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The main object of the present paper is to apply the concepts of ðp, qÞ-derivative by establishing a new subclass of analytic functions
connected with symmetric circular domain. Further, we investigate necessary and sufficient conditions for functions belonging to
this class. Convex combination, weighted mean, arithmetic mean, growth theorem, and convolution property are also determined.

1. Introduction and Definitions

Quantum calculus or q-calculus is a generalization of classi-
cal calculus without the notation of limits. The theory of q
-calculus is established by Jackson, for details see [1, 2].
Due to its numerous applications in various branches of
applied sciences and mathematics, for example, physics,
operator theory, numerical analysis, and differential
equations, attracted researchers to this field. A detailed study
on applications of q-calculus in operator theory may be
found in [3]. The geometric interpretation of q-calculus has
been recognized through studies on quantum groups. Starli-
keness and convexity are two major properties of analytic
functions. Ismail et al. [4] investigated the generalized
starlike function S∗, and certain subclasses close-to-convex
functions of q-Mittag-Leffler functions were studied by Sri-
vastava and Bansal [5], also the reader is referred to [6–12]
for more details.

The foundation of quantum calculus is on one parameter,
while the postquantum calculus or simply ðp, qÞ-calculus is
the generalization of q-calculus based on two parameters.
By setting p = 1 in ðp, qÞ-calculus, the q-calculus is obtained.

The ðp, qÞ-integer was considered by Chakrabarti and Jagan-
nathan [13], also see the work [14–18]. The idea of q-starlike
is extended to ðp, qÞ-stalikeness by Raza et al. [19]. Before we
define our new class in this field, we give some basics for a
better understanding of the work to follow.

Let A represent the family of function f that are analytic
in the open unit disc D = fz ∈ℂ : jzj < 1g having the series
expansion

f zð Þ = z + 〠
∞

n=2
anz

n, z ∈Dð Þ: ð1Þ

A function f ðzÞ of the form (1) is subordinate to function
gðzÞ = z +∑∞

n=2 bnz
n, symbolically represented f ðzÞ ≺ gðzÞ, if

there occur a Schwarz function wðzÞ with limitation that w
ð0Þ = 0, and jwðzÞj ≤ 1, then f ðzÞ = gðwðzÞÞ: While the con-
volution of these functions can be defined by

f zð Þ ∗ g zð Þ = z + 〠
∞

n=2
anbnz

n, z ∈Dð Þ: ð2Þ
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For 0 < q < 1, the q-derivative of a function f is defined by

∂q f zð Þ = f zð Þ − f qzð Þ
z 1 − qð Þ , z ≠ 0, q ≠ 1ð Þ, ð3Þ

where

n½ �q =
1 − qn

1 − q
= 1 + 〠

n−1

l=1
ql,  0, q½ � = 0, ð4Þ

see [13] for details.
Also for 0 < p < q < 1, the ðp, qÞ-derivative of a function f

is defined in [2] as

∂p,q f zð Þ = f pzð Þ − f qzð Þ
z p − qð Þ , z ≠ 0, p ≠ qð Þ: ð5Þ

It can easily be seen that for n ∈ℕ≔ f1, 2, 3,⋯g and z
∈D,∂p,qð∑∞

n=1 anz
nÞ =∑∞

n=1 ½n�p,qanzn−1,
where

n½ �p,q =
pn − qn

p − q
: ð6Þ

We note that ∂1,q f ðzÞ = ∂q f ðzÞ (for more on this topic
one should read [20–22]).

Sakaguchi [23], in year 1956, established the class of star-
like functions with respect to symmetrical points denoted by
S∗

s of holomorphic univalent functions in D if the below
condition is satisfies

Re 2zf ′ zð Þ
f zð Þ − f −zð Þ > 0, z ∈Að Þ: ð7Þ

Motivated by the work of [19, 23, 24], we now define
S∗

p,qðl,m,C ,DÞ given below.

