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In this paper, the general conformable fractional derivative is used in the classical diffusion equations, and the corresponding
maximum principle is obtained. By the maximum principle, this paper proves the uniqueness of the solution and the
continuous dependence on source function and initial-boundary conditions of the solution. Furthermore, by employing the
variable separation method, this paper obtains some existence results and the asymptotic behavior of the classical solution.

1. Introduction

It has been several decades since the fractional calculus has
attracted extensive attention in both pure and applied fields
[1–8]. Fractional calculus has many definitions, such as the
Riemann-Liouville type, Caputo type, Hadamard type,
Erdélyi-Kober type, and Riesz type. Most of the above frac-
tional derivatives are defined by their corresponding frac-
tional integrals. Compared with some integral-order partial
differential equations such as [9–19], fractional derivatives
have hereditary and nonlocal property so that they are much
more suitable for describing long-memory processes than the
classical integer-order derivatives.

However, the traditional fractional calculus have com-
plex expressions which causes many difficulties in applying
them in engineering calculation, physical application,
numerical modeling, etc. In addition, the traditional frac-
tional calculus loses some basic but important properties,
such as product rule and chain rule. Khalil et al. [20] pro-
posed a new local fractional derivative, called conformable
derivative, and proved the product rule and the fractional
mean value theorem. Abdeljawad supplemented the Taylor
power series representation, the fractional chain rule, the
Gronwall inequality, and the fractional Laplace transform

in [21]. Zhao et al. [22, 23] further extended the definition
to the general conformable fractional derivative (GCFD).
Zhang et al. defined the conformable variable order deriva-
tive in [24]. Owing to its well-behaved properties and the
close connection with the classical derivatives, conformable
derivative generated great research interest [25–29].

In [30, 31], the author considered a generalized time-
fractional diffusion equation by replacing the first-order time
derivative to the Caputo fractional derivative. Recently,
some literatures about the fractional diffusion equations
with various definitions of fractional calculus occur. Al-Refai
et al. [32, 33] considered a nonlinear fractional diffusion
equation with the Riemann-Liouville time-fractional deriva-
tive and obtained their corresponding maximum principle.
Borikhanov et al. [34] considered a nonlinear time-fractional
diffusion equation with the Atangana-Baleanu derivative.
Chen et al. [35] used the finite element method to approx-
imate the solutions to a time-fractional advection-diffusion
equations with the Caputo variable order derivative. Zhang
et al. [36] obtained the sharp blow-up and global existence
of solutions, a time-fractional diffusion system with the
Riemann-Liouville derivative. In this paper, we consider
the same equation as in [30] with the GCFD on domain
D × ð0, TÞ, D ⊂ Rn, i.e.,
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Dα,ψ
t u

� �
tð Þ = −A uð Þ + F x, tð Þ, 0 < α ≤ 1, ð1Þ

with the nonhomogeneous initial-boundary conditions

ujt=0 = u0 xð Þ, x ∈ �D,
uj∂D = v x, tð Þ, x, tð Þ ∈ ∂D × 0, T½ �,

(
ð2Þ

where Fðx, tÞ, u0ðxÞ, and vðx, tÞ are continuous functions,
Dα,ψ is a GCFD of order α, ∂D is the boundary of D,
and −A is a linear elliptic operator

−A uð Þ≔ p xð ÞΔu + ∇p,∇uð Þ − q xð Þu, x ∈ �D, ð3Þ

where Δ is the Laplace operator, ∇ is the gradient operator,
p ∈ C1ð�DÞ, q ∈ Cð�DÞ, pðxÞ > 0, qðxÞ ≥ 0, and the domain of
definition of operator A is

MA =
�
f , f ∈ C2 Dð Þ ∩ C1 �D

� �
,

f satisfies the boundary condition andA fð Þ ∈ L2 Dð Þ�:
ð4Þ

The GCFD is defined in the following sense (see [22]):

Dα,ψ fð Þ tð Þ = lim
ε→0

f t + εψ t, αð Þð Þ − f tð Þ
ε

, t > 0, ð5Þ

and the GCFD at 0 is defined as ðDα,ψ f Þð0Þ = lim
t→0+

ðDα,ψ f ÞðtÞ,
where ψðt, αÞ is a continuous real function depending on t
and the fractional order α and satisfying the below conditions

ψ t, αð Þ ≠ 0,
ψ t, 1ð Þ = 1,

ð6Þ

and the relationship between the functionψðt, αÞ and the order
α should be one-to-one. By the definition (5), we know that the
GCFD is an extension of the classical derivative ðα = 1 or
ψðt, αÞ = 1Þ and the conformable derivative ðψðt, αÞ = t1−αÞ
defined in [20, 21]. Compared with the definition of conform-
able derivative in [20, 21] and the Definition 2.5 in [24], the
GCFD in relation (5) becomes the conformable variable order
derivative defined in [24] if ψðt, αÞ = t1−α and the order α is a
time-dependent function αðtÞ, that is

Dα tð Þ f
� �

tð Þ = lim
ε→0

f t + εt1−α tð Þ� �
− f tð Þ

ε
, t > 0: ð7Þ

If the limit (5)exists, it iscalled that f isα-differentiable.Fur-
thermore, if f is differentiable, then by direct calculation of def-
inition, we can obtain that f is α-differentiable and

Dα,ψ fð Þ tð Þ = f ′ tð Þψ t, αð Þ: ð8Þ

In this paper, we introduce the fractional Taylor power
series expansion (see Lemma 5) and prove the theorem of
term-by-term integration and differentiation (see Lemma 7

and 8) with the general conformable fractional calculus. Then
byusing theaboveandsomeotherpropertiesof thegeneralcon-
formable factional calculus (see Section 2), we obtain themaxi-
mum principle (see Theorems 9 and 10) for the classical
diffusion Equation (1) with the GCFD and get some existence
(see Theorems 17 and 18) and uniqueness (see Theorem 12)
results of the classical solution of (1). Finally, we get the
asymptotic behavior of the classical solution (see Theorem
19). The problems (1) and (2) have a solution implies that u is
α-differentiable and ðDα,ψ

t uÞðtÞ is continuous on ð0, TÞ. We
define that uðx, tÞ is called a classical solution of problems (1)
and (2), if uðx, tÞ ∈ Cð�D × ½0, T�Þ ∩ C2

xðDÞ ∩ C1
t ð0, TÞ and sat-

isfies Equation (1) and the initial-boundary condition (2).

