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Let ðX , d, μÞ be a nonhomogeneous metric measure space satisfying the upper doubling and geometrically doubling conditions in
the sense of Hytönen. In this setting, the author proves that parameter θ-type Marcinkiewicz integral Mρ

θ is bounded on the
weighted generalized Morrey space Lp,ϕ,τðωÞ for p ∈ ð1,∞Þ. Furthermore, the boudedness of Mρ

θ on weak weighted generalized
Morrey space WLp,ϕ,τðωÞ is also obtained.

1. Introduction

To unify the spaces of homogeneous type in the sense of
Coifman and Weiss (see [1, 2]) and nondoubling measure
spaces (see [3–8]), in 2010, Hytönen [9] first introduced a
new class of metric measure space satisfying the so-called
upper doubling and geometrically doubling conditions. For
the sake of convenience, the new space is now called a nonho-
mogeneous metric measure space. Since then, the research on
the space has been widely focused, for example, some authors
established the properties of function spaces on the nonho-
mogeneous metric measure space (see [10–14]). On the other
hand, the boundedness of singular integral operators on var-
ious of spaces is also obtained; the readers can see [15–20]
and so on.

In this paper, let ðX , d, μÞ be a nonhomogeneous metric
measure space in the sense of Hytönen [9]. In this setting,
we will give out the definition of weighted (weak) generalized
Morrey space and then obtain the boundedness of parameter
θ-type Marcinkiewicz integralMρ

θ . In 1938, Morrey [21] first
introduced the definition of Morrey space when regularity of
the solution of elliptic differential equations in terms of the
solutions themselves and their derivatives is considered.
Later, many researchers studied Morrey spaces from various
point of view. After studying Morrey spaces in detail, some
researchers passed to generalized Morrey spaces, weighted

Morrey spaces, and generalized Morrey spaces, for example,
the Guliyev, Mizuhara, and Nakai in [22–24] introduced gen-
eralized Morrey spaces Mp,φðℝnÞ and also obtained some
boundedness of integral operators on Mp,φðℝnÞ. In addition,
we can see [25, 26] to study the research and development
about generalized Morrey space and weak generalized Mor-
rey space. In 2009, Komori and Shirai [27] defined the
weightedMorrey space and studied the boundedness of some
classical operators such as the Hardy-Littlewood maximal
operator and Calderón-Zygmund operator on these spaces.
Based on this, Nakamura and Sawano established the bound-
edness of singular integral operator and its commutator on
weighted Morrey space (see [28]). In 2012, Guliyev [29] first
introduced the generalized weighted Morrey spaces Mp,ρðωÞ
and studied the boundedness of the sublinear operators and
their higher order commutators which is generated by
Calderón-Zygmund operators and Riese potentials on these
spaces (see also [30, 31]). In 2016, Nakamura defined another
definition of generalized weighted Morrey space and estab-
lished the boundedness of classical operators on this space
(see [32]).

Recently, the Morrey space, weighted Morrey space, and
generalized Morrey space on ℝn have been extended to non-
homogeneous metric measure space, for example, we can see
[10, 13, 14]. Motivated by these, in this paper, we first give
out the definition of weighted generalized Morrey space
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and weighted weak generalized Morrey space on ðX , d, μÞ.
Also, we obtain the boundedness of parameter θ-type Mar-
cinkiewicz integral Mρ

θ on the weighted generalized Morrey
space and weak generalized Morrey space.

Before stating the main results of this paper, we first recall
some necessary notions. The following definitions of upper
doubling condition and geometrically doubling condition
are from [9].

