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We consider the following nonlinear problem u″ðxÞ + λuðxÞ + f ðx, uÞ = 0,  x ∈ S1, (P) where S1 is a unit circle, λ ∈ℝ is a parameter,
and f ðx, uÞ is a nonlinearity. By using the variational method, we obtain the existence of a positive solution to (P) for all λ ∈ℝ. This
phenomenon is different from the corresponding boundary value problem.

1. Introduction

We consider the following nonlinear problem

u″ xð Þ + λu xð Þ + f x, uð Þ = 0,  x ∈ S1, ð1Þ

where S1 is a unit circle, λ is a parameter and the nonlinear
term f satisfies.

(f1) f ðx, tÞ is a continuous function on S1 ×ℝ, and f ðx, tÞ
is odd on t.

The second-order differential equation (1) is a nonlinear
elliptic equation model arising from studying some physics
processes or geometric problems. For example, (1) is the
problem of oscillations [1, 2] of a spherical thick shell made
of an elastic material when the nonlinearity f satisfies a
superlinear condition as t⟶ +∞, namely,

ð f2Þ limt→+∞
f ðx, tÞ/t = +∞ uniformly for x ∈ S1.

For λ = 1, f ðx, tÞ = gðxÞjtjp−1t with p ∈ℝ and gðxÞ:
S1 ⟶ℝ, (1) is also used to model the planar Minkowski
problem [3–5].

As is well known, the strong maximum principle is a
powerful tool for studying positive solutions of a nonlinear
elliptic equation, see for example [6, 7]. In [8], the existence
of positive solutions to the nonlinear elliptic equation can
also be obtained by a standard argument, based on trans-

forming the partial differential equation to the equivalent
ordinary differential equation. The iterative method can also
be used in the existence of a solution to nonlinear elliptic
equation (see [9]). If the parameter λ > 0 is small, the related
Green function of the operator d/dx2 + λ on S1 is positive.
When the Green function is positive, the upper and lower
solution method and Schauder’s fixed point theorem are also
suitable to obtain the positive solution to some nonlinear
elliptic equations, see for example [10–12]. However, the
Green function of operator d/dx2 + λ on S1 may be sign-
changing for some λ > 0.

In this paper, we aim at studying the existence of a posi-
tive solution of nonlinear equation (1) for all λ ∈ℝ and the
effect of asymptotic properties of nonlinearity f ðx, tÞ when
t⟶ 0, to the positivity of solution of (1). Our contribution
includes two aspects. Firstly, we establish the following The-
orem 1 to show that a nonnegative solution is strictly positive
by the analysis based on the Taylor expansion theorem.

Theorem 1. Assume λ ∈ℝ, f satisfies ð f1Þ and f ðx, tÞ/t is
bounded as t⟶ 0 . Let v ∈ C2ðS1Þ be a nonnegative solution
of (1). If v≡0 , then v is strictly positive.

Indeed, we can also apply the Green function or the
strong maximum principle to study the positive of the solu-
tion. However, the direct application of Green function for
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studying the strictly positive of solution often needs more
assumptions on parameter λ and the information of sign of
the non-homogeneous term. By using Theorem 1, we could
estimate the strictly positive of solution to (1) for all λ ∈ℝ
as the following applications.

Secondly, as an application, we give a strictly positive
solution of (1) for all λ ∈ℝ by using Theorem 1 and the var-
iational method. To study the existence of positive solution to
(1) under a general nonlinearity, we also need the following
general assumptions.

ð f3Þlimt→0
f ðx, tÞ/t = 0 uniformly for x ∈ S1;

ð f4Þ there exists α > 2 such that, for every x ∈ S1 and t ∈ℝ

αF x, tð Þ ≤ t f x, tð Þ ; ð2Þ

ð f5Þ there exists T > 0 such that

inf
x∈S1,∣t∣>T

F x, tð Þ > 0 ; ð3Þ

ð f6Þ for every x ∈ S1, f ðx, tÞ/t is an increasing function of
t on ½0, +∞Þ.