2. Preliminaries

In this section, we will recall some properties of the GCFD
and its fractional integral calculus.

Definition 1 (see [22]). The integral of a function f : ð0, tÞ
⟶ R of order α is defined by

Iα,ψ fð Þ tð Þ =
ðt
0

f τð Þ
ψ τ, αð Þ dτ, t > 0, ð9Þ

where the integral is the Riemann integral.

Remark 2. To further study the properties of general con-
formable fractional calculus, we assume that ψðt, αÞ > 0 and
1/ψð·, · Þ: ð0, T� × ð0, 1�⟶ ð0,+∞Þ is Riemann integrable
and this assumption is valid in the following sections.

Lemma 3 (see [20–22]). If f , g is α-differentiable at t, then

(1) Dα,ψðcÞ = 0,where c is any real constant,
(2) ðLinearityÞDα,ψðaf ðtÞ + bgðtÞÞ = aDα,ψ f ðtÞ + bDα,ψg

ðtÞ, a, b ∈ R,
(3) ðProduct ruleÞDα,ψð f ðtÞgðtÞÞ = f ðtÞDα,ψgðtÞ + gðtÞ

Dα,ψ f ðtÞ,
Dα,ψð f ðtÞ/gðtÞÞ = gðtÞDα,ψ f ðtÞ − f ðtÞDα,ψgðtÞ/g2ðtÞ,

(4) ðChain ruleÞ If f is α − differentiable at g and g ≠ 0,
then

Dα,ψ f g tð Þð Þð Þ = Dα,ψ fð Þ g tð Þð Þ ·Dα,ψ g tð Þð Þ · 1
ψ g tð Þ, αð Þ

ð10Þ

If f is differentiable at g, then Dα,ψð f ðgðtÞÞÞ = f ′ðgðtÞÞ
Dα,ψðgðtÞÞ.
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Remark 4. Especially, by the definition (5), the relation (8)
and Lemma 3 (4), we have

Dα,ψ
ðt
0

1
ψ τ, αð Þ dτ

� 	
= 1,Dα,ψ e

Ð t

0
1

ψ τ,αð Þdτ
� 	

= e
Ð t

0
1

ψ τ,αð Þdτ,

ð11Þ

which coincides with the classical derivatives ðψðt, αÞ = 1Þ
and the conformable fractional derivatives ðψðt, αÞ = t1−αÞ
defined in [20, 21].

Lemma 5 (Fractional Taylor power series expansions).
Assume that f is an infinite α-differentiable function at a
neighbourhood of t0. Then f has the fractional power series
expansion at point t0:

f tð Þ = 〠
+∞

k=0

Dα,ψ fð Þ kð Þ t0ð Þ
k!

ðt
t0

1
ψ τ, αð Þ dτ

 !k

, t0 < t < t0 + R, R > 0,

ð12Þ

where ðDα,ψ f ÞðkÞðt0Þ means the application of the GCFD k
times.

Proof. The proof is similar to that of Theorem 17 in [21]. And
this result coincides with the classical derivatives and the
conformable derivatives. Especially, the exponential function

e
Ð t

t0
ð1/ψðτ,αÞÞdτ

has the factional Taylor power series expansion
at point t0:

e
Ð t

t0
1

ψ τ,αð Þdτ = 〠
+∞

k=0

1
k!

ðt
t0

1
ψ τ, αð Þ dτ

 !k

: ð13Þ

Lemma 6 (see [22]). Let f be a continuous differentiable func-
tion on ð0, TÞ, then

Iα,ψ Dα,ψ f tð Þð Þ = f tð Þ − f 0ð Þ,Dα,ψ Iα,ψ f tð Þð Þ = f tð Þ: ð14Þ

Lemma 7. Let a sequence of functions f iðtÞ, i = 1, 2,⋯ satisfy-
ing the following conditions:

(1) for any given αð>0Þ, there exists fractional integrals
ðIα,ψ f iÞðtÞ, i = 1, 2,⋯

(2) both the series∑+∞
i=1 f iðtÞ and∑+∞

i=1 ðIα,ψ f iÞðtÞ are uni-
formly convergent for any t ∈ ½0, T� then the function
∑+∞

i=1 f iðtÞ is α-integrable on ð0, TÞ and

Iα,ψ 〠
+∞

i=1
f i tð Þ

 !
= 〠

+∞

i=1
Iα,ψ f ið Þ tð Þ: ð15Þ

Proof. Due to the uniformly convergence of ∑+∞
i=1 f iðtÞ and

∑+∞
i=1 ðIα,ψ f iÞðtÞ, then for any ε > 0, there exists a positive

integer N such that for any n >N and t ∈ ð0, TÞ,

〠
+∞

i=1
f i tð Þ − 〠

n

i=1
f i tð Þ












 < ε

2
Ð T
0 1/ψ τ, αð Þð Þdτ

, 〠
+∞

i=n
Iα,ψ f ið Þ tð Þ












 < ε

2 :

ð16Þ

Therefore, by (16) and the linearity of the operator Iα,ψ,
we obtain

Iα,ψ 〠
+∞

i=1
f i tð Þ

 !
− 〠

+∞

i=1
Iα,ψ f ið Þ tð Þ














≤ Iα,ψ 〠
+∞

i=1
f i tð Þ − 〠

n

i=1
f i tð Þ

 !