Definition 1 [9]. A metric measure space ðX , d, μÞ is said to
be upper doubling if μ is a Borel measure on X and there
exist a dominating function λ : X × ð0,∞Þ⟶ ð0,∞Þ and
a constant CðλÞ > 0, depending on λ, for each x ∈X , r⟶ λ

ðx, rÞ is nondecreasing and, for all x ∈X and r ∈ ð0,∞Þ

μ B x, rð Þð Þ ≤ λ x, rð Þ ≤ C λð Þλ x, r2
� �

: ð1Þ

Moreover, Hytönen et al. [12] have showed that there
exists another dominating function ~λ such that ~λ ≤ λ, Cð~λÞ
≤ CðλÞ, and for all x, y ∈X with dðx, yÞ ≤ r

~λ x, rð Þ ≤ C ~λð Þ~λ y, rð Þ: ð2Þ

If there is no special explanation in this paper, we always
assume that λ satisfies (2).

Definition 2 [9]. A metric space ðX , dÞ is said to be geomet-
rically doubling if there exist some N0 ∈ℕ such that, for
any ball Bðx, rÞ ⊂X with x ∈X and r ∈ ð0,∞Þ, there exists
a finite ball covering fBðxi, r/2Þgi of Bðx, rÞ such that the car-
dinality of this covering is at most N0.

Remark 3. Let ðX , dÞ be a metric measure space. Hytönen in
[9] pointed out that the geometrically doubling ðX , dÞ is
equivalent to the following statement: for any ε ∈ ð0, 1Þ and
any ball Bðx, rÞ ⊂X with x ∈X and r ∈ ð0,∞Þ, there exists
a finite ball covering fBðxi, εrÞgi of Bðx, rÞ such that the car-
dinality of this covering is at most N0ε

−n0 , where n0 ≔ log2N0
.

Although the measure doubling condition is not assumed
uniformly for all balls in the nonhomogeneous metric mea-
sure space ðX , d, μÞ, Hytönen in [9] showed that there exist
many balls which have the ðα, βÞ-doubling properties. That
is, for all α, β ∈ ð1,∞Þ, a ball B ⊂X is said to be ðα, βÞ-dou-
bling if μðαBÞ ≤ βμðBÞ. To be precise, Hytönen [9] pointed
out that, if a metric measure space ðX , d, μÞ is upper dou-
bling and α, β ∈ ð1,∞Þ with β > ½CðλÞ�log2α ≕ αν, then there

exists some j ∈ℤ+ such that αjB is ðα, βÞ-doubling. More-
over, let ðX , dÞ be a geometrically doubling, β > αn0 and μ
be a Borel measure onX being finite on bounded sets. Hytö-
nen also showed that, for μ-a.e. x ∈X , there exist arbitrary
small ðα, βÞ-doubling balls with centers at x. Furthermore,
the radii of these balls may be chosen to be of the form α−jr
for j ∈ℕ and any preassigned number r ∈ ð0,∞Þ. Through-
out this paper, for any α ∈ ð1,∞Þ and ball B, the smallest

ðα, βαÞ-doubling ball of the form αjB with j ∈ℤ+ is simply
denoted by ~B

α
, where

βα ≔ α3 max n0,μf gð Þ + max 5α, 30f g½ �n0 + max 3α, 30f g½ �ν:
ð3Þ

Here and in what follows, we always assume α = 6 and
denote by ~B the smallest ð6, β6Þ-doubling ball of the form
6jB with j ∈ℤ+.

The following discrete coefficient ~K
ðκÞ
B,S introduced by Bui

and Duong [33] is very similar to the quantity KB,S which is
introduced by Tolsa in [7].

Definition 4 [33]). For any κ ∈ ð1,∞Þ and two balls B, S ∈X
satisfying B ⊂ S, define

~K
κð Þ
B,S = 1 + 〠

l=− logκ2b c

N κð Þ
B,S μ κlB

� �
λ cB, κlrB
� � , ð4Þ

where NðκÞ
B,S represents the smallest integer satisfying κN

ðκÞ
B,S rB

≥ rS.

Remark 5.

(i) By the definition of NðκÞ
B,S and the fact rB ≤ 2rS, it is not

difficult to get NðκÞ
B,S ≥ d−logκ2e = −blogκ2c, which

guarantees the definition of the ~K
ðκÞ
B,S to make sense.

