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The homogeneous balance of undetermined coefficient method is firstly proposed to derive a more general bilinear equation of the
nonlinear partial differential equation (NLPDE). By applying perturbation method, subsidiary ordinary differential equation (sub-
ODE) method, and compatible condition to bilinear equation, more exact solutions of NLPDE are obtained. The KdV equation,
Burgers equation, Boussinesq equation, and Sawada-Kotera equation are chosen to illustrate the validity of our method. We find
that the underlying relation among the ðG′/GÞ-expansion method, Hirota’s method, and HB method is a bilinear equation. The
proposed method is also a standard and computable method, which can be generalized to deal with other types of NLPDE.

1. Introduction

The nonlinear partial differential equation (NLPDE) is
known to describe a wide variety of phenomena not only in
physics but also in biology, chemistry, and several other fields
[1–3]. The investigation of the exact solutions for NLPDE
plays an important role on the study of nonlinear physical
phenomena [4–9]. In recent years, many powerful methods
are used to obtain the exact solutions of NLPDE, for example,
the inverse scattering method [7], Bäcklund and Darboux
transformation method [8], homotopy perturbation method
[9], first integral method [10–12], variational iteration
method [13, 14], sub-ODE method [15–17], Jacobi elliptic
function method [18], tanh-sech method [19], ðG′/GÞ-
expansion method [20, 21], Hirota’s method [22–24], and
homogeneous balance (HB) method [25–27].

As the direct methods, the ðG′/GÞ-expansion method,
Hirota’s method, and HB method are very effective for con-
structing the exact solutions of NLPDE. Exact traveling wave
solutions, N-soliton solutions, and solitary wave solutions
of some NLPDE are obtained by using the above three
methods [20–30]. Fan improved the HB method to inves-
tigate the BT, Lax pairs, symmetries, and exact solutions

for some NLPDE [31, 32]. He also showed that there are
many links among the HB method, Weiss-Tabor-Carnevale
method, and Clarkson-Kruskal method.

However, there is no unified direct method which can be
used to deal with all types of NLPDE. And also, no literature
is available to illustrate the underlying relations among the
three direct methods.

In the present paper, by improving some key steps in the
HB method [26], we propose a new method, HB of undeter-
mined coefficient method, which can be used to derive the
bilinear equation of NLPDE. Based on the bilinear equation,
by applying the perturbation method, sub-ODE method, and
compatible condition, more exact solutions of NLPDE are
obtained. We illustrate the real meaning of balance numbers.
We show the underlying relations among the ðG′/GÞ-expan-
sion method, Hirota’s method, and HB method.

This paper is organized as follows: the HB of undeter-
mined coefficient method is described in Section 2. In Sec-
tions 3 and 4, the KdV equation and Burgers equation are
chosen as examples to illustrate the method, respectively. In
Section 5, the bilinear equations of Boussinesq equation
and Sawada-Kotera equation are derived, respectively. Some
brief conclusions are given in Section 6.
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2. Description of the HB of Undetermined
Coefficient Method

Let us consider a general NLPDE, say, in two variables

P u, ut , ux , uxx, uxt ,⋯ð Þ = 0, ð1Þ

where P is a polynomial function of its arguments and the
subscripts denote the partial derivatives. The HB of undeter-
mined coefficient method consists of three steps.

Step 1. Suppose that the solution of Equation (1) is of the
form

u = amn ln wð Þm,n + 〠
i=m,j=n

i,j=0
i+j≠0,m+n

aij ln wð Þi,j + a00, ð2Þ

where u = uðx, tÞ, w =wðx, tÞ, ðln wÞi,j = ∂i+jðln wðx, tÞÞ/∂xi
∂t j, m, n (balance numbers), and aijði = 0, 1,⋯,m, j = 0, 1,
⋯, nÞ (balance coefficients) are constants to be determined
later. By balancing the highest nonlinear terms and the high-
est order partial derivative terms, balance numbers are
obtained. Substituting Equation (2) into Equation (1) and
balancing the terms with ðwx/wÞiðwt/wÞj yield a set of alge-
braic equations for aijði = 1,⋯,m, j = 1,⋯, nÞ.

Step 2. Solving the set of algebraic equations and simplifying
Equation (1), we can get the bilinear equation of Equation (1)
directly or after integrating some times (Generally, integrat-
ing times equal to the orders of the lowest partial derivative
of Equation (1).) with respect to x, t.

Step 3. Generally, in order to obtain the exact solutions of
Equation (1), there are three methods to deal with the bilin-
ear equation of Equation (1):

(i) Applying the perturbation method to the bilinear
equation of Equation (1), N-soliton solution of
Equation (1) can be obtained.

(ii) By using traveling wave transformations

w x, tð Þ =w ξð Þ, ξ = x −Vt, ð3Þ

the bilinear equation of Equation (1) satisfies the fol-
lowing ODE:

w″ + λw′ + µw = 0, ð4Þ

where the prime denotes the derivation with
respect to ξ and λ, μ, and V are constants to be
determined later.

Substituting Equations (3) and (4) into Equation (1),
it is converted into the following equation:

l1w
2 + l2ww′ + l3w′2 = 0, ð5Þ

where l1, l2, and l3 are polynomial functions of V , λ,
and μ.

Setting l1 = l2 = l3 = 0 yields a set of algebraic equa-
tions for V , λ, and μ. Solving the set of algebraic
equations and using the solutions of Equation (4),
w can be determined. Substituting w into Equation
(2), the exact traveling wave solutions of Equation
(1) are obtained.

(iii) By applying the compatible condition ðwxt =wtxÞ
to the bilinear equation of Equation (1), it is reduced
to an ODE. Solving the ODE, more exact solutions of
Equation (1) can be obtained.

Next, we choose the KdV equation and Burgers equation
to illustrate our method.

3. Application to the KdV Equation

Let us consider the celebrated KdV equation in the form

ut + uux + δuxxx = 0, ð6Þ

where δ is a constant. Suppose that the solution of Equation
(6) is of the form

u = amn ln wð Þm,n + 〠
i=m,j=n

i,j=0
i+j≠0,m+n

aij ln wð Þi,j + a00, ð7Þ

where m, n, and aij ði = 0, 1,⋯,m, j = 0, 1,⋯, nÞ are con-
stants to be determined later.