 + 〠

+∞

i=n+1
Iα,ψ f ið Þ tð Þ














≤
ðt
0

∑+∞
i=1 f i τð Þ −∑n

i=1 f i τð Þ
ψ τ, αð Þ dτ










 + 〠

+∞

i=n+1
Iα,ψ f ið Þ tð Þ












 < ε:

ð17Þ

i.e., the function ∑+∞
i=1 f iðtÞ is α-integrable and Iα,ψð∑+∞

i=1
f iðtÞÞ =∑+∞

i=1 ðIα,ψ f iÞðtÞ, then the proof is completed.

Lemma 8. Let a continuous differentiable sequence of func-
tions f iðtÞ, i = 1, 2,⋯ satisfying the following conditions:

(1) for any given αð>0Þ, there exists fractional integrals
ðDα,ψ f iÞðtÞ, i = 1, 2,⋯

(2) both the series ∑+∞
i=1 f iðtÞ and ∑+∞

i=1 ðDα,ψ f iÞðtÞ are
uniformly convergent for any t ∈ ½0, T�. Moreover,
∑+∞

i=1 ðDα,ψ f iÞðtÞ ∈ Lð0, TÞ, then the function ∑+∞
i=1

f iðtÞ is α-differentiable on ð0, TÞ and

Dα,ψ 〠
+∞

i=1
f i tð Þ

 !
= 〠

+∞

i=1
Dα,ψ f ið Þ tð Þ: ð18Þ

Proof. Since ∑+∞
i=1 f iðtÞ and ∑+∞

i=1 ðDα,ψ f iÞðtÞ are uniformly
convergent for any t ∈ ½0, T�, then by Lemma 6 and Lemma 7.

Iα,ψ 〠
+∞

i=1
Dα,ψ f ið Þ tð Þ

 !
= 〠

+∞

i=1
Iα,ψ Dα,ψ f ið Þ tð Þð Þð Þ

= 〠
+∞

i=1
f i tð Þ − 〠

+∞

i=1
f i 0ð Þ:

ð19Þ

The left side of the above equality is α-differentiable; then
by Lemma 3(1), ∑+∞

i=1 f iðtÞ is α-differentiable and

Dα,ψ 〠
+∞

i=1
f i tð Þ

 !
=Dα,ψ 〠

+∞

i=1
f i tð Þ − 〠

+∞

i=1
f i 0ð Þ

 !

= 〠
+∞

i=1
Dα,ψ f ið Þ tð Þ:

ð20Þ
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3. The Uniqueness of Solution

Theorem 9. Let u be a classical solution of Equation (1) in the
domain D × ð0, TÞ and Fðx, tÞ ≤ 0, then

u x, tð Þ ≤max 0, max
x,tð Þ∈S

u x, tð Þ
� �

, x, tð Þ ∈ �D × 0, T½ �, ð21Þ

where S≔ ð�D × f0gÞ ∪ ð∂D × ½0, T�Þ.

Proof. The proof follows by Lemma 3 (4) and setting the same
auxiliary functionwðx, tÞ≔ uðx, tÞ + ðε/2Þ · ðT − t/TÞ as [30].
Due to u is a classical solution of the problems (1) and (2),
then u is differentiable with respect to t. Therefore, we have
ðDα,ψ

t uÞðt0Þ = ψðt0, αÞutðx0, t0Þ = 0, where ðx0, t0Þ is the max-
imum point of u over the domain �D × ½0, T�.

Theorem 10. Let u be a classical solution of Equation (1) in
the domain D × ð0, TÞ and Fðx, tÞ ≥ 0, ðx, tÞ ∈D × ð0, TÞ,
then

u x, tð Þ ≥ min
x,tð Þ∈S

u x, tð Þ, x, tð Þ ∈ �D × 0, T½ �: ð22Þ

Theorem 11. Let u be a classical solution of problems (1) and
(2) and F ∈ Cð�D × ½0, T�Þ with the norm kFkCð�D×½0,T�Þ =
sup
�D×½0,T�

jFðx, tÞj≔M1:

Denote by M2 = ku0kCð�DÞ = sup
�D
ju0ðxÞj, M3 =

kvkCð∂D×½0,T�Þ = sup
∂D×½0,T�

jvðx, tÞj, then the following estimate of

the solution norm holds true:

uk kC �D× 0,T½ �ð Þ ≤ 2CM1 +max M2,M3f g, ð23Þ

where C≔
Ð T
0 ð1/ψðτ, αÞÞdτ.

Proof. Define the auxiliary function g:

g x, tð Þ = u x, tð Þ −
ðt
0

M1
ψ τ, αð Þ dτ, x, tð Þ ∈ �D × 0, T½ �: ð24Þ

By the continuity of ψ and Remark 4, then g is a classical
solution of the following problem:

Dα,ψ
t g

� �
tð Þ = −A gð Þ + F1 x, tð Þ, x, tð Þ ∈D × 0, Tð Þ,

gjt=0 = u0, x ∈ �D,

gj∂D = v x, tð Þ −
ðt
0

M1
ψ τ, αð Þ dτ≔ v1 x, tð Þ, x, tð Þ ∈ ∂D × 0, T½ �,

8>>>><
>>>>:

