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The homogeneous balance of undetermined coefficient (HBUC) method is presented to obtain not only the linear, bilinear, or
homogeneous forms but also the exact traveling wave solutions of nonlinear partial differential equations. Linear equation is
obtained by applying the proposed method to the (2 + 1)-dimensional dispersive long water-wave equations. Accordingly, the multiple
soliton solutions, periodic solutions, singular solutions, rational solutions, and combined solutions of the (2 + 1)-dimensional
dispersive long water-wave equations are obtained directly. The HBUC method, which can be used to handle some nonlinear
partial differential equations, is a standard, computable, and powerful method.

1. Introduction

Nonlinear partial differential equations (NLPDEs) are used to
describe a variety of phenomena not only in physics [1, 2],
thermodynamics [3], fluid dynamics [4, 5], and practical
engineering [6, 7] but also in several other fields [8].
How to obtain the traveling wave solutions for NLPDEs
is very important in the nonlinear phenomena [1, 9, 10].
In recent decades, there are many excellent methods, such
as the ðG′/GÞ-expansion method [11, 12], the homotopy per-
turbation method [13, 14], the Riccati-Bernoulli sub-ODE
method [15, 16], the three-wave method [17, 18], the inverse
scattering method [19, 20], the first integral method [21, 22],
Hirota’s bilinear method [23, 24], the homogeneous balance
method [25, 26], the iteration method [27, 28], the tanh-
sech method [29, 30], and the extended homoclinic test
method [31, 32], which are applied to obtain the exact travel-
ing wave solutions of some NLPDEs.

The above traditional methods can be used to handle
some well-known NLPDEs. However, there is no unified
approach, which can be dealt with all NLPDEs. To obtain
the traveling wave solutions of NLPDEs, Hirota’s bilinear
method, the three-wave method, and the ðG′/GÞ-expansion
method are employed to investigate the traveling wave solu-

tions of many NLPDEs. Unfortunately, some exact solutions
are omitted by using Hirota’s bilinear method, the three-
wave method, and the ðG′/GÞ-expansion method if the
NLPDEs can be linearized. To solve this problem, the HBUC
method is proposed to derive the linear forms of NLPDEs.

In this paper, the (2 + 1)-dimensional dispersive long
water-wave equations (DLWEs) [33, 34] are investigated
as follows:

uyt + uxxy − 2vxx − u2
� �

xy
= 0, ð1Þ

vt − vxx − 2 uvð Þx = 0, ð2Þ
where u = uðx, y, tÞ represents the surface velocity of water
along the x-direction and v = vðx, y, tÞ gives the surface
velocity of water along the y-direction.

The DLWEs can also be derived from the well-known
Kadomtsev-Petviashvili equation using the symmetry con-
straint. The DLWEs were used to model nonlinear and dis-
persive long gravity waves traveling in two horizontal
directions on shallow waters of uniform depth. The DLWEs
also appear in many scientific applications such as nonlinear
fiber optics, plasma physics, fluid dynamics, and coastal engi-
neering. Moreover, the solutions of the DLWEs are very
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helpful for coastal and engineers to apply the nonlinear water
model to coastal and harbor design [33].

The DLWEs were investigated where different approaches
were exploited. Wu et al. reported that the DLWEs exist of
many nonpropagating hydrodynamical solitons both in the-
ory and in experiment, and the DLWEs have no Painleve
property, though the system is Lax or inverse scattering
transformation integrable [35]. Paquin and Winternitz
investigated the DLWEs by the Lie group method [36].
The extended mapping approach [37], the extended projec-
tive approach [38], and the tanh-sech method [33] are
among many other methods that were used to handle the
DLWEs. Much effort has been focused on the existence of
propagating solitons [36], multiple soliton solutions, and
rational solutions [33].

In this paper, the linear equation of the DLWEs is derived
by the HBUC method. Then, the multiple soliton solutions,
periodic solutions, singular solutions, rational solutions,
and combined solutions of the DLWEs are obtained directly.

The remainder of this paper is organized as follows: the
HBUC method is presented in Section 2. In Section 3, the
HBUC method is used to obtain N-multiple soliton solu-
tions, periodic solutions, singular solutions, rational solu-
tions, and combined solutions of Equations (1) and (2)
directly. In Section 4, some important conclusions are given.

