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In this paper, we introduce two novel total variation models to deal with speckle noise in ultrasound image in order to retain the fine
details more effectively and to improve the speed of energy diffusion during the process. Firstly, two new convex functions are
introduced as regularization term in the adaptive total variation model, and then, the diffusion performances of Hypersurface
Total Variation (HYPTV) model and Logarithmic Total Variation (LOGTV) model are analyzed mathematically through the
physical characteristics of local coordinates. We have shown that the larger positive parameter in the model is set, the greater
energy diffusion speed appears to be, but it will cause the image to be too smooth that required adequate attention. Numerical
experimental results show that our proposed LOGTV model for speckle noise removal is superior to traditional models, not
only in visual effect but also in quantitative measures.

1. Introduction

With the development of digital image technology, a large
number of digital images are transmitted and compressed
through various channels. However, image corruption usu-
ally is unavoidable during transmission and storage, and
the resultant noise quite often seriously affects the visual
effect of the image. Clearly, high-quality images are desirable
in many areas, such as in medical imaging and pattern recog-
nition. Thus, image denoising is a critical step in image pro-
cessing and computer version, which plays an important role
in various applied areas, especially in medical imaging, video
processing, and remote sensing. On the other hand, it is also
an important preprocessing process for other image process-
ing that relies on subsequent processing.

Today, image denoising becomes research of focus, and
many image denoising methods have been proposed such
as Lee filter [1], Kuan filter [2], locally adaptive statistic filters
[3–5], PDE-based and curvature-based methods [6, 7], wave-
let transform based thresholding methods [8], and total var-

iational [9–11]. In addition, the method based on machine
learning [12–15] has received wide attention in recent years,
such as deep learning [12, 13], linear regression [14], and
Bayesian learning [13, 15].

In 1992, Rudin et al. [10] proposed a denoising model
based on the total variation:

Eλ1
uð Þ =

ð
Ω

Duj jdx + λ1
2

ð
Ω

u − u0
�� ��2dx, ð1Þ

where
Ð
Ω
jDujdx = sup fÐ

Ω
u div ðφÞ ∣ φ ∈ C1

c ðΩ,ℝnÞ, kφk∞
≤ 1g represents the TV regularization term, u : Ω⟶ℝ is
an original image that is without noise, u0 = u + n is noisy
image, and n represents the Gaussian random noise with
mean zero and standard deviation σ. λ1 > 0 represents the
regularization parameter which can be used to balance the
fidelity terms and regularized terms in TV model, and jDuj
represents the L1 norm of the image gradient.
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It is well known that medical ultrasonic images may have
many noises of speckle, which will bring a significant prob-
lem in terms of the quality of ultrasonic images and cover
up the lesions of certain important tissues. Further, it brings
great difficulties to the actuate diagnosis and identification of
certain specific diseases and can create the potential risk of
missed diagnosis and misdiagnosis. Thus, it is very desirable
to eliminate the speckle noise in ultrasound image and simul-
taneously retain the important features in practices. As men-
tioned in article [3], the speckle noise in medical ultrasonic
images can be formulated in the following form:

f = u +
ffiffiffi
u

p
n, ð2Þ

where f is a noisy image, and n represents the Gaussian ran-
dom noise with zeros mean and standard deviation σ.

In this paper, we focus on the image denoising form by
using variation method, where the noisy image is ultrasound
speckle noise. Based on the model (2) and the characteristics
of the Gaussian distribution, Krissian et al. in the article [16]
derived a date fidelity term:

F u, fð Þ =
ð
Ω

f − uð Þ2
u

dx: ð3Þ

Within the variational framework, the data fidelity
function is derived from the degradation model (2).
One of the technical approaches to solve the variational
model is the regularization technique, which minimizes
the cost function to obtain stable and accurate solutions.
In general, the image denoising variation method is to
consider:

min E uð Þ
u∈Ω

= TV uð Þ + λF u, fð Þ, ð4Þ

where TVðuÞ is a regularization term that represents a
prior information about the object to be restored, and F
ðu, f Þ is a fidelity term to ensure that the restoration u
is not far from the original observation f . λ > 0 repre-
sents the regularization parameter which can balance the
fidelity term and the regularization term.

In [11], motivated by the classical ROF model [10], the
authors proposed a convex variational model for removing
the speckle noise in ultrasound image. The convex variational
model involves the TV regularization term and convex fidel-
ity term (see Equation (5)):

min
u

ð
Ω

Duj jdx + λ
ð
Ω

f − uð Þ2
u

dx

" #
, ð5Þ

where
Ð
Ω
jDujdx represents the TV regularization term, and

Du represents the directional gradient of u. The existence
and uniqueness of the solution of model (5) is proved in
[11]. In this paper, we call the model in (5) the “JIN’s model.”
In [17], the authors proposed a well-balanced speckle noise
reduction (WBSN) model that can detect edges.

Although TV regularization is effective for image denois-
ing, it also leads to some staircase effects that is undesirable.
In order to solve this problem, many methods based on
improved TV regularization are proposed, such as high-
order TV regularization [18–20], several hybrid TV regular-
ization [21], the improved infimal convolution [22, 23], non-
local TV model [24, 25], fractional order TV model [26], and
anisotropic TV model [27, 28]. Fractional theory [29, 30],
wavelet [31], and statistical information [32–34] are also
employed to deal with intensity inhomogeneity or noise.
Although these denoising methods can reduce the stair-
case effects in the restoration of additive noise images,
however, there are more staircase effects that appeared
in the restoration of speckle noise images. In this paper,
we introduce HYPTV model and LOGTV model to
reduce speckle noise and staircase effects in ultrasound
images in an effective way.

In numerical algorithms, most of the energy function
minimization problems can be transformed to an Euler-
Lagrange equation and then be solved by using the finite dif-
ference method. However, the choice of adequate regulariza-
tion terms is critical in terms of solution accuracy. Moreover,
when solving the Euler-Lagrange equation, the energy diffu-
sion form of the noise image in different regions is required
to handle differently based on the physical characteristics of
local coordinates, since the diffusion velocity of different
parameters to the energy function is different in the two
models. The new proposed HYPTV model and the LOGTV
model, as shown in this paper, not only can preserve the
edges of the restored images well when restoring the ultra-
sonic image with speckle noise but also better reduce the
staircase effect generated during the recovery process.

The rest of this paper is as follows: in Section 2, we review
some background knowledge. In Section 3, we propose two
new models based on variation; meanwhile, we not only ana-
lyze diffusion performance of the proposed models but also
give the corresponding numerical algorithms. Section 4
shows five different experiments and results. The paper ends
with concluding remarks in Section 5.

2. Preliminary

2.1. Some Theoretical Background. The Euler-Lagrange equa-
tion was developed in the 1750s by Euler and Lagrange in
connection with their studies of the tautochrone problem.

