(s)ds

�������

�������

p(0)

dt

≤M
p(0)
0 

E

1
t


t

0
u′(s)ds









p(t)
u(t) − u(0)

t

�������

�������

p(0)− p(t)

dt

+ M
p(0)
0 

[0,1]\E

1
t


t

0
u′(s)ds

�������

�������

p(0)

dt

≤M
p(0)
0 max 1, 2‖u‖C([0,1],X) 

p(0)− p−

· 
1

0
M u′

����
���� (t) 

p(t)
t
− C0/log(e+1/t)( )dt

+ M
p(0)
0 

1

0
M u′

����
���� (t) 

p(t)
dt + 1 

≤M
p+

0 max 1, 2C{ }
p+− p−

e
C0 + 1 max C

p+

6 , C
p−

6  + 1 ,

(46)
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where


1

0
M u′

����
���� (t) 

p(t)
dt≤max M u′

����
���� 

�����

�����
p+

Lp(·)[0,1]
, M u′





 

�����

�����
p−

Lp(·)[0,1]
 

≤max C6 u′
����

����Lp(·)[0,1]
 

p+

, C6 u′
����

����Lp(·)[0,1]
 

p−

 

≤max C
p+

6 , C
p−

6 ,

(47)

by the unit ball property of Lp(·) and boundedness of the
maximal operator, we then have 

1
0 ‖Ae− tAu0‖

p(0)dt≤C with
the constant C> 0 independent of u. By the scaling argu-
ments and definition of cE1,p(·)(R+), we can also derive that
‖u0‖X1− 1/p(0),p(0)

≤C‖u0‖cE1,p(·)(R+). +us, equivalence of
cE1,p(·)(R+) and X1− 1/p(0),p(0) has been reached. □

Proposition 2. Under the same assumptions upon p as
above, we have

E
1,p(·)

R
+

( ↪C
−

R
+
, X1− 1/p(·),p(·) . (48)

Proof. irstly, for every bounded subinterval J of R+,
imbedding

E
1,p(·)

(J)↪E
1,p−

J (J)↪C J, X1− 1/p−
J
,p−

J
 , (49)

holds with the imbedding bounds depending on J, from
which we obtain

E
1,p(·+s)

R
+

( ⊆ L
0
− R

+
, X1− 1/p(·),p(·) , (50)

where the range-varying function space L0
− (R+, X1− 1/p(·),p(·))

comes from [17].
For each s> 0, consider the translation operator

(T(s)u)(t) � u(t + s). Obviously, T(s) is a bounded linear
operator from E1,p(·)(R+) to E1,p(·+s)(R+), and

‖T(s)u‖E1,p(·+s) R+( ) ≤ ‖u‖E1,p(·) R+( ). (51)

Another fact is that for every s> 0, the translated ex-
ponent T(s)p � p(· + s) is also log-Hölder continuous with
the same constant C0 and
1<p− ≤ (T(s)p)− ≤ (T(s)p)+ ≤p+ <∞. +us, for all
u ∈ E1,p(·)(R+) and all s> 0, using Proposition 1, we have

‖u(s)‖X1− 1/p(s),p(s)
≤ C‖(T(s)u)(0)‖cE1,p(·+s) R+( )

≤C‖T(s)u‖E1,p(·+s) R+( ) ≤C‖u‖E1,p(·) R+( ).
(52)

+erefore, u ∈ C− (R+, X1− 1/p(·),p(·)) and

‖u‖
C− R+ ,X1− 1/p(·),p(·)( 

≤C‖u‖E1,p(·) R+( ), (53)

with a constant C> 0 independent of u (refer to [17]). □

Theorem 3. Suppose that p ∈ Plog([0, b]) with 1<p− ≤p+

<∞, then

E
1,p(·)
0 ([0, b])↪C

−
[0, b], X1− 1/p(·),p(·) , (54)

with the imbedding bounds independent of T> 0.

Proof. Let

p(t) �

p(t), 0≤ t≤ b,

p(2b − t), b≤ t≤ 2b,

p(0), t≥ 2b,

⎧⎪⎪⎨

⎪⎪⎩

u(t) �

u(t), 0≤ t≤ b,

u(2b − t), b≤ t≤ 2b,

0, t≥ 2b.