Balancing uxxx and uux in Equation (6), it is required
that m + 3 = 2m + 1 and n = 2n. Then, Equation (7) can be
written as

u = a20 ln wð Þxx + a10 ln wð Þx + a00: ð8Þ

From Equation (8), one can calculate the following
derivatives:

u = a20
wxx

w
−
w2

x

w2

� �
+ a10

wx

w
+ a00,

ux = a20
wxxx

w
−
3wxxwx

w2 + 2w3
x

w3

� �
+ a10

wxx

w
−
w2

x

w2

� �
,

ut = a20
wxxt

w
−
wxxwt + 2wxwxt

w2 + 2w
2
xwt

w3

� �

+ a10
wxt

w
−
wxwt

w2

� �
,
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uxxx = a20

�
wxxxxx

w
−
5wxxxxwx + 10wxxxwxx

w2

+ 20wxxxw
2
x + 30w2

xxwx

w3 −
60wxxw

3
x

w4 + 24w5
x

w5

�

+ a10
wxxxx

w
−
4wxxxwx + 3w2

xx

w2 + 12wxxw
2
x

w3 −
6w4

x

w4

� �
:

ð9Þ

Equating the coefficients of ðwx/wÞ5 and ðwx/wÞ4 on
the left-hand side of Equation (6) to zero yields a set of
algebraic equations for a20 and a10 as follows:

−2a220 + 24δa20 = 0,:
3a20a10 − 6δa10 = 0:

ð10Þ

Solving the above algebraic equations, we get a20 = 12δ
and a10 = 0. Substituting a20 and a10 back into Equation
(8), we get

u = 12δ ln wð Þxx + a00: ð11Þ

where a00 is an arbitrary constant. Substituting Equation
(11) into Equation (6), we get

12δ K1 + K2 + K3ð Þ = 0, ð12Þ

where

K1 =
wxxt

w
−
2wxwxt +wxxwt

w2 + 2w2
xwt

w3 ,

K2 = a00
wxxx

w
−
3wxxwx

w2 + 2w3
x

w3

� �
,

K3 = δ

�
wxxxxx

w
+ 2wxxxwxx − 5wxxxxwx

w2

+ 16wxxxw
2
x − 6wxw

2
xx

w3

�
:

ð13Þ

Simplifying Equation (12) and integrating once with
respect to x, we get

Equation (14) is identical to

wxtw −wxwtð Þ + δ wxxxxw − 4wxwxxx + 3w2
xx

� �
+ a00 wxxw −w2

x

� �
− C tð Þw2 = 0,

ð15Þ

where CðtÞ is an arbitrary function of t and a00 is an arbitrary
constant.

In particular, taking CðtÞ as zero in Equation (15), we get
the bilinear equation of Equation (6) as follows:

wxtw −wxwtð Þ + δ wxxxxw − 4wxwxxx + 3w2
xx

� �
+ a00 wxxw −w2

x

� �
= 0:

ð16Þ

Equation (16) can be written concisely in terms of D-
operators as

DxDt + δD4
x + a00D

2
x

� �
w ·w = 0, ð17Þ

where

Dm
x D

n
t a · b = ∂x − ∂x0ð Þm ∂t − ∂t0ð Þna x, tð Þb x′, t ′

� ����
x0=x,t0=t

:

ð18Þ

Remark 1. Applying Hirota’s method [22–24], the bilinear
equation of Equation (6) can be written as

DxDt + δD4
x

� �
w ·w = 0: ð19Þ

Equation (19) is obtained by setting a00 = 0 in Equa-
tion (17). Obviously, Equation (19) is a special case of
Equation (17).

(i) Now, we apply the perturbation method to Equation
(17) to deriveN-soliton solution of Equation (6). Sup-
pose that w can be expanded as follows:

w = 1 + εw1 + ε2w2+⋯εNwN+⋯, ð20Þ

where ε is a parameter and wi =wiðx, tÞ ði = 1, 2,⋯Þ.
Substituting Equation (20) into Equation (17) and

arranging it at each order of ε, we get

ε : Dx Dt + a00Dx + δD3
x

� �
w1 · 1 + 1 ·w1ð Þ = 0,

ε2 : Dx Dt + a00Dx + δD3
x

� �
w2 · 1 +w1 ·w1 + 1 ·w2ð Þ = 0,

ε3 : Dx Dt + a00Dx + δD3
x

� �
w3 · 1 +w2 ·w1ð

+w1 ·w2 + 1 ·w3Þ = 0,

⋯

ð21Þ

∂
∂x

wxtw −wxwtð Þ + δ wxxxxw − 4wxwxxx + 3w2
xx

� �
+ a00 wxxw −w2

x

� �
w2

� �
= 0: ð14Þ
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The order-ε equation can be rewritten as a linear differ-
ential equation for w1 as follows:

∂
∂x

∂
∂t

+ a00
∂
∂x

+ δ
∂3

∂x3

 !
w1 = 0: ð22Þ

Solving Equation (22), we get

w1 = eP1x− a00P1+δP3
1ð Þt , ð23Þ

where P1 is an arbitrary constant.
The coefficient of ε2 can be rearranged as follows:

2 ∂
∂x

∂
∂t

+ a00
∂
∂x

+ δ
∂3

∂x3

 !
w2

= −Dx Dt + a00Dx + δD3
x

� �
w1 ⋅w1:

ð24Þ

Substituting Equation (23) into Equation (24), the right-
hand side of Equation (24) equals zero. Therefore, we can
choose

w2 = 0: ð25Þ

Substituting Equations (23) and (25) into Equation (20),
we get

w = 1 + eP1x− a00P1+δP3
1ð Þt+ξ01 , ð26Þ

where P1, a00, and ξ01 are arbitrary constants.
Substituting Equation (26) into Equation (11), 1-soliton

solution of Equation (6) can be obtained. If we choose w1 =
eP1x−ða00P1+δP

3
1Þt + eP2x−ða00P2+δP3

2Þt in Equation (22), similar to
the process of obtaining 1-soliton solution, we can get 2-
soliton solution of Equation (6) as follows:

w = 1 + eη1 + eη2 + P1 − P2ð Þ2
P1 − P2ð Þ2 e

η1+η2 , ð27Þ

where η1 = P1x − ða00P1 + δP3
1Þt + ξ01, η2 = P2x − ða00P2 +

δP3
2Þt + ξ02, Pi, ξ0i ði = 1, 2Þ, and a00 are arbitrary constants.
Substituting Equation (27) into Equation (11), 2-soliton

solution of Equation (6) can be obtained. Similarly, we can
get N-soliton solution of Equation (6).