2. Description of the HBUC Method

In this section, the following general NLPDE in two variables
is considered:

P u, ut , ux, uxx, uxt ,⋯ð Þ = 0, ð3Þ

where P is a polynomial function of its arguments; the sub-
scripts x and t denote the partial derivatives of u, respectively.
The HBUC method consists of three steps as follows:

Step 1. Assume that the Equation (3) has a solution of the fol-
lowing form:

u = amn ln wð Þm,n + 〠
i=m,j=n

i,j=0
i+j≠0,m+n

aij ln wð Þi,j + a00, ð4Þ

where u = uðx, tÞ, w =wðx, tÞ, and ðln wÞi,j = ð∂i+jðln wðx, tÞÞÞ
/∂xi∂t j, and m, n (balance numbers) and aij ði = 0, 1,⋯,m ;
j = 0, 1,⋯,nÞ (balance coefficients) ðamn ≠ 0Þ are constants
to be determined later.

The balance numbers can be determined by balancing
the highest nonlinear terms and the highest order partial
derivative terms. A set of algebraic equations for the bal-
ance coefficients is obtained by substituting Equation (4) into
Equation (3) and balancing the terms with ðwx/wÞiðwt/wÞj.

Step 2. If the NLPDEs can be linearized, the linear equation
can be obtained by solving the set of algebraic equations
and simplifying Equation (3) directly or after integrating

some time (generally, integrating times equal to the orders
of the lowest partial derivative of Equation (3)) with respect
to x and t.

Step 3. Based on Step 1 and Step 2, by using traveling wave
transformations

w x, tð Þ =w ξð Þ, ð5Þ

and

ξ = x −Vt, ð6Þ

Equation (3) can be reduced to a linear partial differential
equation

wt + α1wxx + α2wx + α3w, ð7Þ

where α1, α2, and α3 are constants. Then, solving the linear
partial differential equation (7) yields the exact combined
solutions of Equation (3). Next, Equations (1) and (2) are
chosen to obtain the combined solutions by applying the
HBUC method.

3. Application to the (2 + 1)-Dimensional
DLWEs

Assume that the solutions of Equations (1) and (2) are of the
forms

u = amnl ln wð Þm,n,l + 〠
i=m,j=n,k=l

i,j,k=0
i+j+k≠0,m+n+l

aijk ln wð Þi,j,k + a000,

ð8Þ

v = bpqr ln wð Þp,q,r + 〠
i=p,j=q,k=r

i,j,k=0
i+j+k≠0,p+q+r

bijk ln wð Þi,j,k + b000,

ð9Þ

where u = uðx, y, tÞ, w =wðx, y, tÞ, and ðln wÞi,j,k = ð∂i+j+kðln
wðx, y, tÞÞÞ/∂xi∂yj∂tk, and m, n, l, p, q, r (balance numbers)
and aijk ði = 0, 1,⋯,m ; j = 0, 1,⋯,n ; k = 0, 1,⋯,lÞðamnl ≠ 0Þ
and bijk ði = 0, 1,⋯,p ; j = 0, 1,⋯,q ; k = 0, 1,⋯,rÞðbpqr ≠ 0Þ
(balance coefficients) are constants to be determined later.
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Balancing uxxy, vxx, and ðu2Þxy in Equation (1) and vxx
and ðuvÞx in Equation (2), it is required that

m + 2 = 2m + 1 = p + 2,
n + 1 = 2n + 1 = q,

l = 2l = r,
p + 2 =m + p + 1,

q = q + n,
l + r = l:

ð10Þ

Solving the above algebraic equations, we get m = 1,
n = 0, l = 0, p = 1, q = 1, r = 0. Then, Equations (8) and (9)
can be written as

u = a1 ln wð Þx + a0,
v = b3 ln wð Þxy + b2 ln wð Þx + b1 ln wð Þy + b0,

ð11Þ

where aiði = 0, 1Þ and biði = 0, 1, 2, 3Þ are constants to be
determined later.