Theorem 2. Assume ð f1Þ - ð f6Þ hold. For λ < 0, (1) has a pos-
itive solution.

We see that the existence of a positive solution in Theo-
rem 2 depends on the assumption that λ < 0. It is natural to
ask whether there exist nontrivial solutions of (1) for some
λ ≥ 0. To shed some light to this problem, we give the exis-
tence of positive solutions to (1) with some special nonlinear-
ity as follows.

Theorem 3. Assume f ðx, uÞ = gðxÞjuðxÞjp−1uðxÞ with p > 1 .

Let λ ≥ 0 . If g ∈ CðS1Þ is nonnegative with
Ð
S1 jgðxÞj

2/ð1−pÞ

dx < +∞ , then (1) has a positive solution.

From Theorems 2 and 3, we obtain that (1) may own a
positive solution for all λ ∈ℝ, which is different from the
boundary value problem [13–16]. To illustrate that the con-
clusions above for (1) is a new phenomenon that different
from the existence of a positive solution to boundary value
problem, we consider the following problem

u″ xð Þ + λu xð Þ + g xð Þ u xð Þj jp−1u xð Þ = 0 x ∈ 0, 2πð Þ,  
u 0ð Þ = u 2πð Þ = 0: ð4Þ

Let u ∈ C2ð½0, 2π�Þ be a solution of (4), we have

λ −
1
4

� �ð2π
0

sin x
2

� �
u xð Þdx +

ð2π
0
g xð Þ u xð Þj jp−1 sin x

2
� �

dx = 0:

ð5Þ

If λ > 1/4, it follows that there is no positive solution to
the boundary value problem (4) with gðxÞ ≥ 0.

Since the proof of Theorem 2 depends on ð f1Þ and λ < 0,
it is impossible to deduce Theorem 3 by a similar method for
Theorem 2. In the next section, we apply a reverse Hölder’s
inequality and constrained variational method to prove
Theorem 3.

2. Proof of Theorems

We first give our new method to estimate the positivity of the
solution of (1) as follows. By assumption, we obtain

−v″ xð Þ − λv xð Þ = f x, v xð Þð Þ, x ∈ 0, 2π½ �: ð6Þ

We will prove that v is strictly positive by the method of
contradiction. Assume vðθ0Þ = 0 for some θ0 ∈ ½0, 2π�. We
choose θ0 = inf fx ∈ ½0, 2π�: vðxÞ = 0g. Since v≡0, we have
two points θr and θl in ½0, 2π� such that θ0 ≤ θr < θl and

v xð Þ = 0 for x ∈ θ0, θr½ � ; and v xð Þ > 0 for x ∈ θr , θlð Þ: ð7Þ

Since 0 is the minimum value of v on ½0, 2π�, we have

v′ xð Þ = 0 for x ∈ θ0, θr½ �: ð8Þ

By ð f1Þ, we see that f ðx, 0Þ = 0. It follows from (6) and
(7) that

v″ xð Þ = 0 for x ∈ θ0, θr½ �: ð9Þ

By Taylor’s theorem, we give a formula of vðxÞ for all
x ∈ ðθr , θlÞ as follows,

v xð Þ = v″ ξxð Þ
2 x − θrð Þ2 for some ξx ∈ θr , xð Þ: ð10Þ

We claim that there exists a strictly monotone decreas-
ing sequence fθng ⊂ ðθr , θlÞ such that

θn⟶
n

θr and ∣v″ θnð Þ∣ > 0: ð11Þ

Otherwise, there exists a small δ > 0 such that ∣v″ðxÞ ∣ = 0
for all x ∈ ðθr , θr + δÞ. By applying (10), we derive that

v xð Þ = 0 for x ∈ θr , θr + δð Þ, ð12Þ

which contradicts to the second part of (7). By (9), we see that
v″ðθrÞ = 0. Let θ1 be given by (11), then we have