Definition 1. Let −D ≤C <D ≤ 1,0 < p < q ≤ 1 and −1 ≤m
< l ≤ 1, then the function f ∈A is in the class S∗

p,qðl,m,C ,
DÞ if it satisfies

l −mð Þz∂p,q f zð Þ
f lzð Þ − f mzð Þ ≺

1 +Cz
1 +Dz

, z ∈Dð Þ, ð8Þ

where the symbol “≺” indicates the well-known
subordination.

We note that S∗
1,qðl,m,C ,DÞ = S∗

q ðl,m,C ,DÞ, where

S∗
q l,m,C ,Dð Þ = f ∈A :

l −mð Þz∂q f zð Þ
f lzð Þ − f mzð Þ ≺

1 +Cz
1 +Dz

, z ∈Dð Þ
� �

,

ð9Þ

and

lim
q→1−

S∗
q 1,−1,C ,Dð Þ = S∗ C ,Dð Þ

= f ∈A :
2zf ′ zð Þ

f zð Þ − f −zð Þ ≺
1 +Cz
1 +Dz

, z ∈Dð Þ
( )

:
ð10Þ

Equivalently, a function f ∈A is in the S∗
p,qðl,m,C ,DÞ if

and only if

l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ − 1
D l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ� �

−C

�����
����� < 1, z ∈Dð Þ:

ð11Þ

In our main results, in the next section, we evaluate the
criteria for functions belonging to this newly defined class.
After that, the convex combination property for this class will
be discussed. Then utilizing these results, the weighted mean
and arithmetic mean properties will be investigated. Further,
convolution type results will be discussed in the form of two
theorems. At the end of this article, a conclusion and future
work will be presented.

2. Main Results

Theorem 2. Let f ∈A be of the form (1). Then the function
f ∈ S∗

p,qðl,m,C ,DÞ, if and only if the following inequality
holds

〠
∞

n=2
n½ �p,q 1 +Dð Þ − C + 1ð Þ l

n −mn

l −m

� �
anj j < D −Cð Þ: ð12Þ

Proof. Let us suppose that the first inequality (12) holds. Then
to show that f ∈ S∗

p,qðl,m,C ,DÞ, we only need to prove the
inequality (11). For this consider

l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ − 1
D l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ� �

− C

�����
�����

=
∑∞

n=2 n½ �p,q − ln −mn/l −m
h i

αnz
n

D − Cð Þz −∑∞
n=2 D n½ �p,q − C ln −mn/l −mð Þαnzn
h i

������
������

≤
∑∞

n=2 n½ �p,q − ln −mn/l −m
h i

αnj j
D − Cð Þ − ∑∞

n=2 D n½ �p,q − C ln −mn/l −mð Þ
h i

αnj j
< 1,

ð13Þ

where we used and this completes the direct part. Conversely,
let f ∈S∗

p,qðl,m,C ,DÞ be of from (1). Then from (11), we have
for z ∈D,
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l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ − 1
D l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ� �

− C

�����
�����

=
∑∞

n=2 n½ �p,q − ln −mn/l −m
h i

αnz
nj j

D − Cð Þz −∑∞
n=2 D n½ �p,q − C ln −mn/l −mð Þ
h i

αnznj j

������
������ < 1

ð14Þ

Since jRezj < jzj < 1, we have

Re
∑∞

n=2 n½ �p,q − ln −mn/l −m
h i

αnz
nj j

D − Cð Þz −∑∞
n=2 D n½ �p,q − C ln −mn/l −mð Þ
h i

αnznj j

8<
:

9=
; < 1

ð15Þ

Now we choose values of z on the real axis such that
ðl −mÞz∂p,q f ðzÞ/f ðlzÞ − f ðmzÞ is real. Upon clearing the
denominator in (15) and letting z⟶ 1− through real
values, we obtain the required inequality (12).