Theorem 1. A multidimensional generalization comes from
considering a function on m variables. If Ω is open, bounded
Lipschitz domain in Rn, then

A h½ � =
ð
Ω

L x1, x2,⋯, xm, h, h1, h2,⋯, hmð Þdx, ð6Þ

is extremized only if h satisfies the partial differential equa-
tion:

∂L
∂h

− 〠
n

i=1

∂
∂xi

∂L
∂hi

� �
= 0, ð7Þ
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For model (5), the corresponding Euler-Lagrange equation
is as follow:

div
∇u
∇uj j

� �
+ λ

f 2

u2
− 1

 !
= 0, ð8Þ

where ∇ and div, respectively, represent gradient operators
and divergence operators. Using gradient descent method, we
can get the model as follows:

ut = div
∇u
∣∇u ∣

� �
+ λ

f 2

u2
− 1

 !
, t > 0 x, y inΩ,

∂u
∂n!

= 0 on the boundar of Ω,

u t=0 = u0 in �Ω ,
��

8>>>>>>><
>>>>>>>:

ð9Þ

where n! is the unit out normal vector of ∂Ω.

Without losing generality, in the following, we consider
the grayscale images as M ×N matrices.

Definition 2. Let u ∈U = C2
2ðΩ, RÞ, g = ðg1, g2Þ

∈G = C2
2ðΩ, R2Þ, the gradient operators on the space U and

the divergence operators on the space G are defined as:

∇ : U ⟶G, ∇u = ∂+x u, ∂
+
y u

� �
, ð10Þ

div : G⟶U , div g = ∂−xg1 + ∂−y g2,where ∂+x , ∂
+
y , ∂

−
x , and ∂

−
y

are the first-order forward and backward discrete derivation
operators in the x-direction and y-direction, respectively,
which are defined as:

∂+x u
� 	

=
ui,j+1 − ui,j, if 1 ≤ j ≤N − 1,

0, if j =N ,

(

∂+y u
� �

=
ui+1,j − ui,j, if 1 ≤ i ≤M − 1,

0, if i =M,

(

∂−x uð Þ =
ui,j − ui,j−1, if 2 ≤ j ≤N ,

0, if j = 1,

(

∂−y u
� �

=
ui,j − ui−1,j, if 2 ≤ i ≤M,

0, if i = 1:

(

ð11Þ

Applying the above gradient operators and divergence
operators to model (9), we can obtain the equivalent minimi-
zation problem.

Definition 3. Let C be a convex subset of R, A function ϕ :
C⟶ R is called convex if

ϕ tx + 1 − tð Þyð Þ ≤ tϕ xð Þ + 1 − tð Þϕ yð Þ,∀x, y ∈ C,∀t ∈ 0, 1½ �:
ð12Þ

The following facts are easily checked:

Theorem 4. If functions ϕ1 and ϕ2 are convex and have the
same domain definition, then ϕ = ϕ1 + ϕ2 is also convex.

Proof. Let functions ϕ1 and ϕ2 are convex. According to the
Definition 3, for any x, y ∈ R and t ∈ ½0, 1�, we have

ϕ1 tx + 1 − tð Þyð Þ ≤ tϕ1 xð Þ + 1 − tð Þϕ1 yð Þ,
ϕ2 tx + 1 − tð Þyð Þ ≤ tϕ2 xð Þ + 1 − tð Þϕ2 yð Þ,
ϕ tx + 1 − tð Þyð Þ = ϕ1 tx + 1 − tð Þyð Þ + ϕ2 tx + 1 − tð Þyð Þ

≤ tϕ1 xð Þ + 1 − tð Þϕ1 yð Þ + tϕ2 xð Þ + 1 − tð Þϕ2 yð Þ
≤ t ϕ1 xð Þ + ϕ2 xð Þð Þ + 1 − tð Þ ϕ1 yð Þ + ϕ2 yð Þð Þ
= tϕ xð Þ + 1 − tð Þϕ xð Þ:

ð13Þ

Hence ϕ = ϕ1 + ϕ2 is convex.

Theorem 5. If a differentiable function ϕ : C⟶ Rsatisfied

ϕ″ xð Þ ≥ 0, ∀x ∈ C, ð14Þ

then ϕ is convex.

2.2. The Condition of TV Regularization Term. Although
TV regularization is very effective in image restoration, it
usually generates some staircase effects. Thus, it is sug-
gested in literature to use general variational methods,
i.e., to consider:

J1 uð Þ =
ð
Ω

φ ∣∇u ∣ð Þdx, ð15Þ

where φðsÞ represents a potential function, and the case
φðsÞ = s leads to the total variation regularization term.
In the literature [35], the author Costanzino chooses φðsÞ =
s2 that leads to the well-known harmonic model.

In practice, we prefer good smoothing in some domain
where the intensity of variations is relatively weak. This can
be achieved by requiring a function φðsÞ to satisfy the follow-
ing conditions:

φ′ 0ð Þ = 0, lim
s→0+

φ″ sð Þ = lim
s→0+

φ′ sð Þ
s

= c > 0: ð16Þ

Near the edge of the image, the intensity of variations is
strong. If we would like to preserve the edge, then the func-
tion φðsÞ should satisfy the following conditions:

3Journal of Function Spaces



lim
s→∞

φ″ sð Þ = lim
s→∞

φ′ sð Þ
s

= 0,  lim
s→∞

sφ″ sð Þ
φ′ sð Þ

= 0: ð17Þ

With the conditions (16) and (17), the function φðsÞ is
convex and nondecreasing function, such as:

proportional function : φ sð Þ = s, s ≥ 0,

exponential function : φ sð Þ = s2, s ≥ 0,

hypersurface function : φ sð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + α1s2

p
, s ≥ 0, α1 > 0,

logarithmic function : φ sð Þ = s ln α2 + sð Þ, s ≥ 0, α2 > 0:
ð18Þ

There functions are convex and nondecreasing on s ≥ 0,
as shown in Figure 1.

In this paper, we will use two new functions φ1ðsÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + α1s2

p
and φ2ðsÞ = s ln ðα2 + sÞ, which appear to be quite

effective for image processing, in particular, for ultrasound
image denoising. Obviously, the functions φ1ðsÞ and φ2ðsÞ
are convex and nondecreasing.

3. The Proposed Restoration Model

In this section, we propose adaptive total variation
model for image restoration. We use the finite differ-
ence method to solve the Euler-Lagrange equation
directly, and then find the minimum value of the energy
function.

3.1. The Adaptive Total Variation Model. Apply the selected
function to model (15), we propose adaptive total variation
model,

min
u

E uð Þ =
ð
Ω

φi ∇uj jð Þdx + λ
ð
Ω

f − uð Þ2
u

dx

" #
, ð19Þ

where
Ð
Ω
φið∣∇u ∣ Þdx is a regularization term, and i = 1, 2;Ð

Ω
ðð f − uÞ2/uÞdx is a fidelity term; λ represents the regular-

ization parameter which can balance fidelity term and regu-
larization term.