Furthermore, Lin et al. [16] showed that, via a change
of variables and (4), it is obvious to see that

~K
κð Þ
B,S ~ 1 + 〠

l=1

N κð Þ
B,S+ logκ2b c+1

μ κlB
� �

λ cB, κlrB
� � ð5Þ

holds, where the implicit equivalent positive con-
stants do not rely on the balls B ⊂ S ⊂X but depend
on the choice of κ with κ ∈ ð1,∞Þ

(ii) Hytönen in [9] introduced a continuous version KB,S
(also see [12]). That is, for any two balls B, S ∈X sat-
isfying B ⊂ S, set

KB,S = 1 +
ð

2Sð Þ\B

1
λ cB, d x, cBð Þð Þ dμ xð Þ: ð6Þ

Via the simple computation, it is not difficult to see that

KB,S ≤ C~K
ðκÞ
B,S. Unfortunately, in general, KB,S and ~K

ðκÞ
B,S are

not equivalent, but, under the case of nondoubling measure,

KB,S ~ ~K
ðκÞ
B,S:

We now give out the definition of parameter θ-type Mar-
cinkiewicz integral Mρ

θ .
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Definition 6. Let θ be a nonnegative, nondecreasing function
on ð0,∞Þ satisfying the following condition:

ð1
0

θ tð Þ
t

log 1
t

� �
dt <∞: ð7Þ

Suppose that Kð·, · Þ is a locally integrable function
defined on X ×X \ fðx, yÞ: x = yg. Then, there exists a posi-
tive constant C such that, for all x, y ∈X with x ≠ y

K x, yð Þj j ≤ C
d x, yð Þ

λ x, d x, yð Þð Þ , ð8Þ

and, for all x, x′, y with satisfying dðx, yÞ ≥ 2dðx, x′Þ

K x, yð Þ − K x′, y
� ���� ��� + K y, xð Þ − K y, x′

� ���� ���
≤ Cθ

d x, x′
� �
d x, yð Þ

0
@

1
A d x, yð Þ

λ x, d x, yð Þð Þ :
ð9Þ

Remark 7. Especially, if we take θðtÞ = tε with ε ∈ ð0, 1� as in
(9), then the above kernel is just the standard kernel given
in [20].

The parameter θ-type Marcinkiewicz integralMρ
θ associ-

ated with the above kernel K satisfying (8) and (9) is defined
by, for all x ∈X and ρ > 0

M
ρ
θ fð Þ xð Þ =

ð∞
0

1
tρ

ð
d x,yð Þ≤t

K x, yð Þ
d x, yð Þ½ �1−ρ f yð Þdμ yð Þ

�����
�����
2 dt
t

 !1
2

:

ð10Þ

Remark 8.

(1) If we take θðtÞ = tε with ε ∈ ð0, 1� as in (9), and ρ = 1
in (10), then the parameter θ-type Marcinkiewicz
integral Mρ

θ is just the Marcinkiewicz integral M on
ðX , d, μÞ given in [17]

(2) If we take ðX , d, μÞ = ðℝn, j·j, μÞ, θðtÞ = tε, and ρ ≡ 1,
then the parameter θ-type Marcinkiewicz integral
M

ρ
θ is just the Marcinkiewicz integral M under non-

doubling measure (see [34])

(3) If we take ðX , d, μÞ = ðℝn, j·j, dxÞ, θðtÞ = tε, ρ ≡ 1,
and Kðx, yÞ =Ωðx − yÞ/jx − yjn−1, then the parameter
θ-type Marcinkiewicz integralMρ

θ is just the classical
Marcinkiewicz integral MΩ introduced by Stein in
[35] and its form as follows:

MΩ fð Þ xð Þ =
ð∞
0

ð
d x,yð Þ≤t

Ω x − yð Þ
x − yj jn−1 f yð Þdy

�����
�����
2 dt
t3

 !1/2

, x ∈ℝn

ð11Þ

(4) If we take ðX , d, μÞ = ðℝn, j·j, dxÞ, θðtÞ = tε, and Kðx
, yÞ =Ωðx − yÞ/jx − yjn−1, then M

ρ
θ defined in (10) is

just the classical parameter Marcinkiewicz integral
M

ρ
Ω introduced by Hörmander in [36], that is

M
ρ
Ω fð Þ xð Þ =

ð∞
0

1
tρ

ð
d x,yð Þ≤t

Ω x − yð Þ
x − yj jn−ρ f yð Þdy

�����
�����
2 dt
t

 !1/2

, ð12Þ

where x ∈ℝn and ρ > 0.