Theorem 3. Let f i ∈ S
∗
p,qðl,m,C ,DÞ and having power series

representations

f i zð Þ = z + 〠
∞

k=1
ak,iz

k, for i = 1, 2, 3,⋯, t: ð16Þ

Then Φ ∈ S∗
p,qðl,m,C ,DÞ, where

Φ zð Þ = 〠
t

i=1
ωi f i zð Þwith〠

t

i=1
ωi = 1: ð17Þ

Proof. By Theorem 2, one can write

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
; an,i
�� �� < 1:

ð18Þ

Therefore

Φ zð Þ = 〠
t

i=1
ωi z+〠

∞

n=2
an,iz

n

 !

= z+〠
t

i=1
〠
∞

n=2
ωian,iz

n

= z+〠
∞

n=2
〠
t

i=1
ωian,i

 !
zn ;

ð19Þ

however,

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ 〠
t

i=1
ωian,i

�����
�����

 !

= 〠
t

i=1
ωi 〠

∞

n=2
;

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ , an,i
�� ��

2
4

3
5 ≤ 1,

ð20Þ

then Φ ∈ S∗
p,qðl,m,C ,DÞ: Hence, the proof is completed.

Theorem 4. If f1, f2 ∈ S∗
p,qðl,m,C ,DÞ, then their weighted

mean ψk is also in S∗
p,qðl,m,C ,DÞ, where ψk is defined by

ψk zð Þ = 1 − kð Þf1 zð Þ + 1 + kð Þf2 zð Þ
2

� �
: ð21Þ

Proof. From (21), one can easily write

ψk zð Þ = z+〠
∞

n=2

1 − kð Þan + 1 + kð Þbn
2

� �
zn: ð22Þ

To prove that ψk ∈ S
∗
p,qðl,m,C ,DÞ, it is enough to show

that

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
;

:
1 − kð Þan + 1 + kð Þbn

2

� �
< 1:

ð23Þ

For this, consider

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
;

:
1 − kð Þan + 1 + kð Þbn

2

� �

= 1 − jð Þ
2 :〠

∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
; anj j

+ 1 + jð Þ
2 :〠

∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
; bnj j

< 1 − kð Þ
2 + 1 + kð Þ

2 = 1,

ð24Þ

where we have used inequality (12). Which completes the
proof.
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Theorem 5. Let f i∈S
∗
p,qðl,m,C ,DÞ, with i = 1, 2,⋯, j. Then,

their arithmetic mean φ of f i

φ zð Þ = 1
j
〠
j

i=1
f i zð Þ, ð25Þ

is also in the class S∗
p,qðl,m,C ,DÞ.

Proof. From (25), we can write

φ zð Þ = 1
j
〠
j

i=1
z+〠

∞

n=2
an,iz

n

 !
= z+〠

∞

n=2

1
j
〠
j

i=1
an,i

 !
zn: ð26Þ

Since f i ∈ S
∗
p,qðl,m,C ,DÞ for every i = 1, 2,⋯, j, using

(12), we have

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
;:

1
j
〠
j

i=1
an,i

�����
�����

= 1
j
〠
j

i=1
〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
;: an,i
�� ��

0
@

1
A

≤
1
j
〠
j

i=1
1ð Þ = 1,

ð27Þ

which complete the proof.

Theorem 6. Let f ∈ S∗
p,qðl,m,C ,DÞ: Then for jzj = r,0 < r < 1,

r − δp,q l,m,C ,Dð Þr2 < f zð Þj j < r + δp,q l,m,C ,Dð Þr2, ð28Þ

where

δp,q l,m,C ,Dð Þ = C −Dð Þ
2½ �p,q 1 −Dð Þ + C + 1ð Þ l +mð Þ : ð29Þ

r − γp,q l,m,C ,Dð Þr2 < ∂p,q f zð Þ�� �� < r + γp,q l,m,C ,Dð Þr2,
ð30Þ

where

γp,q l,m,C ,Dð Þ = C −Dð Þ
1 −Dð Þ + C + 1ð Þ l +mð Þ : ð31Þ

Proof. To prove (28), consider

f zð Þj j ≤ r + 〠
∞

n=2
anj j rj jn, ð32Þ

as 0 < r < 1 so rn < r2 hence

f zð Þj j < r + r2 〠
∞

n=2
anj j ≤ r + C −Dð Þ

2½ �p,q 1 −Dð Þ + C + 1ð Þ l +mð Þ r
2:

ð33Þ

Similarly,

f zð Þj j ≥ r − 〠
∞

n=2
anj j rj jn > r − r2 〠

∞

n=2
anj j

≥ r −
C −Dð Þ

2½ �p,q 1 −Dð Þ + C + 1ð Þ l +mð Þ r
2:

ð34Þ

Hence complete the proof of (28). Similarly, we can
prove (30).

Theorem 7. Let f i ∈ S
∗
p,qðl,m,C ,DÞ, such that

f i zð Þ = z + 〠
∞

n=2
an,iz

n, i = 1, 2, ð35Þ

with condition jan,2j ≤ 1, then f1 ∗ f2 ∈ S
∗
p,qðl,m,C ,DÞ:

Proof. Since form (35), we have

f i zð Þ = z + 〠
∞

n=2
an,iz

n, i = 1, 2: ð36Þ

Then convolution is defined as

f1 ∗ f2ð Þ zð Þ = z + 〠
∞

n=2
an,1an,2z

n: ð37Þ

Since f2 ∈ S
∗
p,qðl,m,C ,DÞ, with limitation that jan,2j ≤ 1:

Therefore

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
; an,1
�� �� an,2�� ��

≤ 〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
; an,1
�� �� < 1:

ð38Þ

Hence f1 ∗ f2 ∈ S
∗
p,qðl,m,C ,DÞ:

Theorem 8. Let f ðzÞ ∈ S∗
p,qðl,m,C ,DÞ. Then

1
z

f zð Þ ∗ 1 +Deiθ
� �

z

1 − pzð Þ 1 − qzð Þ −
1 +Ceiθ
� �

z

1 − lzð Þ 1 −mzð Þ

 !" #
≠ 0:

ð39Þ
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Proof. Let f ðzÞ ∈ S∗
p,qðl,m,C ,DÞ: Then by definition of sub-

ordination, there exists a Schwarz function wðzÞ, such that
wð0Þ = 0 and jwðzÞj < 1,

l −mð Þz∂p,q f zð Þ
f lzð Þ − f mzð Þ = 1 +Cw zð Þ

1 +Dw zð Þ , ð40Þ

equivalently,

l −mð Þz∂p,q f zð Þ
f lzð Þ − f mzð Þ ≠

1 +Ceiθ

1 +Deiθ
, ð41Þ

z∂p,q f zð Þ 1 +Deiθ
� �

−
f lzð Þ − f mzð Þ

l −m
1 +Ceiθ
� �

≠ 0,

ð42Þ
using the relations

z∂p,q f zð Þ = f zð Þ ∗ z
1 − pzð Þ 1 − qzð Þ ,

f lzð Þ − f mzð Þ
l −m

= f zð Þ ∗ z
1 − lzð Þ 1 −mzð Þ

	 

,

ð43Þ

now (42), becomes

1
z

f zð Þ ∗ 1 +Deiθ
� �

z

1 − pzð Þ 1 − qzð Þ −
1 +Ceiθ
� �

z

1 − lzð Þ 1 −mzð Þ

 !" #
≠ 0,

ð44Þ

which completes the proof.

3. Conclusions

Utilizing the concepts of postquantum calculus, we defined a
new subclass of analytic functions associated with symmetric
circular domain. For this class, we investigated some useful
results such as necessary and sufficient problem, convex
combination, weight mean, arithmetic mean, distortion
bounds, and convolution property. There are some problems
open for researchers such as radii problems, extreme point
theorem, analytic criteria, and integral mean of inequality.
Moreover, this concept is new and can be extended to mero-
morphic functions and harmonic functions.
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