Firstly, the energy functional EðuÞ is convex, which
guarantees the existence of the minimal solution of the
model (19).

Theorem 6. The energy functional EðuÞ is convex. That is to
say, for any u1, u2 ∈Ω, and t ∈ ½0, 1�, we have:

E tu1 + 1 − tð Þu2ð Þ ≤ tE u1ð Þ + 1 − tð ÞE u2ð Þ, ð20Þ

where EðuÞ = Ð
Ω
φið∣∇u ∣ Þdx + λ

Ð
Ω
ðð f − uÞ2/uÞdx.

Proof. Firstly, the function φiðsÞ is convex; according to Def-
inition 3, for any u1, u2 ∈Ω, and t ∈ ½0, 1�, we have

ð
Ω

φi ∇ tu1 + 1 − tð Þu2ðj jð Þdx ≤ t
ð
Ω

φi ∇u1j jð Þdx

+ 1 − tð Þ
ð
Ω

φi ∇u2j jð Þdx:
ð21Þ
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Figure 1: The plots of convex and nondecreasing functions.
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Meanwhile, we have (The proof step of the inequality is in the
appendix.)

Therefore,

E tu1 + 1 − tð Þu2ð Þ ≤ tE u1ð Þ + 1 − tð ÞE u2ð Þ: ð23Þ

This proof is established.
Secondly, the uniqueness of the minimum solution of the

model (19) can also be proved.

Theorem 7. If u1 and u2 are two minimize solutions of model
(19), then we have u1 = u2.

Proof. According to Theorem 6, we have

E
u1 + u2

2

� �
=
ð
Ω

φi ∇
1
2
u1 +

1
2
u2

�����
����

� �
dx

+ λ
ð
Ω

f − u1/2ð Þ + u2/2ð Þð Þð Þ2
u1 + u2/2

dx

≤
ð
Ω

1
2
φi ∇u1j jð Þ + 1

2
φi ∇u2j jð Þ

� �

+ λ
ð
Ω

f 2 1/4 u1 + u2ð Þ2 − 1/4 u1 − u2ð Þ2� 	
1/2u1 + 1/2u2ð Þu1u2

 

− 2f +
1
2
u1 +

1
2
u2

!
dx

≤
1
2

ð
Ω

φi ∇u1j jð Þdx + 1
2

ð
Ω

φi ∇u2j jð Þdx

+ λ
ð
Ω

f − u1ð Þ2
2u1

+
f − u2ð Þ2
2u2

−
f 2 u1 − u2ð Þ2

2 u1 + u2ð Þu1u2

 !
dx

=
1
2
E u1ð Þ + 1

2
E u2ð Þ − λ

ð
Ω

f 2 u1 − u2ð Þ2
2 u1 + u2ð Þu1u2

dx

= E u1ð Þ − λ
ð
Ω

f 2 u1 − u2ð Þ2
2 u1 + u2ð Þu1u2

dx:

ð24Þ

If u1 ≠ u2, then the above assumption gives a contradic-
tion that u1 is not a minimize solution.

3.2. Diffusion Performance. In this subsection, we mainly
analyze the diffusion performance and diffusion speed of
the energy function of HYPTV model and LOGTV model.

3.2.1. Diffusion Performance of HYPTVModel. Firstly, we use
the finite difference method to solve the HYPTVmodel, asso-
ciated with the potential function φ1ðsÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + α1s2

p
.

From Definition 2, we can obtain the corresponding
Euler-Lagrange equation HYPTV model that as follows:

div
α1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + α1 ∇uj j2
p

 !
∇u

" #
+ λ

f 2

u2
− 1

 !
= 0: ð25Þ

Using gradient descent method, Equation (25) can be
transformed to:

ut = div
α1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + α1 ∇uj j2
p

 !
∇u

" #
+ λ

f 2

u2
− 1

 !
 inΩ,

∂u
∂n!

= 0 on the boundar of Ω,

u t=0 = u0 in �Ω,
��

8>>>>>>><
>>>>>>>:

ð26Þ

where n
!
is the unit out normal vector of ∂Ω.

In order to analyze the diffusion performance, local
image coordinate system ξ‐η is established. As shown in
Figure 2, the η-axis represents the direction parallel to the
image gradient at the pixel level, and the ξ-axis is the corre-
sponding vertical direction.

According to Figure 2, we can know:

ξ =
1

∣∇u ∣
−uy, ux
� 	

,

η =
1

∣∇u ∣
ux, uy
� 	

:

8>><
>>: ð27Þ

ð
Ω

f − tu1 + 1 − tð Þu2ð Þð Þ2
tu1 + 1 − tð Þu2

dx =
ð
Ω

f 2

tu1 + 1 − tð Þu2
− 2f + tu1 + 1 − tð Þu2

 !
dx

≤
ð
Ω

f 2 tu2 + 1 − tð Þu1ð Þ
u1u2

− 2f + tu1 + 1 − tð Þu2
 !

dx

=
ð
Ω

t f 2

u1
− 2t f + tu1 +

1 − tð Þf 2
u2

− 2 1 − tð Þf + 1 − tð Þu2
 !

dx

=
ð
Ω

t
f − u1ð Þ2
u1

 !
+ 1 − tð Þ f − u2ð Þ2

u2

 !
dx:

ð22Þ
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So, Equation (26) can be rewritten as:

ut = ψ1
1 ∣∇u ∣ð Þuξξ+ψ1

2 ∣∇u ∣ð Þuηη + λ
f 2

u2
− 1

 !
, ð28Þ

where

ψ1
1 ∣∇u ∣ð Þ = α1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + α1 ∇uj j2� 	q ,

ψ1
2 ∣∇u ∣ð Þ = α1

1 + α1 ∇uj j2� 	3/2 ,

8>>>><
>>>>:

uξξ =
u2yuxx − 2uxuyuxy + u2xuyy

∇uj j2 ,

uηη =
u2xuxx + 2uxuyuxy + u2yuyy

∇uj j2 :

8>>>><
>>>>:

ð29Þ

The ψ1
1ð∣∇u ∣ Þ and ψ1

2ð∣∇u ∣ Þ are control functions of the
diffusion along the ξ-direction and η-direction, respectively.
Now, we consider the diffusion of image restoration. Some
test images are shown in Figure 3.

(1) Smooth area. When ∣∇u ∣⟶0, lim
∣∇u∣→0

ψ1
1ð∣∇u ∣ Þ = lim

∣∇u∣→0
ψ1
2ð∣∇u ∣ Þ = α1. This shows that the diffusion form of the

energy Equation (19) is isotropic. In other words, the energy
diffusion rate along direction ξ and direction η is very close in
the process of image restoration in the smooth region. And
the rate of energy diffusion is obviously positively correlated
with the parameter α1.