Substituting Equation (11) into Equations (1) and (2) and
equating the coefficients of w3

xwy/w4 on the left-hand side of
Equations (1) and (2) to zero yield a set of algebraic equations
for a1 and b3 as follows:

−6 a21 + a1 − 2b3
� �

= 0,
−6b3 a1 − 1ð Þ = 0:

ð12Þ

Solving the above algebraic equations and noticing a1b3
≠ 0, we get a1 = b3 = 1. Substituting a1 and b3 back into
Equation (11), we get

u = ln wð Þx + a0,
v = ln wð Þxy + b2 ln wð Þx + b1 ln wð Þy + b0:

ð13Þ

Substituting Equation (13) back into Equations (1) and
(2), Equation (1) minus Equation (2) is

A1
w

+ A2
w2 + A3

w3 = 0, ð14Þ

where

A1 = b2 2a0wxx −wxxx −wxtð Þ
+ b1 2a0wxy −wxxy −wyt

� �
+ 2b0wxx,

A3 = −6b2w3
x − 6b1w2

xwy,

A2 = b2 wxwt + 7wxxwx − 2a0w2
x

� �
+ b1 3wxxwy +wywt + 4wxywx

�
− 2a0wxwyÞ − 2b0w2

x:

ð15Þ

Obviously, setting bi = 0 ði = 0, 1, 2Þ, we find that Equa-
tion (1) coincides with Equation (2). According to the above
analysis, suppose that the solutions of Equations (1) and (2)
are of the forms

u x, y, tð Þ = ln wð Þx + a0,
v x, y, tð Þ = ln wð Þxy ,

ð16Þ

where a0 is an arbitrary constant and w =wðx, y, tÞ is a func-
tion of x, y, t that will be determined later.

Substituting Equation (16) into Equations (1) and (2)
yields a single NLPDE

K0 + K1 + K2 + K3 = 0, ð17Þ

where

K0 = a0
−2wxxy

w
+
2wxxwy + 4wxwxy

w2 −
4w2

xwy

w3

 !
,

K1 =
wxyt −wxxxy

w
,

K2 =
wxwxxy −wxywt −wxtwy +wxxwxy +wxxxwy −wxwyt

w2 ,

K3 =
2wxwywt − 2wxwxxwy

w3 :

ð18Þ

Simplifying Equation (17) and integrating with respect to
x once, we get

∂
∂x

wytw −wywt

w2 −
wxxyw −wxxwy

w2 −
2a0 wxyw −wxwy

� �
w2

 !
= 0:

ð19Þ

Equation (19) is identical to

wytw −wywt

� �
− wxxyw −wxxwy

� �
− 2a0 wxyw −wxwy

� �
− p y, tð Þw2 = 0:

ð20Þ

where pðy, tÞ is an arbitrary function of y, t.
Particularly, taking pðy, tÞ = 0 in Equation (20), the bilin-

ear equation of Equations (1) and (2) is obtained as follows:

wytw −wywt

� �
− wxxyw −wxxwy

� �
− 2a0 wxyw −wxwy

� �
= 0:
ð21Þ

Equation (21) can be written concisely in terms of
D-operator as

Dy wt −wxx − 2a0wxð Þ ·w = 0, ð22Þ

3Journal of Function Spaces



where

Dm
x D

n
t a · b = ∂x − ∂x′

� �m
∂t − ∂t′
� �n

a x, tð Þb x′, t ′
� ����

x ′=x,t ′=t
:

ð23Þ

By using the property of D-operator, Equation (22)
is identical to

wt −wxx − 2a0wx − q x, tð Þw = 0, ð24Þ

where qðx, tÞ is an arbitrary function of x, t.
Particularly, taking qðx, tÞ = α = constant in Equation

(24), we get a linear equation

wt −wxx − 2a0wx − αw = 0: ð25Þ

Remark 1. We note that Equation (25) does not depend on
the variable y, instead it depends only on the variables x, t.

Using the transformation

w x, y, tð Þ =w ξð Þ =w x + l yð Þ − ctð Þ, ð26Þ

Equation (25) is reduced to

w″ + 2a0 + cð Þw′ + αw = 0, ð27Þ

where lðyÞ is an arbitrary function of y and the prime denotes
the derivation with respect to ξ.

There are three types of traveling wave solutions of Equa-
tion (27) as follows.

When Δ = ð2a0 + cÞ2 − 4α > 0,

w = C1e
− 2a0+cð Þ+ ffiffiffi

Δ
pð Þ/2ð Þξ + C2e

− 2a0+cð Þ− ffiffiffiΔpð Þ/2ð Þξ, ð28Þ

where ξ = x + lðyÞ − ct; C1, C2, a0, α, and c are arbitrary con-
stants; and lðyÞ is an arbitrary function of y.