Next, we recall the definition of Aρ
pðωÞ weight given in

[14].

Definition 9. [14] Let ρ ∈ ½1,∞Þ and p ∈ ð1,∞Þ. A nonnega-
tive μ-measurable function ω is called an Aρ

pðμÞ weight if
there exists a positive constant C such that, for all balls B ⊂
X

1
μ ρBð Þ

ð
B
ω xð Þdμ xð Þ

� � 1
μ ρBð Þ

ð
B
ω xð Þ½ �1−p′dμ xð Þ

	 
p−1
≤ C:

ð13Þ

And a weight ω is called an Aρ
1ðμÞ weight if there exists a

positive constant C such that, for all balls B ⊂X

1
μ ρBð Þ

ð
B
ω xð Þdμ xð Þ ≤ C inf

x∈B
ω xð Þ: ð14Þ

As in the classical setting, let Aρ
∞ðμÞ≔S∞

p=1A
ρ
pðμÞ.

The weighted generalized Morrey space Lp,ϕ,τðωÞ is
defined as follows.

Definition 10. Let τ > 1 and p ∈ ð1,∞Þ and ω be a weight.
Suppose that ϕ : ð0,∞Þ⟶ ð0,∞Þ is an increasing function.
Then a weighted generalized Morrey space Lp,ϕ,τðωÞ is
defined by

Lp,ϕ,τ ωð Þ = f ∈ Lploc ωð Þ: fk kLp,ϕ,τ ωð Þ<∞
n o

, ð15Þ

where

fk kLp,ϕ,τ ωð Þ = sup
B

1
ϕ ω τBð Þð Þ

ð
B
f xð Þj jpω xð Þdμ xð Þ

� �1/p
: ð16Þ

We also denotedWLp,ϕ,τðωÞ by the weighted weak gener-
alized Morrey space of all locally integrable functions satisfy-
ing

fk kWLp,ϕ,τ ωð Þ = sup
B

sup
t>0

1
ϕ ω τBð Þð Þ½ �1/p

� tω x ∈ B : f xð Þj j > tf gð Þ1/p <∞:

ð17Þ
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Remark 11. With an argument similar to that used in the
proof of Lemma 2.3 and 2.4 in [14], it is not difficult to show
that the norm of the weighted generalized Morrey space
k·kLp,ϕ,τðωÞ is independent of the choice of the parameter τ ∈
ð1,∞Þ.

The main results of this paper are stated as follows.

Theorem 12. Let τ, p ∈ ½1,∞Þ, ρ ∈ ½1,∞Þ, ω ∈ Aρ
pðμÞ, and

ϕ : ð0,∞Þ⟶ ð0,∞Þ be an increasing function satisfying
the following condition:

ð∞
m

ϕ zð Þ
z

dz
z

≤ C
ϕ mð Þ
m

, for 1 <m <∞: ð18Þ

Suppose that M
ρ
θ defined by (10) associated with K

satisfying (8) and (9) is bounded on L2ðμÞ, and the map-
ping t↦ ϕðtÞ/t is almost decreasing and there exists a pos-
itive constant C such that

ϕ tð Þ
t

≤ C
ϕ sð Þ
s

, ð19Þ

for s ≥ t. Then, Mρ
θ is bounded from Lp,ϕ,τðωÞ ∩ L2ðμÞ into

itself.