(2) Sharp area. When ∣∇u ∣⟶∞, we obtain lim
∣∇u∣→∞

ðψ1
2ð∣∇

u ∣ Þ/ψ1
1ð∣∇u∣ÞÞ = 0. This shows that the diffusion form of

the energy Equation (19) is anisotropic. In other words, the
energy diffusion rate in ξ-direction in Equation (28) is much
larger than that in the η-direction in the sharp region. But the

gradient ∣∇u ∣ does not exceed 255, so lim
∣∇u∣→255

ðψ1
2ð∣∇u ∣ Þ/

ψ1
1ð∣∇u∣ÞÞ = lim

∣∇u∣→255
ð1/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + α1j∇uj2

q
Þ = 1/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + α1 × 2552

p
.

One can see that the larger the parameter α1 is set, the smaller

the limit becomes. And the rate of energy diffusion is obvi-
ously positively correlated with the parameter α1.

3.2.2. Diffusion Performance of LOGTV Model. Secondly, we
use the finite difference method to solve the LOGTV model,
which the potential function is φ2ðsÞ = s ln ðα2 + sÞ.

x

y

𝜉

𝜂

Global coordinate

Local coordinate

Figure 2: Global and local coordinate schematic diagram.
(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3: Test images: (a) image 1 (256 × 256); (b) image 2
(256 × 256); (c) house (256 × 256); (d) pirate (512 × 512); (e)
peppers (256 × 256); (f) boat (512 × 512); (g) bird (256 × 256).
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1:Initializeλ0 = 0, u0 = f , k = 0
2:Repeat
3:While NDR>limit do
4: Update uk by (35)
5: Update λk by (39)
6: Computer NDR
7: Set k = k + 1
8: End While
9: Final Input:u

Algorithm 1

1:Initializeλ0 = 0, u0 = f , k = 0
2:Repeat
3:While NDR>limit do
4: Update uk by (41)
5: Update λk by (43)
6: Computer NDR
7: Set k = k + 1
8: End While
9: Final Input:u

Algorithm 2
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Figure 4: The PSNR values and iteration times of different parameter α2 (HYPTV model).
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Figure 5: The PSNR values and iteration times of different parameter α2 (LOGTV model).
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(a) (b) (c) (d)

Figure 7: Numerical result of the “image 2” image with noise standard deviation σ = 3. (a) Original image (image 2); (b) noisy image; (c)
restored image by HYPTV model α1 = 15; (d) restored image by LOGTV model α2 = 15.

(a) (b) (c) (d)

Figure 6: Numerical result of the “image 1” image with noise standard deviation σ = 2. (a) Original image (image 1); (b) noisy image; (c)
restored image by HYPTV model α1 = 15; (d) restored image by LOGTV model α2 = 15.

Table 1: Numerical result of the “image 1” and “image 2” images by the HYPTV and LOGTV model.

Image σ Noise image PSNR HYPTV (PSNR/SSIM) LOGTV (PSNR/SSIM)

Image 1 2 23.76 32.31/0.7786 32.98/0.8025

Image 2 2 23.26 34.78/0.8360 35.31/0.8562

Image 1 3 20.24 31.10/0.7806 31.57/0.7948

Image 2 3 19.76 33.47/0.8300 34.07/0.8568

Image 1 4 17.77 29.97/0.7920 30.45/0.8113

Image 2 4 17.51 32.51/0.8649 32.63/0.8667

(a) (b) (c) (d)

Figure 8: Numerical result of the “lena” and “house” images with noise standard deviation σ = 3. (a) Original images (house); (b) about the
detailed image of (a); (c) noisy images; (d) about the detailed image of (c).
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From the Definition 2, we can obtain the corresponding
Euler-Lagrange equation LOGTV model that as follows:

div
ln α2+∣∇u∣ð Þ

∣∇u ∣
+

1
α2+∣∇u ∣

� �
∇u


 �
+ λ

f 2

u2
− 1

 !
= 0:

ð30Þ

Using gradient descent method, Equation (30) can be
transformed to:

ut = div
ln α2+∣∇u∣ð Þ

∣∇u ∣
+

1
α2+∣∇u ∣

� �
∇u


 �
+ α

f 2

u2
− 1

 !
,

ð31Þ

where n! is the unit out normal vector of ∂Ω.

Hence, Equation (31) can be rewritten as:

ut = ψ2
1 ∣∇u ∣ð Þuξξ+ψ2

2 ∣∇u ∣ð Þuηη + λ
f 2

u2
− 1

 !
, ð32Þ

where

ψ2
1 ∣∇u ∣ð Þ = ln α2+∣∇u∣ð Þ

∣∇u ∣
+

1
α2+∣∇u ∣

,

ψ2
2 ∣∇u ∣ð Þ = 1

α2+∣∇u ∣
+

α2
α2+∣∇u ∣ð Þ2 :

8>>><
>>>:

ð33Þ

ψ2
1ð∣∇u ∣ Þ and ψ2

2ð∣∇u ∣ Þ are control functions of the dif-
fusion along the ξ-direction and η-direction, respectively.
Now, we consider the diffusion of image restoration.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 9: Numerical result of the “house” images with noise standard deviation σ = 3. (a) Restored image by the ROF model; (b) restored
image by the ATV model; (c) restored image by the JIN’s model; (d) restored image by HYPTV model; (e) restored image by LOGTV
model; (f), (g), (h), (i), and (j) about the detailed image of (a), (b), (c), (d), and (e), respectively.
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(1) Smooth area. When α2 = 1, and ∣∇u ∣⟶0, we can
obtain lim

∣∇u∣→0
ψ2
1ð∣∇u ∣ Þ = 2 and lim

∣∇u∣→0
ψ2
2ð∣∇u ∣ Þ = 2. This

shows that the diffusion form of the energy Equation
(19) is isotropic. In other words, the energy diffusion rate
along direction ξ and direction η is very close in the pro-
cess of image restoration in the smooth region. When α2
≠ 1, and ∣∇u ∣⟶0, we can obtain lim

∣∇u∣→0
ψ1ð∣∇u ∣ Þ =∞

and lim
∣∇u∣→0

ψ2ð∣∇u ∣ Þ = 2/α2. This shows that the diffusion

form of the energy Equation (19) is anisotropic. However,
the gradient of noise image is relatively large, so in the
smooth region, whatever the value of α2, it has little effect
on the model.