Generally, noticing the linear property of Equation (25),
we can get the exact solution of Equation (25) as follows:

w1 = 〠
n1

i=1
C1,1ie

− 2a0+c1ið Þ+ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0+c1ið Þ2−4α

pð Þ/2ð Þξ1i�
+ C2,1ie

− 2a0+c1ið Þ− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0+c1ið Þ2−4α

pð Þ/2ð Þξ1i�,
ð29Þ

where Δ1i = ð2a0 + c1iÞ2 − 4α > 0 and ξ1i = x + l1iðyÞ − c1it;
C1,1i, C2,1i, a0, α, and c1i are arbitrary constants; and l1iðyÞ
ði = 1, 2,⋯,n1Þ are arbitrary functions of y.

When Δ = ð2a0 + cÞ2 − 4α < 0,

w = e − 2a0+cð Þ/2ð Þξ C1 cos
ffiffiffiffiffiffi
−Δ

p

2 ξ

 !
+ C2 sin

ffiffiffiffiffiffi
−Δ

p

2 ξ

 ! !
,

ð30Þ

where ξ = x + lðyÞ − ct; C1, C2, a0, α, and c are arbitrary con-
stants; and lðyÞ is an arbitrary function of y.

Generally, noticing the linear property of Equation (25),
we can get the exact solution as follows:

w2 = 〠
n2

i=1
e − 2a0+c2ið Þ/2ð Þξ2i C1,2i cos

ffiffiffiffiffiffiffiffiffi
−Δ2i

p
2 ξ2i

 ! 

+ C2,2i sin
ffiffiffiffiffiffiffiffiffi
−Δ2i

p
2 ξ2i

 !!
,

ð31Þ

where Δ2i = ð2a0 + c1iÞ2 − 4α < 0 and ξ2i = x + l2iðyÞ − c2it;
C1,2i, C2,2i, a0, α, and c2i are arbitrary constants; and l2iðyÞ
ði = 1, 2,⋯,n2Þ are arbitrary functions of y.

When Δ = ð2a0 + cÞ2 − 4α = 0,

w = C1 + C2ξð Þe − 2a0+cð Þ/2ð Þξ, ð32Þ

where ξ = x + lðyÞ − ct; C1, C2, a0, α, and c are arbitrary con-
stants; and lðyÞ is an arbitrary function of y.

Generally, noticing the linear property of Equation (25),
we can get the exact solution as follows:

w3 = 〠
2

i=1
C1,3i + C2,3iξ3ið Þe − 2a0+c3ið Þ/2ð Þξ3i , ð33Þ

where Δ3i = ð2a0 + c3iÞ2 − 4α = 0 and ξ3i = x + l3iðyÞ − c3it;
C1,3i, C2,3i, a0, α, and c3i are arbitrary constants; and l3iðyÞ
ði = 1, 2Þ are arbitrary functions of y.

Generally, we can get combined solutions of Equation
(25) as follows:

w =w1 +w2 +w3, ð34Þ

where w1,w2, andw3 are given by Equations (29), (31), and
(33), respectively.

Accordingly, we can get combined solutions of Equations
(1) and (2)

w =w1 +w2 +w3,
u x, y, tð Þ = ln wð Þx + a0,
v x, y, tð Þ = ln wð Þxy = uy:

ð35Þ

Choosing the appropriate parameters in Equation (35)
can obtain all solutions of DLWEs in Ref. [15]. For
example, setting C1,2i = C2,2i = 0 ði = 1, 2,⋯,n2Þ, C1,3i = C2,3i
= 0 ði = 1, 2Þ, n1 =N , C1,1i = 1/N , C2,1i = 1, α = a0 = 0, and
l1iðyÞ = l1iy, we get the N-kink solutions and the N-soli-
ton solutions
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u x, y, tð Þ = −∑N
i=1c1ie

−c1i x+l1iy−c1i tð Þ

1 +∑N
i=1e

−c1i x+l1iy−c1itð Þ ,

v x, y, tð Þ = −
∑N

i=1c1ie
−c1i x+l1iy−c1i tð Þ

� �
∑N

i=1c1il1ie
−c1i x+l1iy−c1i tð Þ

� �
1 +∑N

i=1e
−c1i x+l1iy−c1i tð Þ

� �2
−
∑N

i=1c1il1ie
−c1i x+l1iy−c1i tð Þ

1 +∑N
i=1e

−c1i x+l1iy−c1i tð Þ ,

ð36Þ

where c1i and l1i ði = 1,⋯,NÞ are arbitrary constants.
Setting C1,1i = C2,1i = 0 ði = 1, 2,⋯,n1Þ, C1,3i = C2,3i = 0