ð25Þ

where F1ðx, tÞ = Fðx, tÞ −M1 − qðxÞÐ t0 ðM1/ψðτ, αÞÞdτ ≤ 0.
According to the conditions, we have

v1k kC ∂D× 0,T½ �ð Þ ≤M3 + CM1: ð26Þ

Then by Theorem 9, the classical solution g satisfies the
estimate,

g x, tð Þ ≤max M2,M3 + CM1f g, x, tð Þ ∈ �D × 0, T½ �, ð27Þ

which means that

u x, tð Þ ≤ 2CM1 + max M2,M3f g: ð28Þ

Similarly, consider of the auxiliary function g1 and using
the Theorem 10

g1 x, tð Þ = u x, tð Þ +
ðt
0

M1
ψ τ, αð Þ dτ, x, tð Þ ∈ �D × 0, T½ �, ð29Þ

then we have

g1 x, tð Þ ≥max −M2,−M3 − CM1f g, x, tð Þ ∈ �D × 0, T½ �, ð30Þ

i.e., uðx, tÞ≥−2CM1 −max fM2,M3g: Combined with (28),
we obtain

uk kC �D× 0,+∞½ Þð Þ ≤ 2CM1 + max M2,M3f g: ð31Þ

Theorem 12. The problems (1) and (2) have at most one clas-
sical solution and the solution continuously depends on the
data given in the problem in the sense that if

F1 − F2k kC �D× 0,T½ �ð Þ ≤ ε1, u 1ð Þ
0 − u 2ð Þ

0




 



C �Dð Þ

≤ ε2, v1 − v2k kC ∂D× 0,T½ �ð Þ ≤ ε3,
ð32Þ

then for the corresponding classical solution u1 and u2, the
estimate holds:

u1 − u2k kC �D× 0,T½ �ð Þ ≤ 2Cε1 +max ε2, ε3f g: ð33Þ

Proof. Let u1, u2 be the classical solution of the following
problem, respectively,

Dα,ψ
t u

� �
tð Þ = −A uð Þ + Fi x, tð Þ, x, tð Þ ∈D × 0, Tð Þ,

ujt=0 = u ið Þ
0 tð Þ, x ∈ �D,

uj∂D = vi x, tð Þ, x, tð Þ ∈ ∂D × 0, T½ �,

8>><
>>:

ð34Þ

where i = 1, 2. Then u = u1 − u2 is the classical solution of the
corresponding problem
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Dα,ψ
t u

� �
tð Þ = −A uð Þ + F1 x, tð Þ − F2 x, tð Þ, x, tð Þ ∈D × 0, Tð Þ,

ujt=0 = u 1ð Þ
0 tð Þ − u 2ð Þ

0 tð Þ, x ∈ �D,
uj∂D = v1 x, tð Þ − v2 x, tð Þ, x, tð Þ ∈ ∂D × 0, T½ �:

8>><
>>:

ð35Þ

By (23), the estimate (33) holds. The uniqueness of the
classical solution of (1) and (2) is a direct consequence of
Theorem 9, Theorem 10 and the estimate (33).

4. The Existence of Solution

In this section, we will consider some existence results of
solution of problems (1) and (2) with homogenous boundary
conditions

ujt=0 = u0 xð Þ, x ∈ �D,
uj∂D = 0, x, tð Þ ∈ ∂D × 0, T½ �:

(
ð36Þ

Firstly, we consider the homogenous equation, i.e.,
Fðx, tÞ ≡ 0. In the following, we seek the solution of
Equation (1) by using the variable separation method in
the form

u x, tð Þ = X xð ÞT tð Þ, x, tð Þ ∈D × 0, Tð Þ, ð37Þ

which satisfies the boundary condition. Substituting expres-
sion (37) in Equation (1) and separating the variables, we
obtain the following sense:

Dα,ψTð Þ tð Þ
T tð Þ = −

A X xð Þð Þ
X xð Þ = −λ, ð38Þ

where λ is a constant independent on t and x. Therefore,
addition to the boundary condition, we have

Dα,ψTð Þ tð Þ + λT tð Þ = 0, ð39Þ

and the eigenvalues problem for the operator A

A X xð Þð Þ = λX xð Þ, x, tð Þ ∈D × 0, Tð Þ,
Xj∂D = 0, x, tð Þ ∈ ∂D × 0, T½ �:

(
ð40Þ

The properties of A is well known in [37] that A is a pos-
itive and self-adjoint linear operator. Moreover, (40) has a
counted number of positive eigenvalues 0 < λ1 ≤ λ2≤⋯, λk
⟶+∞ðk⟶+∞Þ with finite multiplicity, and any function
f ∈MA can be represented through its Fourier series:

f xð Þ = 〠
+∞

i=1
f , Xið ÞXi xð Þ, ð41Þ

where Xi ∈MA is the corresponding eigenfunction of the
eigenvalue λi. In fact, in the following, we choose fXig+∞i=1
to be real and orthonormal.

For Equation (39) and its inhomogenous equation

Dα,ψTð Þ tð Þ + λT tð Þ = f tð Þ, ð42Þ

we consider the following first-order linear differential equa-
tion for λ = λi:

Ti′ tð Þ +
λi

ψ t, αð ÞTi tð Þ =
f tð Þ

ψ t, αð Þ : ð43Þ

It is well known that the solution of Equation (43) is
given by

Ti tð Þ = e−
Ð t

0
λi

ψ τ,αð Þdτ ci +
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds f τð Þ
ψ τ, αð Þ dτ

� �
, ð44Þ

where ci are some constants. Obviously, TiðtÞ ∈ C½0, T� ∩ C1

ð0, TÞ. Moreover, TiðtÞ in (44) satisfies the following
equation:

ψ τ, αð ÞTi′ tð Þ + λiTi tð Þ = f tð Þ: ð45Þ

Hence, according to the relation (8) we have

Dα,ψTið Þ tð Þ + λiTi tð Þ = ψ τ, αð ÞTi′ tð Þ + λiTi tð Þ = f tð Þ, ð46Þ

which means the function in (44) is the solution of Equation
(42). Correspondingly, the solution of Equation (39) for
λ = λi is