(2) Sharp area. When ∣∇u ∣⟶∞, we can obtain lim
∣∇u∣→∞

ðψ2
2

ð∣∇u ∣ Þ/ψ2
1ð∣∇u∣ÞÞ = 0. This shows that the diffusion form of

the energy Equation (19) is anisotropic. In other words, the
energy diffusion rate in ξ-direction in Equation (28) is much
larger than that in the η-direction in the sharp region. But the
gradient ∣∇u ∣ does not exceed 255, so lim

∣∇u∣→255
ðψ2ð∣∇u ∣ Þ/

ψ1ð∣∇u∣ÞÞ = ð510α2 + 2552Þ/ð225α2 + 2552 + ðα2 + 255Þ2 ∗ ln
ðα2 + 255ÞÞ. One can see that the larger the parameter α2 is
set, the smaller the limit becomes. And the rate of energy
diffusion is clearly positively correlated with the parame-
ter α2.

3.3. Numerical Implementation. We will describe the cor-
responding numerical algorithm in this section. Firstly,
the HYPTV model can be solved by discretization as fol-
lows:

uk+1i,j = uki,j + Δt div T1 ∇uk
��� ���� �

∇uk
� �

i,j
+ λk

f 2

uk
� 	2 − 1

 !
i,j

2
4

3
5,

ð34Þ

where T1ðj∇ukjÞ = α1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + α1j∇ukj2

q
, and Δt represents

time step. Furthermore, the iterative formula can approx-
imate as:

uk+1i,j = uki,j + Δt A1 ∇uk
� �

i,j
+ λk

f 2

uk
� 	2 − 1

 !
i,j

2
4

3
5, ð35Þ

for i = 1,⋯,M; j = 1,⋯,N , and M ×N represent the size
of the image. Here:

A1 ∇uk
� �

i,j
= ∂−x T1 ∇xu

k
��� ���� �

∂+x u
k

� �
i,j
+ ∂−y T1 ∇yu

k
��� ���� �

∂+y u
k

� �
i,j
,

∇x ui,j
� 	�� �� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂+x ui,j
� 	� 	2 + m ∂+y ui,j

� 	
, ∂−y ui,j
� 	h i� �2

+ δ

r
,

∇y ui,j
� 	�� �� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂+y ui,j
� 	� �2

+ m ∂+x ui,j
� 	

, ∂−x ui,j
� 	� 
� 	2 + δ

r
,

8>>><
>>>:

ð36Þ

where m½a, b� = ððsign a + sign bÞ/2Þ ⋅min ð½jaj, jbj�Þ, and
δ > 0 is a positive parameter that is close to zero. With
boundary conditions:

(a) (b) (c)

(d) (e)

Figure 10: Noisy images. (a) Boat (σ = 3); (b) pirate (σ = 4); (c) peppers (σ = 2); (d) house (σ = 3); (e) bird (σ = 4).
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uk0,j = uk1,j ; ukN+1,j = ukN ,j,

uki,0 = uki,1 ; uki,N+1 = uki,N :

8<
: ð37Þ

Now, note Equation (25), the two sides are multiplied
by ð f − uÞu/f + u, and then, the integral on the domain Ω
can be obtained:

λ
ð
Ω

f − uð Þ2
u

=
ð
Ω

div
α1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + α1 ∇uj j2
p

 !
∇u

" #
u − fð Þu
u + f

,

ð38Þ

Because the Gaussian noise n have mean 0 and vari-
ance σ2, we can obtain:

λk = 1
σ2 Ωj j〠i,j

A1 ∇uk
� �� � uk − f

� 	
uk

uk + f
, ð39Þ

In the process of iteration, we always use the previous
solution to calculate the next solution. The optimization
algorithm for HYPTV model is given in the following
(Algorithm 1).

Secondly, the LOGTV model can be solve by discretiza-
tion as follows:

uk+1i,j = uki,j + Δt div T2 ∇uk
��� ���� �

∇uk
� �

i,j
+ λk

f 2

uk
� 	2 − 1

 !
i,j

2
4

3
5,

ð40Þ

where T2ðj∇ukjÞ=ððln ðα2+ j∇ukjÞÞ/j∇ukjÞ+ ð1/ðα2 + j∇ukjÞÞ.
Furthermore, the iterative formula can approximate as:

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 11: Numerical result of the “peppers” image with noise standard deviation σ = 2; (a) restored image by the ROF model; (b) restored
image by the ATV model; (c) restored image by the JIN’s model; (d) restored image by HYPTV model; (e) restored image by LOGTVmodel;
(f), (g), (h), (i), and (j) about the detailed image of (a), (b), (c), (d) and (e), respectively.
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uk+1i,j = uki,j + Δt A2 ∇uk
� �

i,j
+ λk

f 2

uk
� 	2 − 1

 !
i,j

2
4

3
5, ð41Þ

A2 ∇uk
� �

i,j
= ∂−x T2 ∇+

x u
k

��� ���� �
∂+x u

k
� �

i,j
+ ∂−y T2 ∇+

y u
k

��� ���� �
∂+y u

k
� �

i,j
,

ð42Þ

λk =
1

σ2 Ωj j〠i,j
A2 ∇uk
� �� � uk − f

� 	
uk + f

: ð43Þ

Similar to the HYPTV model, the optimization algo-
rithm for LOGTV model is given in the following
(Algorithm 2).

4. Experimental Results

In this section, we present numerical results to demon-
strate the effectiveness of the HYPTV and LOGTV model

in image restoration. Firstly, to evaluate the quality of
restored images, we use the peak signal-to-noise ratio
(PSNR) value and the structure similarity (SSIM) index,
which are defined as follows:

PSNR u, �uð Þ = 10 log10
2552mn

u − �uk k22

 !
,

SSIM u, �uð Þ = 2μ�uμu + c1ð Þ σ�uu + c2ð Þ
μ2�u + μ2u + c1ð Þ σ2�u + σ2u + c2

� 	 ,
ð44Þ

where u ∈ℝm×n is the clean image, and �u ∈ℝm×n is the
restored image. μa is the average of a, σa is the standard
deviation of a, and c1 and c2 are some constants for stabil-
ity. Secondly, we calculated the noise deviation reduction
(NDR) at each iteration as a convergence condition;

NDR =mean
f − ukð Þ2
uk

, ð45Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 12: Numerical result of the “boat” image with noise standard deviation σ = 3. (a) Restored image by the ROFmodel; (b) restored image
by the ATVmodel; (c) restored image by the JIN’s model; (d) restored image by HYPTVmodel; (e) restored image by LOGTVmodel; (f), (g),
(h), (i), and (j) about the detailed image of (a), (b), (c), (d), and (e), respectively.
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where uk represents the results of the kth iterations,
respectively. Finally, the stopping condition (NDR) for
the HYPTV and LOGTV models is as follows:

ffiffiffiffiffiffiffiffiffiffiffi
NDR

p
− σ

��� ��� ≤ 10−1, ð46Þ

In the numerical experiment, we will use the noise
image as the initial value, that is, f = u0. Moreover, the
gray values of all original images are in range [0, 255].