Remark 2. Obviously, setting a00 = 0 in Equations (23) and
(27), 1-soliton and 2-soliton solutions of Equation (6) are
identical to Hirota’s results [22–24].

Remark 3. By using the properties of D-operators [22–24], a
Bäcklund transformation of Equation (17) can be obtained
as follows:

Dt + a00 + αð ÞDx + δD3
x

� �
w∗ ·w = 0,

D2
x − βDx − α

� �
w∗ ·w = 0,

ð28Þ

where w∗ and w satisfy Equation (17) and α, β, and a00 are
arbitrary constants.

(ii) Now, we discuss Equation (16) by using the sub-ODE
method.

Using transformations wðx, tÞ =wðξÞ, ξ = x −Vt, Equa-
tion (16) is reduced to

a00 −Vð Þ w″w −w′2
� �

+ δ w″″w − 4w′w″′ + 3w″2
� �

= 0,

ð29Þ

where the prime denotes the derivation with respect to ξ and
V is a constant to be determined later.

Noticing the bilinear property of Equation (16), suppose
that w satisfies the following ODE:

w″ + λw′ + μw = 0, ð30Þ

where λ and μ are parameters.
Substituting Equation (30) into Equation (16), we get

l1w
2 + l2ww′ + l3w′

2 = 0, ð31Þ

where

l1 = μ V − a00 + δ 4μ − λ2
� �� �

,

l2 = λ V − a00 + δ 4μ − λ2
� �� �

,

l3 =V − a00 + δ 4μ − λ2
� �

:

ð32Þ

Setting l1 = l2 = l3 = 0 yields a set of algebraic equations
for V , λ, and µ. Solving this set of algebraic equations, we get

V = a00 + δ λ2 − 4μ
� �

, ð33Þ

where λ, µ, and a00 are arbitrary constants.
Substituting Equation (30) into Equation (11), we get

u = 12δ wx

w
+ λ

2

� �2
+ 3δ λ2 − 4μ

� �
+ a00: ð34Þ

Substituting the general solutions of Equation (30) into
Equation (34), we get three types of traveling wave solutions
of Equation (6) as follows.

When λ2 − 4µ > 0,

u1 x, tð Þ = u1 ξð Þ = −3δA C1e
ffiffiffi
A

p /2ð Þξ − C2e
−
ffiffiffi
A

p /2ð Þξ

C1e
ffiffiffi
A

p /2ð Þξ − C2e
−
ffiffiffi
A

p /2ð Þξ

 !2

+ 3δA + a00,
ð35Þ
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where

A = λ2 − 4µ,
V = a00 + Aδ,
ξ = x − a00 + Aδð Þt,

ð36Þ

and λ, μ, C1, C2, and a00 are arbitrary constants.
Taking C1 = C3 + C4/2 and C2 = C3 − C4/2, Equation (35)

can be rewritten as

u2 x, tð Þ = u2 ξð Þ

= −3δA
C3 sinh

ffiffiffiffi
A

p
/2

� �
ξ + C4 cosh

ffiffiffiffi
A

p
/2

� �
ξ

C3 cosh
ffiffiffiffi
A

p
/2

� �
ξ + C4 sinh

ffiffiffiffi
A

p
/2

� �
ξ

0
@

1
A

2

+ 3δA + a00,
ð37Þ

where C3, C4, and a00 are arbitrary constants and A, V , and ξ
are given by Equation (36).

In particular, if jC4/C3j < 1, then Equation (37) is reduced
to

u3 x, tð Þ = u3 ξð Þ = 3δA sech2
ffiffiffiffi
A

p

2 ξ + ξ0

 !
+ a00, ð38Þ

where C3, C4, and a00 are arbitrary constants and A, V , and ξ
are given by Equation (36), ξ0 = arctanh ðC4/C3Þ.

When λ2 − 4μ < 0,

u4 x, tð Þ = u4 ξð Þ

= 3δA
−C1 sin

ffiffiffiffiffiffi
−A

p
/2

� �
ξ + C2 cos

ffiffiffiffiffiffi
−A

p
/2

� �
ξ

C1 cos
ffiffiffiffiffiffi
−A

p
/2

� �
ξ + C2 sin

ffiffiffiffiffiffi
−A

p
/2

� �
ξ

0
@

1
A

2

+ 3δA + a00,
ð39Þ

where C1, C2, and a00 are arbitrary constants and A, V , and ξ
are given by Equation (36).

Obviously, Equation (39) can be written as

u5 x, tð Þ = u5 ξð Þ = 3δA sec2
ffiffiffiffiffiffi
−A

p

2 ξ + ξ0

 !
+ a00, ð40Þ

where C1, C2, and a00 are arbitrary constants and A, V , and ξ
are given by Equation (36), ξ0 = − arctan ðC2/C1Þ.

When λ2 − 4µ = 0,

u6 x, tð Þ = u6 ξð Þ = −12δ C2
C1 + C2ξ

� �2
+ a00, ð41Þ

where V = a00, ξ = x − a00t, C1, C2, and a00 are arbitrary
constants.