Theorem 13. Let K satisfy (8) and (9), ω ∈ Aρ
pðμÞ, and ϕ :

ð0,∞Þ⟶ ð0,∞Þ be an increasing function satisfying (18)
and (19). Suppose that Mρ

θ defined in (10) is bounded on
L2ðμÞ. Then, Mρ

θ is bounded from Lp,ϕ,τðωÞ into WLp,ϕ,τðωÞ
for τ, p ∈ ½1,∞Þ.

Finally, we make some conventions on notation.
Throughout the paper, C represents a positive constant
which is independent of the main parameters but may be dif-
ferent from line to line. For a μ-measurable set E ⊂X , χE
denotes its characteristic function. For any p ∈ ½1,∞�, we
denote by p′ its conjugate index, that is ð1/pÞ + ð1/p′Þ = 1.
For any ball B, cB and rB represent the center and radius of
ball B, respectively. Furthermore, mBð f Þ denotes the mean
value of the function f over ball B, i.e., mBð f Þ = 1/μðBÞÐ B
f ðyÞdμðyÞ.

2. Proof of Main Theorems

In this section, we will give out the proofs of Theorems 16
and 17. First, we need do recall the following lemmas.

We now recall the following properties of Aρ
pðμÞ weights

from [15].

Lemma 14. [30] Let ρ, p ∈ ½1,∞Þ, ω ∈ Aρ
pðωÞ and η ∈ ½5ρ,∞Þ.

Then, there exist positive constants C1, C2 ∈ ½1,∞Þ such that

(i) for any ball B and μ-measurable set E ⊂ B

ω Eð Þ
ω Bð Þ ≥ C−1

2
μ Eð Þ
μ ηBð Þ
� �p

ð20Þ

(ii) for any ð6, β6Þ-doubling ball B and μ-measurable set
E ⊂ B

ω Eð Þ
ω Bð Þ ≤ 1 − C−1

1 1 −
μ Eð Þ
μ Bð Þ

� �1
p

: ð21Þ

Finally, we recall the following lemma ensuring the inte-
grability of functions [14].

Lemma 15. [27] Let ψ : ð0,∞Þ⟶ ð0,∞Þ be a function sat-
isfying

ð∞
m
ψ sð Þ ds

s
≤ Cψ mð Þ, for all m > 0: ð22Þ

Then there exists ε > 0 such that
Ð∞
m ψðsÞsεðds/sÞ ≤ Cψ

ðmÞmε for all m > 0. In particular, for every η ≤ 1, there
exists a positive constant C such that

Ð∞
m ψðsÞsηðds/sÞ ≤ C

ψðmÞmη for all m > 0.

The proofs of Theorems 16 and 17 are stated as follows.

Proof of Theorem 16. From Remark 11, we may assume that
τ = 6 in (16). For a fixed doubling ball B, decompose f ðxÞ =
f1ðxÞ + f2ðxÞ, where f1ðxÞ = f ðxÞχ6BðxÞ. Write

M fð Þk kLp,ϕ,τ ωð Þ ≤ M f1ð Þk kLp,ϕ,τ ωð Þ + M f2ð Þk kLp,ϕ,τ ωð Þ ≕ I + II:
ð23Þ