Ti tð Þ = cie
−
Ð t

0
λi

ψ τ,αð Þdτ: ð47Þ

Naturally, each function

Ti tð ÞXi xð Þ = cie
−
Ð t

0
λi

ψ τ,αð ÞdτXi xð Þ, ð48Þ

and its finite sum

uk x, tð Þ = 〠
k

i=1
Ti tð ÞXi xð Þ = 〠

k

i=1
cie

−
Ð t

0
λi

ψ τ,αð ÞdτXi xð Þ, ð49Þ

satisfy Equation (1) and the boundary condition.
In addition to the initial condition, we define the formal

solution of problems (1) and (36) as the following sense:

u x, tð Þ = 〠
+∞

i=1
Ti tð ÞXi xð Þ = 〠

+∞

i=1
u0, Xið Þe−

Ð t

0
λi

ψ τ,αð ÞdτXi xð Þ: ð50Þ

Next, we consider the case of inhomogenous equation.
Similarly to the case of homogenous condition, the formal
solution of inhomogenous equation also has the expression
(50) with appropriate TiðtÞ. For any i, we multiply Equation
(1) by Xi, integrating overD. Then by Lemma 8 and using the
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self-adjoint property of the operator A, combined by the
orthogonality of fXig+∞i=1 , we obtain

Dα,ψTið Þ tð Þ =
ð
D

Dα,ψ
t u

� �
tð Þ · Xi xð Þdx

=
ð
D
Dα,ψ
t 〠

+∞

i=1
Ti tð ÞXi xð Þ

 !
· Xi xð Þdx

=
ð
D

〠
+∞

i=1
Dα,ψ
t Ti tð ÞXi xð Þð Þ

 !
· Xi xð Þdx

= − Au, Xið Þ + F, Xið Þ = −λi u, Xið Þ + F, Xið Þ
= −λiTi + F, Xið Þ:

ð51Þ

That is

Dα,ψTið Þ tð Þ + λiTi tð Þ = F x, tð Þ, Xi xð Þð Þ: ð52Þ

According to the relation (44), the solution of Equation
(52) is

Ti tð Þ = e−
Ð t

0
λi

ψ τ,αð Þdτ ci +
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds F x, τð Þ, Xi xð Þð Þ
ψ τ, αð Þ dτ

� �
,

ð53Þ

where ci are some constants. Consequently, combined with
the initial condition, we define the formal solution of prob-
lems (1) and (36) as the following sense:

u x, tð Þ = 〠
+∞

i=1
Ti tð ÞXi xð Þ = 〠

+∞

i=1
u0, Xið Þe−

Ð t

0
λi

ψ τ,αð ÞdτXi xð Þ

+ 〠
+∞

i=1
e−
Ð t

0
λi

ψ τ,αð Þdτ
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds F x, τð Þ, Xi xð Þð ÞXi xð Þ
ψ τ, αð Þ dτ:

ð54Þ

Remark 13. For Equation (52), we try applying the operator
Iα,ψ to its both sides, then by Definition 1 and Lemma 6,
we have

Ti tð Þ = Ti 0ð Þ − λi

ðt
0

Ti τð Þ
ψ τ, αð Þ dτ +

ðt
0

F x, τð Þ, Xi xð Þð Þ
ψ τ, αð Þ dτ:

ð55Þ

Next, we apply the method of successive approxima-
tions to solve this integral equation by setting

T 0ð Þ
i tð Þ = Ti 0ð Þ, ð56Þ

T mð Þ
i tð Þ = T 0ð Þ

i tð Þ − λi

ðt
0

T m−1ð Þ
i τð Þ
ψ τ, αð Þ dτ

+
ðt
0

F x, τð Þ, Xi xð Þð Þ
ψ τ, αð Þ dτ,m ∈N+:

ð57Þ

Taking (56) into account, then

T 1ð Þ
i tð Þ = Ti 0ð Þ − λiTi 0ð Þ

ðt
0

1
ψ τ, αð Þ dτ +

ðt
0

F x, τð Þ, Xi xð Þð Þ
ψ τ, αð Þ dτ:

ð58Þ

Similarly, using (56)–(58), we have

T 2ð Þ
i tð Þ = Ti 0ð Þ − λiTi 0ð Þ

ðt
0

1
ψ τ, αð Þ dτ + λ2i Ti 0ð Þ

ðt
0

ðs
0

1
ψ τ, αð Þ

· 1
ψ s, αð Þ dsdτ +

ðt
0

F x, τð Þ, Xi xð Þð Þ
ψ τ, αð Þ 1 − λi

ðt
τ

1
ψ s, αð Þ ds

� �
dτ

= 〠
2

k=0

−λið ÞkTi 0ð Þ
k!

ðt
0

1
ψ τ, αð Þ dτ

� 	k

+
ðt
0

F x, τð Þ, Xi xð Þð Þ
ψ τ, αð Þ 〠

1

k=0

−λið Þk
k!

ðt
τ

1
ψ τ, αð Þ ds

� 	k
" #

dτ:

ð59Þ

Continuing this process, we obtain the following

expression for TðmÞ
i ðtÞ:

T mð Þ
i tð Þ = 〠

m

k=0

−λið ÞkTi 0ð Þ
k!

ðt
0

1
ψ τ, αð Þ dτ

� 	k

+
ðt
0

F x, τð Þ, Xi xð Þð Þ
ψ τ, αð Þ 〠

m−1

k=0

−λið Þk
k!

ðt
τ

1
ψ τ, αð Þ ds

� 	k
" #

dτ:

ð60Þ

Taking the limit as m⟶ +∞, we obtain

Ti tð Þ = 〠
+∞

k=0

−λið ÞkTi 0ð Þ
k!

ðt
0

1
ψ τ, αð Þ dτ

� 	k

+
ðt
0

F x, τð Þ, Xi xð Þð Þ
ψ τ, αð Þ 〠

+∞

k=0

−λið Þk
k!

ðt
τ

1
ψ τ, αð Þ ds

� 	k
" #

dτ:

ð61Þ

By Lemma 5, the expression (61) is the fractional
Taylor power series expansion of (53).