(iii) Now, we discuss Equation (16) from the compatible
condition. Equation (16) can be written as

δwxxxx +wxt + a00wxxð Þw
+ δ 3w2

xx − 4wxxxwx

� �
− a00w

2
x −wxwt

� �
= 0:

ð42Þ

Notice wx ≠ 0; otherwise, we can only get a trivial solu-
tion. Setting the second term of Equation (42) to zero and
solving wt yield

wt =
δ 3w2

xx − 4wxxxwx

� �
− a00w

2
x

wx
: ð43Þ

Substituting Equation (43) into Equation (42), we get

wxxxx +
w3

xx − 2wxwxxwxxx

w2
x

= 0: ð44Þ

Integrating Equation (44) once with respect to x, we get

wxxx −
w2

xx

wx
= b tð Þ, ð45Þ

where bðtÞ is an arbitrary function of t.
Using transformations Y =w2

xx and X =wx, Equation
(45) is reduced to

dY
dX

= 2Y
X

+ 2b tð Þ: ð46Þ

Solving the above equation, we get

Y = c tð ÞX2 − 2b tð ÞX, ð47Þ

namely,

wxx =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c tð Þw2

x − 2b tð Þwx

q
, ð48Þ

where bðtÞ and cðtÞ are arbitrary functions of t.

Case 1. When bðtÞ = cðtÞ = 0, from Equation (48), we get

w = c1 tð Þx + c2 tð Þ, ð49Þ

where c1ðtÞ and c2ðtÞ are arbitrary functions of t.
Substituting the above equation into Equation (48),

we get

x
dc1 tð Þ
dt

+ dc2 tð Þ
dt

= −a00c1 tð Þ: ð50Þ

Setting the coefficients of xiði = 0, 1Þ to zero in the
above equation, we get
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dc1 tð Þ
dt

= 0,

dc2 tð Þ
dt

= −a00c1 tð Þ:
ð51Þ

Solving the above equations, we get

c1 tð Þ = C1,
c2 tð Þ = C2 − a00C1t,

ð52Þ

where Ci ði = 1, 2Þ are arbitrary constants. Then, we get

w = C1 x − a00tð Þ + C2: ð53Þ

Substituting Equation (53) into Equation (11), we get
an exact solution of Equation (6) as follows:

u7 x, tð Þ = a00 −
12δC2

1
C1 x − a00tð Þ + C2ð Þ2 , ð54Þ

where Ci ði = 1, 2Þ and a00 are arbitrary constants.

Case 2. When bðtÞ = 0 and cðtÞ > 0, similar to Case 1, we get

w = C3 + C2e
C1 x− a00+δC1

2ð Þtð Þ, ð55Þ

and an exact solution of Equation (6) as follows:

u8 x, tð Þ = 12δC2
1C2C3e

C1 x− a00+δC2
1ð Þtð Þ

C3 + C2e
C1 x− a00+δC2

1ð Þtð Þ� �2 + a00, ð56Þ

where Ci ði = 1, 2, 3Þ and a00 are arbitrary constants.

Case 3. When bðtÞ ≠ 0 and cðtÞ = 0 similar to Case 1, we get

w = C1 x − a00t + C2ð Þ3 + 12δC1t + C3, ð57Þ

and an exact solution of Equation (6) as follows:

where Ci ði = 1, 2, 3Þ and a00 are arbitrary constants.

Case 4. When bðtÞ ≠ 0 and cðtÞ > 0, similar to Case 1, we get

w = C4e
C1 x− a00+δC2

1ð Þtð Þ + C3e
−C1 x− a00+δC2

1ð Þtð Þ
+ C2x − C2 a00 + 3δC2

1
� �

t + C5,
ð59Þ

and an exact solution of Equation (6) as follows:

u10 x, tð Þ = 12δ A1 − B1ð Þ + a00, ð60Þ

where

where C2
2 + 4C2

1C3C4 = 0, Ci ði = 1, 2, 3, 4, 5Þ, and a00 are arbi-
trary constants.

Case 5. When bðtÞ ≠ 0 and cðtÞ < 0, similar to Case 1, we get

u9 x, tð Þ = a00 −
36δC1 x − a00t + C2ð Þ C1 x − a00t + C2ð Þ3 − 24δC1t − 2C3

� �
C1 x − a00t + C2ð Þ3 − 12δC1t + C3
� �2 , ð58Þ

A1 =
C2
1C4e

C1 x− a00+δC2
1ð Þtð Þ + C2

1C3e
−C1 x− a00+δC2

1ð Þtð Þ
C4e

C1 x− a00+δC2
1ð Þtð Þ + C3e

−C1 x− a00+δC2
1ð Þtð Þ + C2x − C2 a00 + 3δC2

1
� �

t + C5
,

B1 =
C1C4e

C1 x− a00+δC2
1ð Þtð Þ − C1C3e

−C1 x− a00+δC2
1ð Þtð Þ + C2

� �2
C4e

C1 x− a00+δC2
1ð Þtð Þ + C3e

−C1 x− a00+δC2
1ð Þtð Þ + C2x − C2 a00 + 3δC2

1
� �

t + C5
� �2 ,

ð61Þ

w = −
C1C2x + C1 cos C2 x + δC2

2t − a00t + C3
� �� �

+ 3δC1C
3
2t − a00C1C2t − C4C

3
2

C3
2

, ð62Þ
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and an exact solution of Equation (6) as follows:

u11 x, tð Þ = 12δ A2 − B2ð Þ + a00, ð63Þ

where

where Ci ði = 1, 2, 3, 4Þ and a00 are arbitrary constants.

So far, based on the bilinear equation which is derived by
using the HB of undetermined coefficient method, many
exact solutions of the KdV are obtained by applying the per-
turbation method, sub-ODE method, and compatible condi-
tion. Our results can compare with the ðG′/GÞ-expansion
method, Hirota’s method, and HB method [20–30].

4. Application to the Burgers Equation

Let us consider the Burgers equation in the form

ut + uux + δuxx = 0, ð65Þ

where δ is a constant.
Suppose that the solution of Equation (65) is of the form

u = amn ln wð Þm,n + 〠
i=m,j=n

i,j=0
i+j≠0,m+n

aij ln wð Þi,j + a00, ð66Þ

where m, n, and aij ði = 0, 1,⋯,m, j = 0, 1,⋯, nÞ are con-
stants to be determined later.