⎧⎪⎪⎨

⎪⎪⎩

(55)

It is easy to check that p ∈ Plog(R+) with p± � p± and
p∞ � p(0), u ∈ E1,p(·)

0 (R+), and

‖u‖
E
1,p(·)

0 R+( )
≤ 2‖u‖

E
1,p(·)

0 ([0,b])
. (56)

By invoking Proposition 2, we know that
u ∈ C− (R+, X1− 1/p(·),p(·)

), and

sup
t≥0

‖u(t)‖X
1− 1/p(t),p(t)

‖≤Cu‖
E
1,p(·)

0 R+( )
. (57)

Notice that p(t) � p(t) and u(t) � u(t) for all t ∈ [0, b],
we obtain

sup
t∈[0,b]

‖u(t)‖X1− 1/p(t),p(t)
≤C‖u‖

E
1,p(·)

0 R+( )
≤ 2C‖u‖

E
1,p(·)

0 ([0,b])
.

(58)

+us, the proof has been proved.
At the end of the paper, we will use the maximal

Lp(·)− regularity results to deal with the semilinear evolution
equation:

u′(t) + Au � F(t, u), t> 0,

u(0) � u0,

⎧⎨

⎩ (59)

where A ∈MRq(R+) for some 1< q<∞, 0< b0 ≤∞,
p ∈ Plog[0, b0], and F: [0, b0) × X⟶ X is a nonlinear map
fulfilling assumptions H(F) as follows:

(1) For almost all t ∈ [0, b0), F(t, ·) can be defined and
locally Lipschitz continuous on X1− 1/p(t),1/p(t)

(2) For all u ∈ L0(0, b0; X1− 1/p(·),1/p(·)), the compound
function t⟶ F(t, u(t)) is strongly measurable on
[0, b0)

(3) u0 ∈ X1− 1/p(0),1/p(0), and F(·, e− ·Au0) ∈ Lp(·)(0, b0;

X) □
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Theorem 4. Under present situations, for every r> 0, there is
a number 0< b< b0, such that for each u1 ∈B(u0, r), and
semilinear equation (59) has a unique solution
u(·) � u(·, u1) ∈ E1,p(·)(I)∩C− (I, X1− 1/p(·),p(·)) on the in-
terval I � [0, b] with the initial condition u(0) � u1. Here,

B u0, r(  � u ∈ X1− 1/p(0),p(0): u − u0
����

����X1− 1/p(0),p(0)
< r ,

(60)

is a ball in X1− 1/p(0),p(0). Moreover, for every two points
ui ∈B(u0, r), i � 1, 2, the corresponding solutions u(·, ui),
i � 1, 2, satisfy

max u ·, u1(  − u ·, u2( 
����

����C− (I,1− 1/p(·),p(·))
,

u ·, u1(  − u ·, u2( 
����

����E1,p(·)(I)


≤C u1 − u2
����

����1− 1/p(0),p(0)
.

(61)

Proof of this theorem is much similar to that completed
in [16] where embedding 0E1,p+ (I)↪C− (I, X1− 1/p(·),p(·)) is
replaced by 0E1,p(·)(I)↪C− (I, X1− 1/p(·),p(·)).

Remark 3. Using the maximal Lp(·)− regularity theory, hy-
pothesis F(·, e− ·Au0) ∈ Lp+

(0, b0; X) used in [16] is dropped.
Instead, here, a weaker assumption H(F)(3):
F(·, e− ·Au0) ∈ Lp(·)(0, b0; X) is applied. In this sense, +e-
orem 4 is an improvement of that in [16].

4. Conclusions and Discussion

In this paper, we study the maximal Lp(·)− regularity for the
sectorial operators. By extending the boundedness of sin-
gular integral operators from the scalar type to abstract-
valued type; we see that, if a sectorial operator A lies in
MRq(I) for some 1< q<∞, then it lies in MRp(·)(I) for
every Hölder continuous variable exponent p(·) with
1<p− <p+ <∞. We also prove that if − A generates an
exponentially decaying analytic semigroup, then for the
maximal regular space E1,p(·)(R

+), its trace space is exactly
X1− 1/p(0),p(0), and the homogeneous maximal regular space
0E1,p(·)(I) can be embedded continuously into the range-
varying function space C− (I, X1− 1/p(·),p(·)) with the em-
bedding bounds independent of the length of the interval I.
Different to the constant exponent type, translation series
Ts: Lp(·)(R+, X)⟶ Lp(·+s)(R+, X), s≥ 0  could not make
up a C0 semigroup on Lp(·)(R+, X), since Lp(·)(R+, X) does
not have the translation-invariant property. Consequently,
whether or not the following estimates:

sup
λ≥0

λ λ + zt + A( 
− 1

�����

�����L Lp(·)(I,X),Lp(·)(I,X)( )
<∞,

sup
λ≥0

λ + zt + A( 
− 1

�����

�����L Lp(·)(I,X),0E1,p(·)(I)( 
<∞,

(62)

still hold for the variable exponents remains unknown. We
also wonder that under what situations maximal
Lp(·)− regularity can be preserved under time-dependent
perturbation B(t).
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