Definition 14. A formal solution of the problems (1) and
((36)) is called the Fourier series in the form (50) ðF ≡ 0Þ
and (54) ðF ≠ 0Þ.

Definition 15. Let the sequences of u0k ∈ Cð�DÞ and vk ∈ C
ð∂D × ½0, T�Þ, Fk ∈ Cð�D × ½0, T�Þ, k = 1, 2,⋯ such that for
k⟶ +∞, u0k ⟶ u0, vk ⟶ v, Fk ⟹ F in L2ðDÞ and
t ∈ ½0, T�. And for any k = 1, 2,⋯, there exists a classical
solution uk of the following problem

Dα,ψ
t uk

� �
tð Þ = −A ukð Þ + Fk x, tð Þ,

ukjt=0 = u0k xð Þ, x ∈ �D,
ukj∂D = vk x, tð Þ, x, tð Þ ∈ ∂D × 0, T½ �:

8>><
>>: ð62Þ
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Suppose there exists a function u ∈ Cð�D × ½0, T�Þ such
that uk ⟶ u as k⟶ +∞, then the function u is called
a generalized solution of the problems (1) and (2).

Remark 16. By Theorem 12, the convergence of u0k, vk, Fk
and the completeness of Cð�D × ½0, T�, k·kCð�D×½0,T�ÞÞ, we know
that there always exists a function u ∈ Cð�D × ½0, T�Þ which is
the limit of the sequence uk. In fact, under the assumption u0,
F ∈MA, the formal solution is also the generalized solution of
problems (1) and (36). That is the following theorem.

Theorem 17. Suppose that u0, F ∈MA, then the formal
solution (54) is the generalized solution of the problems
(1) and (36).

Proof. For every k = 1, 2,⋯,

uk x, tð Þ = 〠
k

i=1
u0, Xið Þe−

Ð t

0
λi

ψ τ,αð ÞdτXi xð Þ

+ 〠
k

i=1
e−
Ð t

0
λi

ψ τ,αð Þdτ
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds F x, τð Þ, Xi xð Þð ÞXi xð Þ
ψ τ, αð Þ dτ,

ð63Þ

is the classical solution of the problems (1) and (36) with the
initial condition

u0k xð Þ = 〠
k

i=1
u0, Xið ÞXi xð Þ: ð64Þ

Note that u0 ∈MA, u0k ⟶ u0 as k⟶ +∞ in �D × ½0, T�
and e−

Ð t

0
ðλi/ψðτ,αÞÞdτ ≤ 1; therefore, ∑k

i=1 ðu0, XiÞe−
Ð t

0
ðλi/ψðτ,αÞÞdτ

XiðxÞ uniformly converges on �D × ½0, T�.
In view of F ∈MA, then Fðx, tÞ =∑+∞

i=1 ðFðx, tÞ, XiÞXiðxÞ
uniformly converges on �D × ½0, T�. Therefore,

〠
k

i=1
e−
Ð t

0
λi

ψ τ,αð Þdτ
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds F x, τð Þ, Xi xð Þð ÞXi xð Þ
ψ τ, αð Þ










dτ

≤
ðt
0

1
ψ τ, αð Þ · 〠

k

i=1
F x, τð Þ, Xið ÞXi xð Þ

 !










dτ

⟶

ðt
0

1
ψ τ, αð Þ · 〠

+∞

i=1
F x, τð Þ, Xið ÞXi xð Þ

 !










dτ ask⟶ +∞ð Þ:

ð65Þ

Consequently, (54) is the generalized solution of the
problems (1) and (36).

Theorem 18. Suppose that u0, F ∈MA, Aðu0Þ, A2ðu0Þ ∈MA
and for any t ∈ ð0, TÞ, AðFÞ, A2ðFÞ ∈MA, then the formal
solution (54) is the classical solution of the problems (1)
and (36).

Proof. By Theorem 17, the formal solution (54) is the gener-
alized solution; it remains to prove that (54) is at least twice

differentiable with respect to the spatial variable x and differ-
entiable with respect to the time variable t.

Differentiating term-by-term (54) with respect to x, we
construct a series

〠
+∞

i=1
u0, Xið Þe−

Ð t

0
λi

ψ τ,αð Þdτ∇Xi xð Þ

+ 〠
+∞

i=1
e−
Ð t

0
λi

ψ τ,αð Þdτ
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds F x, τð Þ, Xi xð Þð Þ∇Xi xð Þ
ψ τ, αð Þ dτ:

ð66Þ

Now we shall prove that the above series (66) is uni-
formly convergent. Since u0 ∈MA, F ∈MA, then Aðu0Þ,
AðFÞ ∈ L2ðDÞ. Moreover, Aðu0Þ, AðFÞ ∈MA, so Aðu0Þ
and AðFÞ can be expanded into uniformly convergent series

A u0ð Þ = 〠
+∞

i=1
A u0ð Þ, Xið ÞXi, A Fð Þ = 〠

+∞

i=1
A Fð Þ, Xið ÞXi, ð67Þ

for any t ∈ ð0, TÞ. Then by the Parseval equality,

A u0ð Þk k22 = 〠
+∞

i=1
A u0ð Þ, Xið Þj j2 = 〠

+∞

i=1
u0, A Xið Þð Þj j2

= 〠
+∞

i=1
λ2i u0, Xið Þj j2 < +∞,

ð68Þ

A Fð Þk k22 = 〠
+∞

i=1
A Fð Þ, Xið Þj j2 = 〠

+∞

i=1
F, A Xið Þð Þj j2

= 〠
+∞

i=1
λ2i F, Xið Þj j2 < +∞:

ð69Þ

Considering that the series ∑+∞
i=1 ðj∇Xij2/λ2i Þ uniformly

convergent (see [38]), then applying the Cauchy inequality
we have

〠
+∞

i=1
F x, tð Þ, Xi xð Þð Þ∇Xi xð Þj j ≤ 〠

+∞

i=1
λi F x, tð Þ, Xi xð Þð Þj j · ∇Xi xð Þ

λi












≤ 〠
+∞

i=1
λ2i F x, tð Þ, Xi xð Þð Þj j2

 !1/2

· 〠
+∞

i=1

∇Xi xð Þj j2
λ2i

 ! !1/2

≤ A Fð Þk k2 〠
+∞

i=1

∇Xi xð Þj j2
λ2i

 ! !1/2

,

ð70Þ

which implies that the series ∑+∞
i=1 jðFðx, tÞ, XiðxÞÞ∇XiðxÞj is

uniformly convergent on D for any t ∈ ð0, TÞ. In view that
fXig+∞i=1 is a complete orthonormal system in L2ðDÞ, using
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the above facts, the estimates (68)–(70) and applying the
Cauchy inequality, we get

〠
+∞

i=1
u0, Xið Þe−

Ð t

0
λi

ψ τ,αð Þdτ∇Xi xð Þ











+ 〠

+∞

i=1
e−
Ð t

0
λi

ψ τ,αð Þdτ
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds F x, τð Þ, Xi xð Þð Þ∇Xi xð Þ
ψ τ, αð Þ dτ












≤ 〠
+∞

i=1
u0, Xið Þ∇Xi xð Þj j

+ 〠
+∞

i=1

ðt
0

F x, τð Þ, Xi xð Þð Þ∇Xi xð Þ
ψ τ, αð Þ dτ












≤ 〠
+∞

i=1
λi u0, Xið Þj j · ∇Xi xð Þ

λi












+
ðt
0

1
ψ τ, αð Þ 〠

+∞

i=1
λi F x, τð Þ, Xi xð Þð Þj j · ∇Xi xð Þ

λi












 !
dτ

≤ 〠
+∞

i=1
λ2i u0, Xið Þ2

 !1/2

· 〠
+∞

i=1

∇Xi xð Þj j2
λ2i

 !1/2

+
ðt
0

1
ψ τ, αð Þ 〠

+∞

i=1
λ2i F, Xið Þ2

 !1/2

· 〠
+∞

i=1

∇Xi xð Þj j2
λ2i

 !1/2

dτ

≤ A u0ð Þk k2 + C A Fð Þk k2
� �

〠
+∞

i=1

∇Xi xð Þj j2
λ2i

 !1/2

,

ð71Þ

where C =
Ð T
0 ð1/ψðτ, αÞÞdτ. Consequently, the series (66)

uniformly converges to ∇u and the generalized solution
(54) belongs to C1

xðDÞ.
Applying the similarly method, we can show the general-

ized solution (54) belongs to C2
xðDÞ as well and the relation

Δu = 〠
+∞

i=1
u0, Xið Þe−

Ð t

0
λi

ψ τ,αð ÞdτΔXi xð Þ

+ 〠
+∞

i=1
e−
Ð t

0
λi

ψ τ,αð Þdτ
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds F x, τð Þ, Xi xð Þð ÞΔXi xð Þ
ψ τ, αð Þ dτ

ð72Þ

holds true. In fact, since Aðu0Þ ∈MA, AðFÞ ∈MA, then
A2ðu0Þ ∈ L2ðDÞ, A2ðFÞ ∈ L2ðDÞ. Moreover, due to A2ðu0Þ,
A2ðFÞ ∈MA, so A2ðu0Þ and A2ðFÞ can be expanded into
uniformly convergent series for any t ∈ ð0, TÞ. Note that
the series ∑+∞

i=1 ðjΔXij2/λ3i Þ is uniformly convergent (see
[38]), then by the Cauchy inequality, we have

〠
+∞

i=1
F x, tð Þ, Xi xð Þð ÞΔXi xð Þj j

≤ 〠
+∞

i=1
λ

3
2
i F x, tð Þ, Xi xð Þð Þ




 


 · ΔXi xð Þ
λ3/2i












≤ l1 〠
+∞

i=1
λ4i F x, tð Þ, Xi xð Þð Þj j2

 !1/2

· 〠
+∞

i=1

ΔXi xð Þj j2
λ3i

 ! !1/2

≤ l1 A2 Fð Þ

 


2 〠

+∞

i=1

ΔXi xð Þj j2
λ3i

 ! !1/2

:

ð73Þ

Due to lim
i→+∞

λi = +∞, there exists a constant l such

that λ3i < lλ4i , i = 1, 2,⋯, where l1 is a constant depending
on l. Then (73) implies that the series ∑+∞

i=1 jðFðx, tÞ,
XiðxÞÞΔXiðxÞj is uniformly convergent on D for any t ∈
ð0, TÞ. Using the above facts and applying the Parseval
equality and Cauchy inequality, we get

〠
+∞

i=1
u0, Xið Þe−

Ð t

0
λi

ψ τ,αð ÞdτΔXi xð Þ











+ 〠

+∞

i=1
e−
Ð t

0
λi

ψ τ,αð Þdτ
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds F x, τð Þ, Xi xð Þð ÞΔXi xð Þ
ψ τ, αð Þ dτ












≤ 〠
+∞

i=1
u0, Xið ÞΔXi xð Þj j + 〠

+∞

i=1

ðt
0

F x, τð Þ, Xi xð Þð ÞΔXi xð Þ
ψ τ, αð Þ dτ












≤ 〠
+∞

i=1
λ

3
2
i u0, Xið Þ




 


 · ΔXi xð Þ
λ3/2i












+
ðt
0

1
ψ τ, αð Þ 〠

+∞

i=1
λ

3
2
i F x, τð Þ, Xi xð Þð Þ




 