4.1. Denoising Effect of Different Parameters of HYPTVModel
and LOGTV Model. In this example, we use different param-
eter αiði = 1, 2Þ values in the algorithm to test the effect of
HYPTV and LOGTV models. The test images is shown in
Figure 3(a), and the noise levels are σ = 2 and σ = 3.
Figure 4 shows the different PSNR values and iteration num-
bers when different β values are used in the HYPTV model
algorithm. Figure 5 shows the different PSNR values and iter-
ation numbers when different β values are used in the

LOGTV model algorithm. Firstly, we can also see that PSNR
is the largest in αiði = 1, 2Þ = 15. Secondly, with the increase
of parameters, the speed of image restoration is faster. Based
on the above analysis, when αiði = 1, 2Þ = 15, the denoising
performance of HPYTV and LOGTV models is close to
the best. Therefore, in the following experiment, we
choose αiði = 1, 2Þ = 15 in HPYTV and LOGTV models.

4.2. Denoising Effect of the HYPTV and LOGTV Model. In
this subsection, we use the algorithm to test the effect of the
HYPTV and LOGTV model on image denoising. In
Figures 6 and 7, we show the original images, the noise
images, and the restored images by HYPTV and LOGTV
models. Figures 6(a) and 7(a) are original images,
Figures 6(b) and 7(b) are noisy images, which the noise levels
are σ = 2 and σ = 3, respectively. Figures 6(c) and 7(c) are
corresponding restored images by HYPTV model.
Figures 6(d) and 7(d) are corresponding restored images by
LOGTV model. Table 1 shows that the PSNR values, SSIM
values, and the numbers of iteration for the different test

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 13: Numerical result of the “house” image with noise standard deviation σ = 3. (a) Restored image by the ROF model; (b) restored
image by the ATV model; (c) restored image by the JIN’s model; (d) restored image by HYPTV model; (e) restored image by LOGTV
model; (f), (g), (h), (i), and (j) about the detailed image of (a), (b), (c), (d), and (e), respectively.
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images can be got by using the HYPTV model and the
LOGTV model. “Noise image PSNR” is the peak signal-
to-noise ratio of noisy images and original images.
“Denoising image PSNR” is the peak signal-to-noise ratio
of restored images and original images. “Iter” is the num-
ber of iterations of the algorithm. From the results, it is
obvious that the HYPTV model and the LOGTV model
are fairly effective in reducing the speckle noise and
edge-preserving.

4.3. Reduction of Staircase. In this subsection, we test the
reduction of the staircase effect in HYPTV model and
LOGTV model by image in Figure 8. Figure 8(a) shows orig-
inal images (“house”). Figure 8(b) shows detailed images of
Figure 8(a), respectively. Figure 8(c) shows noise images
which noise standard deviation σ = 3. Figure 8(d) shows
detailed images of Figure 8(c). The original images contain
a lot of details information, such as textures edges and in
homogeneous regions.

Figure 9 displays the restoration results of the noisy
“house” image, respectively. Figures 9(a)–9(e) was restored
ROFmodel [10], ATVmodel [36], JIN’s model [11], HYPTV
model, and LOGTV model, respectively. Figures 9(f)–9(j) is
corresponding details images.

According to the results, we can see that JIN’s model,
HYPTV model, and LOGTV model had a good effect in
removing image noise and preserving image edges. In
addition, we can clearly see staircase effect in the detailed
images obtained by ROF model, ATV model, and JIN’s
model. At the same time, the staircase effect of HYPTV
model and LOGTV model restored images is reduced.
Although both the HYPTV model and the LOGTV model
can reduce the ladder effect, the LOGTV model is better
than the HYPTV model.

4.4. Comparison with ROF Model, ATV Model, and JIN’s
Model. In this subsection, we compare the effect of the ROF
model, ATV model, and JIN’s model with HYPTV and
LOGTV models for some images. The test original images

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 14: Numerical result of the “pirate” image with noise standard deviation σ = 4. (a) Restored image by the ROF model; (b) restored
image by the ATV model; (c) restored image by the JIN’s model; (d) restored image by HYPTV model; (e) restored image by LOGTV
model; (f), (g), (h), (i), and (j) about the detailed image of (a), (b), (c), (d), and (e), respectively.
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are shown in Figure 3(“house,” “peppers,” “boat,” “pirate,”
and “bird”), with two sizes of 512 × 512 and three sizes of
256 × 256. Figure 10 shows some noise images with different
standard deviation.

Figures 11–15 display the restoration results for images
(“peppers,” “boat,” “house,” “pirate,” and “bird”) through
ROF model, ATV model, JIN’s model, HYPTV model, and
LOGTV model. The noise versions of “peppers”, “boat” and
“house”, and “pirate” and “bird” are obtained by model (2)
with standard deviations 2, 3, and 4, respectively. In addition,
the detailed images of the restored images are also dis-
played. Table 2 shows the PSNR and SSIM values for dif-
ferent test images by using the ROF model, ATV model,
JIN’s model, HYPTV model, and LOGTV model. From
the results of Figures 11–15 and Table 2, the noise stan-
dard deviation σ = 2. We can observe that although the
four models can effectively remove the noises while pre-
serving the edges and details, the restored images by
HYPTV model and LOGTV model have better visual
effect with less staircase effects than by the ROF model,

ATV model, and JIN’s model. The noise standard devia-
tion σ = 3, 4. The visual effect of restored images by the
ROF model and ATV model is particularly poor, but
JIN’s model, HYPTV model, and LOGTV model can
effectively remove the noises. Finally, Table 2 shows that
LOGTV model has higher PSNR and SSIM values than
other four models. This means that our proposed
LOGTV model is available in reducing the speckle noise
in some images.

4.5. Denoising Results of Real Ultrasound Images. In this sub-
section, we test some real ultrasound images. Figure 16 shows
the experimental results of real ultrasound images by apply-
ing JIN’s model, HYPTV model, and LOGTV model.
Table 3 shows the different iteration for the different test
images by using the JIN’s model, HYPTV model, and
LOGTV model. We find that LOGTV model is much effec-
tive than JIN’s model and HYPTV model in obtaining the
satisfactory restored images.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 15: Numerical result of the “bird” image with noise standard deviation σ = 4. (a) Restored image by the ROFmodel; (b) restored image
by the ATVmodel; (c) restored image by the JIN’s model; (d) restored image by HYPTVmodel; (e) restored image by LOGTVmodel; (f), (g),
(h), (i), and (j) about the detailed image of (a), (b), (c), (d), and (e), respectively.
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5. Concluding Remarks

In this paper, we propose a new speckle noise restoration
model based on adaptive TV method. Two new convex func-

tions are introduced as the TV regularization term. By ana-
lyzing the diffusion performance of the proposed two
models, one can see that the LOGTV model has faster diffu-
sion speed than the HYPTVmodel. Moreover, we introduced

Table 2: The PSNR of the restored images by the different model.