Balancing uxx and uux in Equation (65), it is required
that m + 2 = 2m + 1 and n = 2n. Then, Equation (66) can be
written as

u = a10 ln wð Þx + a00: ð67Þ

From Equation (67), one can calculate the following
derivatives:

u = a10
wx

w
+ a00,

ux = a10
wxx

w
−
w2

x

w2

� �
,

ut = a10
wxt

w
−
wxwt

w2

� �
,

uxx = a10
wxxx

w
−
3wxxwx

w2 + 2w3
x

w3

� �
:

ð68Þ

Equating the coefficients of ðwx/wÞ3 on the left-hand side
of Equation (65) to zero yields an algebraic equation for a10
as follows:

−a210 + 2a10δ = 0: ð69Þ

Solving the above algebraic equation, we get a10 = 2δ.
Substituting a10 back into Equation (67), we get

u = 2δ ln wð Þx + a00, ð70Þ

where a00 is an arbitrary constant.
Substituting Equation (70) into Equation (65), we get

2δ K1 + K2 + K3ð Þ = 0, ð71Þ

where

K1 =
wxtw −wxwt

w2 ,

K2 = a00
wxxw −w2

x

w2

� �
,

K3 = δ
wwxxx −wxwxx

w2

� �
:

ð72Þ

Simplifying Equation (71), we get

wxtw −wxwtð Þ + a00 wxxw −w2
x

� �
+ δ wwxxx −wxwxxð Þ = 0:

ð73Þ

Equation (73) can be written concisely in terms of D-
operators as

Dx wt + δwxx + a00wxð Þ ·w = 0: ð74Þ

Equation (74) is identical to

wt + δwxx + a00wx − C tð Þw = 0, ð75Þ

where CðtÞ is an arbitrary function of t and a00 is an arbitrary
constant.

A2 =
−C1C

2
2 cos C2 x + δC2

2t − a00t + C3
� �� �

C1C2x + C1 cos C2 x + δC2
2t − a00t + C3

� �� �
+ 3δC1C

3
2t − C1C2a00t − C3

2C4
,

B2 =
C2
1C

2
2 −1 + sin C2 x + δC2

2t − a00t + C3
� �� �� �2

C1C2x + C1 cos C2 x + δC2
2t − a00t + C3

� �� �
+ 3δC1C

3
2t − a00C1C2t − C3

2C4
� �2 ,

ð64Þ
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In particular, taking CðtÞ as constant C in Equation (75),
we get

wt + δwxx + a00wx − Cw = 0: ð76Þ

Remark 4. Applying Hirota’s method [22–24], the bilinear
equation of Equation (74) can be written as

Dx wt + δwxxð Þ ⋅w = 0: ð77Þ

Equation (77) is obtained by setting a00 = 0 in Equation
(74). Obviously, Equation (77) is a special case of Equation
(74).

Remark 5. Equations (70) and (76) are general Cole-Hopf
transformations. In fact, setting a00 = C = 0 in Equations
(70) and (76), we get the famous Cole-Hopf transformations

u = 2δ ln wð Þx,wt + δwxx = 0: ð78Þ

(i) Now, we apply the perturbation method to Equation
(74) to derive N-soliton solution of Equation (65).
Suppose that w can be expanded as follows:

w = 1 + εw1 + ε2w2+⋯εNwN+⋯, ð79Þ

where ε is a parameter and wi =wiðx, tÞ ði = 1, 2,⋯Þ.
Substituting Equation (79) into Equation (74) and

arranging it at each order of ε, we get

ε :
1
2 Dxt + a00D

2
x

� �
w1 ⋅ 1 + 1 ⋅w1ð Þ + δDxw1xx ⋅ 1 = 0,

ε2 :
1
2 Dxt + a00D

2
x

� �
w2 ⋅ 1 +w1 ⋅w1 + 1 ⋅w2ð Þ

+ δDx w1xx ⋅w1 +w2xx ⋅ 1ð Þ = 0,

ε3 :
1
2 Dxt + a00D

2
x

� �
w3 ⋅ 1 +w2 ⋅w1 +w1 ⋅w2 + 1 ⋅w3ð Þ

+ δDx w1xx ⋅w2 +w2xx ⋅w1 +w3xx ⋅ 1ð Þ = 0,

⋯
ð80Þ

The order-ε equation can be rewritten as a linear differ-
ential equation for w1 as follows:

∂
∂x

∂
∂t

+ a00
∂
∂x

+ δ
∂2

∂x2

 !
w1 = 0: ð81Þ

Solving Equation (81), we get

w1 = eP1x− a00P1+δP2
1ð Þt , ð82Þ

where P1 is an arbitrary constant.

The coefficient of ε2 can be rearranged as follows:

∂
∂x

∂
∂t

+ a00
∂
∂x

+ δ
∂2

∂x2

 !
w2

= −
1
2 Dxt + a00D

2
x

� �
w1 ⋅w1 − δDxw1xx ⋅w1:

ð83Þ

Substituting Equation (82) into Equation (83), the right-
hand side of Equation (83) equals zero. Therefore, we can
choose

w2 = 0: ð84Þ

Substituting Equations (82) and (84) into Equation (79),
we get

w = 1 + eP1x− a00P1+δP1
2ð Þt+ξ01 , ð85Þ

where P1, a00, and ξ1
0 are arbitrary constants.

Substituting Equation (85) into Equation (70), 1-soliton
solution of Equation (65) can be obtained.

If we choose w1 = eP1x−ða00P1+δP2
1Þt + eP2x−ða00P2+δP2

2Þt in
Equation (81), Equation (74) has no 2-soliton solution. But
there exists a solution as follows:

w = 1 + 〠
n

i=1
eη1 , ð86Þ

where ηi = Pix − ða00Pi + δP2
i Þt + ξ01, Pi, ξ01 ði = 1, 2,⋯,nÞ, and

a00 are arbitrary constants.

(ii) Now, we discuss Equation (73) by using the sub-ODE
method.

Using transformations wðx, tÞ =wðξÞ, ξ = x −Vt, Equa-
tion (73) is reduced to

a00 −Vð Þ w″w −w′2
� �

+ δ ww″′ −w′w″
� �

= 0, ð87Þ

where the prime denotes the derivation with respect to ξ and
V is a constant to be determined later.