 · ΔXi xð Þ
λ3/2i












 !
dτ

≤ l1 〠
+∞

i=1
λ4i u0, Xið Þ2

 !1/2

· 〠
+∞

i=1

ΔXi xð Þj j2
λ3i

 !1/2

+
ðt
0

l1
ψ τ, αð Þ 〠

+∞

i=1
λ4i F, Xið Þ2

 !1/2

· 〠
+∞

i=1

ΔXi xð Þj j2
λ3i

 !1/2

dτ

≤ l1 A2 u0ð Þ

 


2 + Cl1 A2 Fð Þ

 



2

� �
〠
+∞

i=1

ΔXi xð Þj j2
λ3i

 !1/2

:

ð74Þ

Consequently, the relation (72) holds true and the
generalized solution (54) belongs to C2

xðDÞ. It remains
to prove that (54) belongs to C1

t ð0, TÞ. We take a deriv-
ative term by term with respect to t (54) and construct
the series
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−〠
+∞

i=1

λi u0, Xið Þ
ψ t, αð Þ e−

Ð t

0
λi

ψ τ,αð ÞdτXi xð Þ

− 〠
+∞

i=1

λie
−
Ð t

0
λi/ψ τ,αð Þð Þdτ

ψ t, αð Þ
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds F x, τð Þ, Xi xð Þð ÞXi xð Þ
ψ τ, αð Þ dτ

+ 〠
+∞

i=1

F x, τð Þ, Xi xð Þð ÞXi xð Þ
ψ t, αð Þ :

ð75Þ

Now let t ∈ ½ε, T�, 0 < ε < T . Note that 1/ψðt, αÞ is the
Riemann integrable on ½ε, T�; there exists M > 0 such that
j1/ψðt, αÞj ≤M. Next we shall to prove that the above
series (75) is uniformly convergent on any interval ½ε, T�,
0 < ε < T . By the uniformly convergence of ∑+∞

i=1 ðjXij2/λiÞ
(see [38]), applying the Parseval equality and the Cauchy
inequality, we get

〠
+∞

i=1

λi u0, Xið Þ
ψ t, αð Þ e−

Ð t
0

λi
ψ τ,αð ÞdτXi xð Þ










 + 〠

+∞

i=1

F x, τð Þ, Xi xð Þð ÞXi xð Þ
ψ t, αð Þ












+ 〠
+∞

i=1

λie
−
Ð t

0
λi/ψ τ,αð Þð Þdτ

ψ t, αð Þ
ðt
0
e
Ð τ

0
λi

ψ s,αð Þds F x, τð Þ, Xi xð Þð ÞXi xð Þ
ψ τ, αð Þ dτ
















≤ 〠
+∞

i=1
M λi u0, Xið ÞXi xð Þj j + 〠

+∞

i=1
M F x, τð Þ, Xi xð Þð ÞXi xð Þj j

+ 〠
+∞

i=1

ðt
0

Mλi ∣ F x, τð Þ, Xi xð Þð ÞXi xð Þ ∣
ψ τ, αð Þ dτ

≤ 〠
+∞

i=1
M λ3/2i u0, Xið Þ

 

 · Xi xð Þ

λ1/2i










 + 〠

+∞

i=1
M λ1/2i F, Xið Þ

 

 · Xi xð Þ

λ1/2i












+
ðt
0

M
ψ τ, αð Þ 〠

+∞

i=1
λ3/2i F x, τð Þ, Xi xð Þð Þ

 

 · Xi xð Þ

λ1/2i












 !
dτ

≤M1 〠
+∞

i=1
λ4i u0, Xið Þ2

 !1/2

· 〠
+∞

i=1

Xi xð Þj j2
λi

 !1/2

+M2 〠
+∞

i=1
λ2i F, Xið Þ2

 !1/2

· 〠
+∞

i=1

Xi xð Þj j2
λi

 !1/2

+
ðt
0

M1
ψ τ, αð Þ 〠

+∞

i=1
λ4i F x, τð Þ, Xið Þ2

 !1/2

· 〠
+∞

i=1

Xi xð Þj j2
λi

 !1/2

dτ

≤ M1 A2 u0ð Þ

 


2 +M2 A Fð Þk k2 + CM1 A2 Fð Þ

 



2

� �

· 〠
+∞

i=1

Xi xð Þj j2
λi

 !1/2

:

ð76Þ

Once again, due to lim
i→+∞

λi = +∞, there exists a con-

stant l such that λ3i < lλ4i , λi < lλ2i i = 1, 2,⋯, where M1,
M2 are some constants depending on l and M. Then,
the series (75) uniformly convergent on any interval ½ε, T�,

0 < ε < T . Therefore, the generalized solution (54) belongs
to C1

t ð0, TÞ and the proof is complete.

Theorem 19. The classical solution (50) of (1) and (36) with

Fðx, tÞ ≡ 0 decay to zero with the rate e−
Ð t

0
ðλ1/ψðs,αÞÞds.

Proof. In fact, since u0 ∈MA, then j∑+∞
i=1 ðu0, XiÞXiðxÞj = ∣u0∣

<+∞. Then for any t > 0 and x ∈ �D, we have

〠
+∞

i=1
u0, Xið Þe−

Ð t
0

λi
ψ τ,αð ÞdτXi xð Þ














≤ e−
Ð t

0
λ1

ψ s,αð Þds 〠
+∞

i=1
u0, Xið Þe−

Ð t

0
λi−λ1
ψ τ,αð ÞdτXi xð Þ














≤ ∣u0∣e
−
Ð t

0
λ1

ψ s,αð Þds ⟶ 0 ast⟶+∞ð Þ:

ð77Þ

5. Conclusions

The GCFD is an extension of the classical derivatives and the
conformable derivatives. In this paper, we introduce its frac-
tional Taylor power series expansions and prove the theorem
of term-by-term integration and differentiation. Utilizing its
properties, we obtain the uniqueness and existence of the
classical solution of the classical diffusion equations with
GCFD by using variable separation method.
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