ði = 1, 2Þ, n2 = 1, ξ20 = − arctan ðC2,21/C1,21Þ, and l2iðyÞ
= l2iy, we get the singular solution (periodic solutions)

u x, y, tð Þ = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α − 2a0 + c2ð Þ2

q
2 tan

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α − 2a0 + c2ð Þ2

q
2 x + l2y − c2tð Þ + ξ20

0
@

1
A

−
c2
2 ,

v x, y, tð Þ = uy:

ð37Þ

where C1,21, C2,21, l2, α, a0, and c2 are arbitrary constants.
Setting C1,1i = C2,1i = 0 ði = 1, 2,⋯,n1Þ, C1,2i = C2,2i = 0 ði =

1, 2,⋯,n2Þ,C1,31 = C1, C1,32 = C2, and C1,32 = C2,32 = 0, we
get the rational solutions

u x, y, tð Þ = C2
C1 + C2 x + l3y − c3tð Þ −

c3
2 ,

v x, y, tð Þ = uy,
ð38Þ

where C1, C2, l3, α, a0, and c3ðð2a0 + c3Þ2 − 4α = 0Þ are arbi-
trary constants.

Remark 2. We can deal with Equation (25) by using some
assumptions. For example, suppose that w = −tβðyÞ +WðxÞ,
α = 0, and a0 ≠ 0, we get

w = −tβ yð Þ − C1 yð Þe−2a0x
2a0

−
β yð Þx
2a0

+ C2 yð Þ,

u x, y, tð Þ = β yð Þ 2a20t + a0x + 1
� �

− a0C1 yð Þe−2a0x − 2C2 yð Þa20
β yð Þ 2a0t + xð Þ + C1 yð Þe−2a0x − 2a0C2 yð Þ ,

v x, y, tð Þ = uy,
ð39Þ

where C1ðyÞ, C2ðyÞ, and βðyÞ are arbitrary functions of y, and
a0 ≠ 0 is an arbitrary constant.

Suppose that w = −βðyÞt +WðxÞ and α = a0 = 0, we get

w = −tβ yð Þ − β yð Þx2
2 + xC1 yð Þ + C2 yð Þ,

u x, y, tð Þ = 2xβ yð Þ − 2C1 yð Þ
β yð Þ x2 + 2tð Þ − 2xC1 yð Þ − 2C2 yð Þ ,

v x, y, tð Þ = uy,

ð40Þ

where C1ðyÞ, C2ðyÞ, and βðyÞ are arbitrary functions of y.
Similarly, when α = a0 = 0, Equation (25) is reduced to

wt −wxx = 0. We can get the exact solution

w = C1 yð Þ − C2 yð Þffiffi
t

p e− x2/4tð Þ,

u x, y, tð Þ = −
xC2 yð Þe− x2/4tð Þ

2t
ffiffi
t

p
C1 yð Þ + C2 yð Þe− x2/4tð Þ� � ,

v x, y, tð Þ = uy,

ð41Þ

where C1ðyÞ and C2ðyÞ are arbitrary functions of y.

Similarly, we can assume that w =∑n
i=1piðxÞqiðtÞ; then, a

new solution of Equation (25) can be obtained. Being similar
to the above process, we omit it.

4. Conclusions

The (2 + 1)-dimensional dispersive long water-wave equa-
tions can be linearized by the HBUC method. Then, the
N-multiple soliton solutions, periodic solutions, singular
solutions, rational solutions, and combined solutions of
Equations (1) and (2) can be obtained. Many well-known
NLPDEs, such as the Whitham-Broer-Kaup equations,
the Broer-Kaup equations, and the variant Boussinesq
equations, can be handled by the HBUCmethod. The perfor-
mance of the HBUC method is found to be simple and effi-
cient. The HBUC method is also a standard, computable,
and powerful method, which allows us to solve complicated
and tedious algebraic calculations by the availability of com-
puter systems like Maple.
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