Noticing the bilinear property of Equation (87), suppose
that w satisfies the following ODE:

w″ + λw′ + μw = 0, ð88Þ

where λ and μ are parameters.
Substituting Equation (88) into Equation (87), we get

l1w
2 + l2ww′ + l3w′

2 = 0, ð89Þ
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where

l1 = μ δλ +V − a00ð Þ,
l2 = λ δλ +V − a00ð Þ,
l3 = δλ + V − a00:

ð90Þ

Setting l1 = l2 = l3 = 0 yields a set of algebraic equations
for V , λ, and μ. Solving the set of algebraic equations, we get

V = a00 − δλ, ð91Þ

where λ, μ, and a00 are arbitrary constants.
Substituting the general solutions of Equation (88) into

Equation (70), we get three types of traveling wave solutions
of Equation (65) as follows.

When λ2 − 4µ > 0,

u1 x, tð Þ = u1 ξð Þ = δ
ffiffiffiffi
A

p C1e
ffiffiffi
A

p /2ð Þξ − C2e
−
ffiffiffi
A

p /2ð Þξ

C1e
ffiffiffi
A

p /2ð Þξ + C2e
−
ffiffiffi
A

p /2ð Þξ

 !
+ a00 − δλ,

ð92Þ

where

A = λ2 − 4μ,
V = a00 − δλ,
ξ = x − a00 − δλð Þt,

ð93Þ

where C1, C2, λ, µ, and a00 are arbitrary constants.
Taking C1 = ðC3 + C4Þ/2 and C2 = ðC3 − C4Þ/2, Equation

(93) can be written as

u2 x, tð Þ = u2 ξð Þ = δ
ffiffiffiffi
A

p

�
C3 sinh

ffiffiffiffi
A

p
/2

� �
ξ + C4 cosh

ffiffiffiffi
A

p
/2

� �
ξ

C3 cosh
ffiffiffiffi
A

p
/2

� �
ξ + C4 sinh

ffiffiffiffi
A

p
/2

� �
ξ

0
@

1
A

+ a00 − δλ,
ð94Þ

where C3, C4, and a00 are arbitrary constants and A and ξ are
given by Equation (94).

In particular, if jC4/C3j < 1, then Equation (94) is
reduced to

u3 x, tð Þ = u3 ξð Þ = δ
ffiffiffiffi
A

p
tanh

ffiffiffiffi
A

p

2 ξ + ξ0

 !
+ a00 − δλ, ð95Þ

where C3, C4, and a00 are arbitrary constants and A and ξ
are given by Equation (94), ξ0 = arctanh ðC4/C3Þ.

When λ2 − 4µ < 0,

u4 x, tð Þ = u4 ξð Þ = δ
ffiffiffiffiffiffi
−A

p

�
−C3 sin

ffiffiffiffiffiffi
−A

p
/2

� �
ξ + C4 cos

ffiffiffiffiffiffi
−A

p
/2

� �
ξ

C3 cos
ffiffiffiffiffiffi
−A

p
/2

� �
ξ + C4 sin

ffiffiffiffiffiffi
−A

p
/2

� �
ξ

0
@

1
A

+ a00 − δλ,
ð96Þ

where C3, C4, and a00 are arbitrary constants and A and ξ are
given by Equation (94).

Obviously, Equation (96) can be written as

u5 x, tð Þ = u5 ξð Þ = −δ
ffiffiffiffiffiffi
−A

p
tan

ffiffiffiffiffiffi
−A

p

2 ξ − ξ0

 !
+ a00 − δλ,

ð97Þ

where λ, µ, and a00 are arbitrary constants and A and ξ are
given by Equation (94), ξ0 = − arctan ðC4/C3Þ.

When λ2 − 4µ = 0,

u6 x, tð Þ = u6 ξð Þ = 2δC2

C1 + C2ξ
+ a00 − δλ, ð98Þ

where ξ = x − ða00 − δλÞt, C1, C2, λ, µ, and a00 are arbitrary
constants.

(iii) Now, we discuss Equation (73) from the compatible
condition.

Using the compatible condition, we can get nothing
but Equation (76). Using transformations wðx, tÞ =wðξÞ,
ξ = x −Vt, Equation (76) is reduced to

δw″ + a00 −Vð Þw′ − Cw = 0: ð99Þ

Substituting the general solutions of Equation (99)
into Equation (70), we get three types of traveling wave
solutions of Equation (65) as follows.

When ða00 −V1Þ2 + 4Cδ > 0,

u7 x, tð Þ = u7 ξð Þ =
ffiffiffiffi
Δ

p C1e
ffiffiffi
Δ

p /2δð Þξ − C2e
−
ffiffiffi
Δ

p /2δð Þξ

C1e
ffiffiffi
Δ

p /2δð Þξ + C2e
−
ffiffiffi
Δ

p /2δð Þξ

 !
+V1,

ð100Þ

where

Δ = a00 −V1ð Þ2 + 4Cδ,
ξ = x −V1t,

ð101Þ

where V1, C, C1, C2, and a00 are arbitrary constants.
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Taking C1 = ðC3 + C4Þ/2 and C2 = ðC3 + C4Þ/2, Equation
(101) can be written as

u8 x, tð Þ = u8 ξð Þ =
ffiffiffiffi
Δ

p

�
C3 sinh

ffiffiffiffi
Δ

p
/2δ

� �
ξ + C4 cosh

ffiffiffiffi
Δ

p
/2δ

� �
ξ

C3 cosh
ffiffiffiffi
Δ

p
/2δ

� �
ξ + C4 sinh

ffiffiffiffi
Δ

p
/2δ

� �
ξ

0
@

1
A

+V1,
ð102Þ

where V1, C, C3, C4, and a00 are arbitrary constants and Δ
and ξ are given by Equation (101).

In particular, if C4/C3 < 1, then Equation (102) is
reduced to

u9 x, tð Þ = u9 ξð Þ =
ffiffiffiffi
Δ

p
tanh

ffiffiffiffi
Δ

p

2δ ξ + ξ0

 !
+V1, ð103Þ

where ξ0 = arctanh ðC4/C3Þ, V1, C, C3, C4, and a00 are
arbitrary constants and Δ and ξ are given by Equation
(101).