Image σ ROF (PSNR/SSIM) ATV (PSNR/SSIM) JIN’s (PSNR/SSIM) HYPTV (PSNR/SSIM) LOGTV (PSNR/SSIM)

Peppers 2 27.60/0.7183 28.66/0.8377 29.46/0.8195 29.43/0.8250 29.53/0.8274

Boat 2 27.26/0.8240 27.90/0.8574 28.35/0.8622 28.49/0.8659 28.64/0.8661

House 2 27.45/0.6185 29.06/0.8101 28.77/0.6876 29.55/0.7374 29.74/0.7447

Pirate 2 28.33/0.8975 27.22/0.8530 28.51/0.9042 28.55/0.9047 28.74/0.9060

Bird 2 28.99/0.6907 30.28/0.7849 30.36/0.7774 30.88/0.8137 31.07/0.8173

Peppers 3 25.93/0.6758 26.70/0.7409 27.13/0.7446 27.19/0.7492 27.37/0.7516

Boat 3 25.79/0.7481 26.47/0.7986 26.68/0.8029 26.64/0.7985 26.82/0.7989

House 3 26.08/0.5752 27.33/0.6611 27.24/0.6551 27.62/0.6866 27.82/0.6896

Pirate 3 26.35/0.8392 26.38/0.8332 26.81/0.8578 26.85/0.8580 26.98/0.8583

Bird 3 27.36/0.6451 27.92/0.6930 28.48/0.7307 28.92/0.7686 29.13/0.7701

Peppers 4 24.49/0.6153 25.59/0.7153 25.63/0.6800 25.65/0.6981 25.83/0.7011

Boat 4 24.47/0.6807 24.95/0.7338 25.24/0.7370 25.31/0.7382 25.51/0.7388

House 4 24.63/0.5130 25.30/0.5760 26.18/0.6399 26.19/0.6419 26.43/0.6437

Pirate 4 24.03/0.7652 24.33/0.7205 24.75/0.7787 25.64/0.8118 25.77/0.8159

Bird 4 25.66/0.5679 26.49/0.6584 27.25/0.7263 27.25/0.7270 27.51/0.7282

Best denoising performance are given in bold.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 16: Numerical result of the real ultrasound image (the real ultrasound image from [18]). (a, e, i) Noisy image; (b, f, j) restored image by
the JIN’s model; (c, g, k) restored image by HYPTV model; (d, h, l) restored image by LOGTV model.
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two iterative numerical algorithms to solve the proposed
models. The experiment results show the affectivity of our
proposed model and the similarity between JIN’s model
and HYPTV model. In addition, we compared the effect of
the ROF model, ATV model, and JIN’s model with the
LOGTV model, and the experiment results show high effi-
ciency of LOGTV model in image restoration.

Appendix

The Proof of the Inequality of Theorem 6

Proof. For any u1, u2 ∈Ω, and t ∈ ½0, 1�, ðtu2 + ð1 − tÞu1Þðtu1
+ ð1 − tÞu2Þ ≥ u1u2.

Here, we know tð1 − tÞðu21 + u22Þ + 2t2u1u2 − 2tu1u2 + u1
u2 ≥ u1u2,

so, we have ðu21 + u22Þ ≥ u1u2. Therefore, the proof holds
to be true.

Data Availability

The experimental data are obtained by MATLAB R2017a,
2.93GHz cup, 4G RAM, and Windows 7.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors typed, read, and approved the final manuscript.

Acknowledgments

This paper is partially supported by the Natural Science
Foundation of Guangdong Province (2018A030313364),
the Special Innovation Projects of Universities in
Guangdong Province (2018KTSCX197), the Science and
Technology Planning Project of Shenzhen City
(JCYJ20180305125609379), the Natural Science Foundation
of Shenzhen (JCYJ20170818091621856), and the China
Scholarship Council Project (201508440370).

References

[1] H. H. Arsenault, “Speckle suppression and analysis for syn-
thetic aperture radar images,” Optical Engineering, vol. 25,
no. 5, pp. 636–643, 1986.

[2] D. Kuan, A. Sawchuk, T. Strand, and P. Chavel, “Adaptive res-
toration of images with speckle,” IEEE Transactions on Acous-

tics, Speech, and Signal Processing, vol. 35, no. 3, pp. 373–383,
1987.

[3] T. Loupas, W. N. McDicken, and P. L. Allan, “An adaptive
weighted median filter for speckle suppression in medical
ultrasonic images,” IEEE Transactions on Circuits and Systems,
vol. 36, no. 1, pp. 129–135, 1989.

[4] Y. J. Yu and S. T. Acton, “Speckle reducing anisotropic diffu-
sion,” IEEE Transactions on Image Processing, vol. 11, no. 11,
pp. 1260–1270, 2002.

[5] K. Krissian, C. F.Westin, R. Kikinis, and K. G. Vosburgh, “Ori-
ented speckle reducing anisotropic diffusion,” IEEE Transac-
tions on Image Processing, vol. 16, no. 5, pp. 1412–1424, 2007.

[6] J. Shen and T. F. Chan, “Mathematical models for local non-
texture inpaintings,” SIAM Journal on Applied Mathematics,
vol. 62, no. 3, pp. 1019–1043, 2002.

[7] J. Shen, S. H. Kang, and T. F. Chan, “Euler's elastica and
curvature-based inpainting,” SIAM Journal on Applied Mathe-
matics, vol. 63, no. 2, pp. 564–592, 2003.

[8] J. Jin, Y. Liu, Q. Wang, and S. Yi, “Ultrasonic speckle reduction
based on soft thresholding in quaternion wavelet domain,” in
2012 IEEE International Instrumentation and Measurement
Technology Conference Proceedings, pp. 255–262, Graz, Aus-
tria, May 2012.

[9] M. Kang, M. Kang, and M. Jung, “Total generalized variation
based denoising models for ultrasound images,” Journal of Sci-
entific Computing, vol. 72, no. 1, pp. 172–197, 2017.

[10] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D: Nonlinear Phe-
nomena, vol. 60, no. 1-4, pp. 259–268, 1992.

[11] Z. Jin and X. Yang, “A variational model to remove the multi-
plicative noise in ultrasound images,” Journal of Mathematical
Imaging and Vision, vol. 39, no. 1, pp. 62–74, 2011.

[12] K. G. Lore, A. Akintayo, and S. Sarkar, “LLNet: a deep autoen-
coder approach to natural low-light image enhancement,” Pat-
tern Recognition, vol. 61, pp. 650–662, 2017.