In order to estimate I, we first consider Mð f1Þ. For any
x ∈ B, by applying

M
ρ
θ f1ð Þ xð Þ ≤

ð
X

K x, yð Þj j
d x, yð Þ½ �1−ρ f1 yð Þj j

ð∞
d x,yð Þ

dt
t1+2ρ

 !1/2

dμ yð Þ

≤ C
ð
6B

f yð Þj j
λ x, d x, yð Þð Þ ω yð Þ½ �1/p ω yð Þ½ �−1/pdμ yð Þ

≤ C
ð
6B

f yð Þj jpω yð Þ
λ x, d x, yð Þð Þ½ �p dμ yð Þ

� �1/p μ 12Bð Þ
ω 12Bð Þ
� �1/p

� μ 12Bð Þ½ �1/p′ × 1
μ 12Bð Þ

ð
6B

ω yð Þð Þ−p′/pdμ yð Þ
� �

� 1
μ 12Bð Þ

ð
6B
ω yð Þdμ yð Þ

� �1/p
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≤ C
ð
6B

f yð Þj jpω yð Þ
λ x, d x, yð Þð Þ½ �p dμ yð Þ

� �1/p
μ 12Bð Þ

ω 12Bð Þ½ �1/p

≤ C 〠
j=0

∞ ð
6− j+1B\6− jB

f yð Þj jpω yð Þ
λ x, d x, yð Þð Þ½ �p dμ yð Þ

 !1/p
μ 12Bð Þ

ω 12Bð Þ½ �1/p

≤ C fk kLp,ϕ,τ ωð Þ 〠
j=0

∞ ϕ ω 6−j+2B
� �� �
 �1/p

λ cB, 6−jrB
� � μ 6−jB

� �
μ 6−jB
� � μ 12Bð Þ

ω 12Bð Þ½ �1/p

≤ C fk kLp,ϕ,τ ωð Þ 〠
j=0

∞ ϕ ω 6−j+2B
� �� �
 �1/p
ω 12Bð Þ½ �1/p

μ 12Bð Þ
μ 6−jB
� �

≤ C fk kLp,ϕ,τ ωð Þ
ϕ ω 6Bð Þð Þ
ω 12Bð Þ

� �1/p
,

ð24Þ

and further, by applying (19) and Lemma 14, we can obtain
that

I = sup
B

1
ϕ ω 6Bð Þð Þ

ð
B
M f1ð Þ xð Þj jpω xð Þdμ xð Þ

� �1/p

≤ C fk kLp,ϕ,τ ωð Þ sup
B

ϕ ω 6Bð Þð Þ
ω 12Bð Þ

� �1/p ω Bð Þ
ϕ ω 6Bð Þð Þ
� �1/p

≤ C fk kLp,ϕ,τ ωð Þ:

ð25Þ

Now we estimate II. For any x ∈ B, by applying (8), the
Hölder inequality, and (13) and (16), we can get

M
ρ
θ f2ð Þ xð Þ ≤ C〠

j=1

∞ 1
λ cB, 6jrB
� � ð

6 j+1B
f yð Þj jdμ yð Þ

≤ C〠
j=1

∞ 1
λ cB, 6jrB
� � ð

6 j+1B
f yð Þj j ω yð Þ½ �1/p ω yð Þ½ �−1/pdμ yð Þ

≤ C〠
j=1

∞ 1
λ cB, 6jrB
� � ð

6 j+1B
f yð Þj jpω yð Þdμ yð Þ

� �1/p

× μ 6j+2B
� �

ω 6j+1B
� �
 �1/p 1

μ 6j+1B
� � ð

6 j+1B
ω yð Þdμ yð Þ

" #1/p

× 1
μ 6j+1B
� � ð

6 j+1B
ω yð Þð Þ−p′/pdμ yð Þ

" #1/p′

≤ C〠
j=1

∞ 1
λ cB, 6jrB
� � ð

6 j+1B
f yð Þj jpω yð Þdμ yð Þ

� �1/p

� μ 6j+2B
� �

ω 6j+1B
� �
 �1/p ≤ C fk kLp,ϕ,τ ωð Þ 〠

j=1

∞

� ϕ ω 6j+2B
� �� �

ω 6j+2B
� �

" #1/p
,

ð26Þ

and by the assumption (19) and Lemma 15, we have

〠
j=1

∞ ϕ 6j+1ω 6Bð Þ� �
6j+1ω 6Bð Þ

" #1/p
≤ C

ϕ ω 6Bð Þð Þ
ω 6Bð Þ

� �1/p
: ð27Þ

Thus, we have II ≤ C∥f ∥Lp,ϕ,τðωÞ. So the proof of Theorem
16 is completed.

Proof of Theorem 17. By applying the definition ofWLp,ϕ,τðωÞ
and an argument similar to that used in the estimate of The-
orem 12, it is not difficult to obtain that Theorem 13 holds.
So, here we omit the detail.
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