When ða00 −V2Þ2 + 4Cδ < 0,

u10 x, tð Þ = u10 ξð Þ =
ffiffiffiffiffiffi
−Δ

p

�
−C3 sin

ffiffiffiffiffiffi
−Δ

p
/2δ

� �
ξ + C4 cos

ffiffiffiffiffiffi
−Δ

p
/2δ

� �
ξ

C3 cos
ffiffiffiffiffiffi
−Δ

p
/2δ

� �
ξ + C4 sin

ffiffiffiffiffiffi
−Δ

p
/2δ

� �
ξ

0
@

1
A

+V2,
ð104Þ

where V2, C, C3, C4, and a00 are arbitrary constants and Δ
and ξ are given by Equation (101).

Obviously, Equation (104) can be written as

u11 x, tð Þ = u11 ξð Þ = −
ffiffiffiffiffiffi
−Δ

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ

p

2δ

s
ξ − ξ0

0
@

1
A +V2,

ð105Þ

where ξ0 = − arctan ðC4/C3Þ, V2, C, C3, C4, and a00 are arbi-
trary constants and Δ and ξ are given by Equation (101).

When ða00 −V3Þ2 + 4Cδ = 0,

u12 x, tð Þ = u12 ξð Þ = 2δ C2
C1 + C2ξ

+V3, ð106Þ

where ξ = x −V3t, V3, C1, C2, and a00 are arbitrary constants.
Moreover, note that Equation (76) is linear, so we can get

the solution of Equation (65) as follows:

w = 〠
n1

i=1
w1i + 〠

n2

i=1
w2i + 〠

n3

i=1
w3iu13 = 2δ ln wð Þ + a00, ð107Þ

where

w1i = C1,1ie
− a00−V1ið Þ+ ffiffiffiffiffi

Δ1i
pð Þ/2ð Þξ1i

+ C2,1ie
− a00−V1ið Þ− ffiffiffiffiffi

Δ1i
pð Þ/2ð Þξ1i ,

w2i =
 
C1,2i cos

ffiffiffiffiffiffiffiffiffi
−Δ2i

p
ξ2i

2

 !

+ C2,2i sin
ffiffiffiffiffiffiffiffiffi
−Δ2i

p
ξ2i

2

 !!
e − a00−V2ið Þξ2ið Þ/2ð Þ,

w3i = C1,3i + C2,3iξ3ið Þe − a00−V3ið Þξ3ið Þ/2ð Þ,

ð108Þ

where ξ1i = x −V1it, Δ1i = ða00 − V1iÞ2 + 4Cδ > 0
ði = 1,⋯, n1Þ; ξ2i = x −V2it, Δ2i = ða00 − V2iÞ2 + 4Cδ < 0
ði = 1,⋯, n2Þ; ξ3i = x −V3it, Δ3i = ða00 − V3iÞ2 + 4Cδ = 0
ði = 1,⋯, n3Þ; C1,1i, C2,1i ði = 1,⋯, n1Þ; C1,2i, C2,2i ði = 1,⋯,
n2Þ; and C1,3i, C2,3i ði = 1,⋯, n3Þ are arbitrary constants, and
n1, n2, and n3 are arbitrary but finite integers.

Remark 6. We can deal with Equation (76) by using some
assumptions. For example, when we suppose that w = −
αt +WðxÞ and C = 0, we get

w = −αt + αx
a00

+ C1 + C2e−a00x/δ,

u14 x, tð Þ = α 2δ − ta200 + a00x
� �

+ a200 C1 − C2e
−a00x/δ

� �
α x − a00tð Þ + a00 C1 + C2e−a00x/δ

� � ,

ð109Þ

where C1, C2, α, and a00 are arbitrary constants.
When we suppose that w = −αt +WðxÞ and C = a00 = 0,

we get

w = −αt + αx2

2δ + C1x + C2,

u15 x, tð Þ = 4δ αx + δC1ð Þ
2δ C1x + C2 − αtð Þ + αx2

,
ð110Þ

where C1, C2, and α are arbitrary constants.
Similarly, we can assume that w =∑n

i=1piðxÞqiðtÞ; then, a
new solution of Equation (65) can be obtained. Being similar
to above process, we omit it.

So far, applying the HB of undetermined coefficient
method to the Burgers equation, we get the bilinear equation
of Burgers equation. Moreover, we reduce the Burgers to a
linear equation. Based on them, many exact solutions of the
Burgers equation are obtained by applying the perturbation
method, sub-ODE method, and compatible condition. Our
results can compare with the ðG′/GÞ-expansion method,
Hirota’s method, and HB method [20–30].
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5. Bilinear Equation of the Boussinesq Equation
and Sawada-Kotera Equation

In this section, we derive the bilinear equations of the Bous-
sinesq equation and Sawada-Kotera equation by using the
HB of undetermined coefficient method. Being similar to
Section 4, we omit the process of solving exact solutions.

Example 1. The generalized Boussinesq equation reads

utt + 2αuxt + α2 + β
� �

uxx + γuuxx + δuxxxx = 0, ð111Þ

where α, β, γ, and δ are known constants.
In order to balance uxxxx and uux in Equation (111), it is

required that m + 4 = 2m + 2 and n = 2n. Then, we suppose
that the solution of Equation (111) is of the form

u = a20 ln wð Þxx + a10 ln wð Þx + a00, ð112Þ

where ai0 ði = 0, 1, 2Þ are constants to be determined later.
Substituting Equation (112) into Equation (111) and

equating the coefficients of ðwx/wÞ6 and ðwx/wÞ5 on the
left-hand side of Equation (111) to zero yield a set of alge-
braic equations for a20 and a10. Solving the algebraic equa-
tions, we get a20 = 6δ/γ and a10 = 0. Substituting a20 and a10
back into Equation (112), we get

u = 6δ
γ

ln wð Þxx + a00: ð113Þ

where a00 is an arbitrary constant.
Substituting Equation (113) into Equation (111), we get