[13] N. Wang, D. Tao, X. Gao, X. Li, and J. Li, “A comprehensive
survey to face hallucination,” International Journal of Com-
puter Vision, vol. 106, no. 1, pp. 9–30, 2014.

[14] Y. Hu, N. Wang, D. Tao, X. Gao, and X. Li, “SERF: a simple,
effective, robust, and fast image super-resolver from cascaded
linear regression,” IEEE Transactions on Image Processing,
vol. 25, no. 9, pp. 4091–4102, 2016.

[15] N. Wang, X. Gao, L. Sun, and J. Li, “Bayesian face sketch syn-
thesis,” IEEE Transactions on Image Processing, vol. 26, no. 3,
pp. 1264–1274, 2017.

[16] K. Krissian, R. Kikinis, C. F. Westin, and K. Vosburgh,
“Speckle-constrained filtering of ultrasound images,” in 2005
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR'05), pp. 547–552, San Diego, CA,
USA, June 2005.

[17] C. A. Z. Barcelos and L. E. S. R. Vieira, “Ultrasound speckle
noise reduction via an adaptive edge-controlled variational
method,” in 2014 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 145–151, San Diego, CA,
USA, October 2014.

[18] F. Knoll, K. Bredies, T. Pock, and R. Stollberger, “Second order
total generalized variation (TGV) for MRI,” Magnetic Reso-
nance in Medicine, vol. 65, no. 2, pp. 480–491, 2011.

[19] M. Lysaker, A. Lundervold, and Xue-Cheng Tai, “Noise
removal using fourth-order partial differential equation with
applications to medical magnetic resonance images in space

Table 3: Iteration times and time of different models.

Image JIN’s (iter/time) HYPTV (iter/time)
LOGTV
(iter/time)

Ultra 1 81/0.46 s 26/0.31 s 22/0.24 s

Ultra 2 76/0.49 s 22/0.27 s 20/0.23 s

Ultra 3 88/0.45 s 27/0.27 s 24/0.23 s

Best performance are given in bold.

17Journal of Function Spaces



and time,” IEEE Transactions on Image Processing, vol. 12,
no. 12, pp. 1579–1590, 2003.

[20] K. Bredies, K. Kunisch, and T. Pock, “Total generalized varia-
tion,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 492–
526, 2010.

[21] F. Li, C. Shen, J. Fan, and C. Shen, “Image restoration combin-
ing a total variational filter and a fourth-order filter,” Journal of
Visual Communication and Image Representation, vol. 18,
no. 4, pp. 322–330, 2007.

[22] A. Chambolle and P. L. Lions, “Image recovery via total varia-
tion minimization and related problems,” Numerische Mathe-
matik, vol. 76, no. 2, pp. 167–188, 1997.

[23] S. Setzer, G. Steidl, and T. Teuber, “Deblurring Poissonian
images by split Bregman techniques,” Journal of Visual Com-
munication and Image Representation, vol. 21, no. 3,
pp. 193–199, 2010.

[24] X. Liu and L. Huang, “A new nonlocal total variation regular-
ization algorithm for image denoising,” Mathematics and
Computers in Simulation, vol. 97, no. 1, pp. 224–233, 2014.

[25] S. Osher, “Nonlocal operators with applications in imaging,”
SIAM Journal on Multiscale Modeling and Simulation, vol. 7,
no. 3, pp. 1005–1028, 2008.

[26] Z. Ren, C. He, and Q. Zhang, “Fractional order total variation
regularization for image super-resolution,” Signal Processing,
vol. 93, no. 9, pp. 2408–2421, 2013.

[27] J. S. Moll, “The anisotropic total variation flow,” Mathema-
tische Annalen, vol. 332, no. 1, pp. 177–218, 2005.

[28] H. Chen, C. Wang, Y. Song, and Z. Li, “Split Bregmanized
anisotropic total variation model for image deblurring,” Jour-
nal of Visual Communication and Image Representation,
vol. 31, pp. 282–293, 2015.

[29] B. Chen, S. Huang, Z. Liang, W. Chen, and B. Pan, “A frac-
tional order derivative based active contour model for inho-
mogeneous image segmentation,” Applied Mathematical
Modelling, vol. 65, no. 1, pp. 120–136, 2019.

[30] B. Chen, Q. H. Zou,W. S. Chen, and Y. Li, “A fast region-based
segmentation model with Gaussian kernel of fractional order,”
Adv. Math. Phys., vol. 2013, article 501628, 7 pages, 2013.

[31] B. Chen andW. S. Chen, “Noisy image segmentation based on
wavelet transform and active contour model,” Applicable
Analysis, vol. 90, no. 8, pp. 1243–1255, 2010.

[32] B. Chen, Q. Zou, and Y. Li, “A new image segmentation model
with local statistical characters based on variance minimiza-
tion,” Applied Mathematical Modelling, vol. 39, no. 12,
pp. 3227–3235, 2015.

[33] B. Chen, Y. Li, and J. Cai, “Noisy image segmentation based on
nonlinear diffusion equation model,” Applied Mathematical
Modelling, vol. 36, no. 3, pp. 1197–1208, 2012.

[34] B. Chen, J. L. Cai, W. S. Chen, and Y. Li, “A multiplicative
noise removal approach based on partial differential equation
model,” Mathematical Problems in Engineering, vol. 2012,
Article ID 242043, 14 pages, 2012.

[35] N. Costanzino, “Structure inpainting via variational methods,”
2002, https://www.lems.brown.edu/nc.

[36] J. Fehrenbach and J. M. Mirebeau, “Sparse non-negative sten-
cils for anisotropic diffusion,” Journal of Mathematical Imag-
ing and Vision, vol. 49, no. 1, pp. 123–147, 2014.

18 Journal of Function Spaces

https://www.lems.brown.edu/nc

	Speckle Noise Removal by Energy Models with New Regularization Setting
	1. Introduction
	2. Preliminary
	2.1. Some Theoretical Background
	2.2. The Condition of TV Regularization Term

	3. The Proposed Restoration Model
	3.1. The Adaptive Total Variation Model
	3.2. Diffusion Performance
	3.2.1. Diffusion Performance of HYPTV Model
	3.2.2. Diffusion Performance of LOGTV Model

	3.3. Numerical Implementation

	4. Experimental Results
	4.1. Denoising Effect of Different Parameters of HYPTV Model and LOGTV Model
	4.2. Denoising Effect of the HYPTV and LOGTV Model
	4.3. Reduction of Staircase
	4.4. Comparison with ROF Model, ATV Model, and JINˇs Model
	4.5. Denoising Results of Real Ultrasound Images

	5. Concluding Remarks
	Appendix
	The Proof of the Inequality of Theorem 6
	Data Availability
	Conflicts of Interest
	Authorsˇ Contributions
	Acknowledgments