6δ
γ

K1 + K2 + K3ð Þ = 0, ð114Þ

where

K1 = β
wxxxx

w
−
3w2

xx + 4wxwxxx

w2 + 12wxxw
2
x

w3 −
6w4

x

w4

� �

+ α2
12wxxw

2
x

w3 −
3w2

xx + 4wxwxxx

w2 + wxxxx

w
−
6w4

x

w4

� �

+ α

� 2wxxxt

w
−
6wxxwxt + 6wxxtwx + 2wtwxxx

w2

+ 12wxwtwxx + 12w2
xwxt

w3 −
12wtw

3
x

w4

�
+ wxxtt

w

−
2wxwxtt +wxxwtt + 2wtwxxt + 2w2

xt

w2

+ 2w2
xwtt + 2wxxw

2
t + 8wxwtwxt

w3 −
6w2

xw
2
t

w4 ,

K2 = a00

� 2γwxxxx

w
−
8γwxwxxx + 6γw2

xx

w2

+ 24γwxxw
2
x

w3 −
12γw4

x

w4

�
,

K3 = δ

�
wxxxxxx

w
+ 2w2

xxx − 6wxwxxxxx − 3wxxwxxxx

w2

+ 18w2
xwxxxx − 6w3

xx

w3 + 18w2
xw

2
xx − 24w3

xwxxx

w4

�
:

ð115Þ

Simplifying Equation (114) and integrating twice with
respect to x, we get

∂2

∂x2

�
α2 + β + 2γa00
� � wwxx −w2

x

w2

� �
+ 2α wwxt −wxwt

w2

� �

+ wwtt −w2
t

w2

� �
+ δ

wwxxxx − 4wxwxxx3w2
xx

w2

� ��
= 0:

ð116Þ

Equation (116) is identical to

α2 + β + 2γa00
� �

wwxx −w2
x

� �
+ 2α wwxt −wxwtð Þ

+ wwtt −w2
t

� �
+ δ wwxxxx − 4wxwxxx + 3w2

xx

� �
− C1 tð Þx + C2 tð Þð Þw2 = 0,

ð117Þ

where C1ðtÞ and C2ðtÞ are arbitrary functions of t and a00 is
an arbitrary constant.

In particular, letting C1ðtÞ = C2ðtÞ = 0 in Equation (117),
we get the bilinear equation of Equation (111) as follows:

α2 + β + 2γa00
� �

wwxx −w2
x

� �
+ 2α wwxt −wxwtð Þ

+ wwtt −w2
t

� �
+ δ wwxxxx − 4wxwxxx + 3w2

xx

� �
= 0:
ð118Þ

Equation (118) can be written concisely in terms of D-
operators as

2αDxDt + δD4
x + α2 + β + 2γa00
� �

D2
x +D2

t

� �
w ·w = 0,

ð119Þ

where a00 is an arbitrary constant.

Example 2. The Sawada-Kotera equation reads

ut + 15 u3 + uuxx
� �

x
+ uxxxxx = 0: ð120Þ

In order to balance uxxxxx and u3 in Equation (120), it is
required that m + 5 = 3m + 1 and n = 3n. Then, we suppose
that the solution of Equation (120) is of the form

u = a20 ln wð Þxx + a10 ln wð Þx + a00, ð121Þ

where ai0 ði = 0,1,2Þ are constants to be determined later.
Substituting Equation (121) into Equation (120) and

equating the coefficients of ðwx/wÞ7 and ðwx/wÞ6 on the
left-hand side of Equation (120) to zero yield a set of alge-
braic equations for a20 and a10. Solving the algebraic
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equations, we get a20 = 2 and a10 = 0. Substituting a20 and a10
back into Equation (121), we get

u = 2 ln wð Þxx + a00, ð122Þ

where a00 is an arbitrary constant.
Substituting Equation (122) into Equation (120), we get

2 K1 + K2 + K3ð Þ = 0, ð123Þ

where

K1 = 45a200
wxxx

w
−
3wxwxx

w2 + 2w3
x

w3

� �
,

K2 = 15a00
�
wxxxxx

w
+ 2wxxwxxx − 5wxwxxxx

w2

+ 8wxxxw
2
x − 6wxw

2
xx

w3

�
,

K3 =
wxxt

w −
2wxwxt +wxxwt

w2 + 2w2
xwt

w3

� �

+
�
wxxxxxxx

w
+ 9wxxwxxxxx − 5wxxxwxxxx − 7wxwxxxxxx

w2

+ 20wxw
2
xxx − 30wxwxxwxxxx + 12w2

xwxxxxx

w3

�
:

ð124Þ

Simplifying Equation (123) and integrating once with
respect to x, we get

∂
∂x

�
45a200

wwxx −w2
x

w2

� �

+ 15a00
wwxxxx − 4wxwxxx + 3w2

xx

w2

� �
+ wwxt −wxwt

w2

+ wwxxxxxx − 6wxwxxxxx + 15wxxwxxxx − 10w2
xxx

w2

�
= 0:

ð125Þ

Equation (125) is identical to

45a200 wwxx −w2
x

� �
+ 15a00 wwxxxx − 4wxwxxx + 3w2

xx

� �
+ wwxt −wxwtð Þ + �wwxxxxxx − 6wxwxxxxx

+ 15wxxwxxxx − 10w2
xxx

�
− C tð Þw2 = 0,

ð126Þ

where CðtÞ is an arbitrary function of t and a00 is an arbitrary
constant.

In particular, letting CðtÞ = 0 in Equation (126), we get
the bilinear equation of Equation (120) as follows:

45a200 wwxx −w2
x

� �
+ 15a00 wwxxxx − 4wxwxxx + 3w2

xx

� �
+ wwxt −wxwtð Þ + �wwxxxxxx − 6wxwxxxxx

+ 15wxxwxxxx − 10w2
xxx

�
= 0:

ð127Þ

Equation (127) can be written concisely in terms of D-
operators as

45a200D2
x + 15a00D4

x +DxDt +D6
x

� �
w ⋅w = 0, ð128Þ

where a00 is an arbitrary constant.

6. Conclusions

The HB of undetermined coefficient method is successfully
used to establish the bilinear equation of NLPDE. By apply-
ing the perturbation method, sub-ODE method, and com-
patible condition to the bilinear equation, more exact
solutions of NLPDE are obtained. We illustrate the real
meaning of balance numbers. We show the underlying rela-
tions among the ðG′/GÞ-expansion method, Hirota’s
method, and HB method. Many well-known NLPDE can be
handled by the HB of undetermined coefficient method.
The performance of our method is found to be simple and
efficient. The availability of computer systems like Maple
facilitates the tedious algebraic calculations. Our method is
also a standard and computable method, which allows us to
solve complicated and tedious algebraic calculations.
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