ρ1 = sup x ∈ θr , θ1½ �: ∣ v″ xð Þ∣ = sup
ρ∈ θr ,θ1½ �

∣ v″ ρð Þ ∣
( )

> θr:

ð13Þ
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For k ∈ℕ, we can define a sequence of ρk by

ρk+1 = sup x ∈ θr , ρk − δkð Þ: ∣ v″ xð Þ∣ = sup
ρ∈ θr ,ρk−δkð Þ

∣ v″ ρð Þ ∣
( )

,

ð14Þ

where δk = ðρk − θrÞ/2. From (11), we see that θn ⟶
n

θr.
Fix k ∈ℕ, if i ∈ℕ is large enough, then θi ∈ ðθr , ρkÞ; and
it follows from (14) that ∣v″ðρkÞ ∣ ≥ ∣ v″ðθiÞ ∣ >0. Following
this way, we obtain a strictly monotone decreasing sequence
fρng ⊂ ðθr , θlÞ such that ρn ⟶

n
θr and

∣v″ ρnð Þ∣ > 0,  ∣v″ xð Þ∣ ≤ ∣v″ ρnð Þ∣ for x ∈ θr , ρnð Þ: ð15Þ

For each n ∈ℕ, via applying (10) with x = ρn, there
exists ξn ∈ ðθr , ρnÞ such that

v ρnð Þ = v ξnð Þ
2 ρn − θrð Þ2 and v″ ξnð Þ�� �� ≤ v″ ρnð Þ�� ��: ð16Þ

Let x = ρn in (6), we have

−v″ ρnð Þ − λv ρnð Þ = f ρn, v ρnð Þð Þ: ð17Þ

Substituting vðρnÞ in (17) by using the first part of (16),
and then multiplying (17) by 1/v″ðρnÞ, we deduce that

−1 − λ
v″ ξnð Þ
2v″ ρnð Þ

ρn − θrð Þ2 = f ρn, v ρnð Þð Þ
v ρnð Þ

v″ ξnð Þ
2v″ ρnð Þ

ρn − θrð Þ2:

ð18Þ

By using the second part of (16) and the assumption
that f ðθ, tÞ/t is bounded, we derive that

f ρn, v ρnð Þð Þ
v ρnð Þ =O 1ð Þ and v″ ξnð Þ

2v″ ρnð Þ
ρn − θrð Þ2

= o 1ð Þ as n⟶ +∞:

ð19Þ

From (18), we get a contradiction that 1 = oð1Þ as
n⟶ +∞.

To prove Theorem 2, we firstly obtain a nonnegative
solution of (1) via a minimum of I on manifold N ; then, we
prove that it is strictly positive by using Theorem 1. The
process is standard for studying the existence of nonneg-
ative solutions to nonlinear elliptic equations by the
method involving the Nehari manifold. For completeness,
we give the main steps. The following deformation lemma is
needed.

Lemma 1. (see, for example, Lemma 2.3 in [17]). Let X be a
Banach space, I ∈ C1ðX,ℝÞ, S ⊂ X, c ∈ℝ, ε, δ > 0 such that

inf
ϕ=0

I ′ uð Þϕ
∥ϕ∥

≥ 8ε/δ for all u

∈ u : ∥u − v∥≤2δ, c − 2 ≤ εI uð Þ ≤ c + 2εf g:
ð20Þ

We denote by Id the set fu ∈ X : IðuÞ ≤ dg for any d ∈ℝ.
Then, there exists η ∈ Cð½0, 1� × X, XÞ such that

(i) ηðt, uÞ = u, if t = 0 or if u∈fu ∈ X : inf
w∈S

∥u −w∥≤2δ,
c − 2ε ≤ IðuÞ ≤ c + 2εg,

(ii) ηð1, Ic+ε ∩ SÞ ⊂ Ic−ε

(iii) ηðt, ·Þ is an homeomorphism of X for any t ∈ ½0, 1�
(iv) Iðηð·, uÞÞ is non increasing for any u ∈ X

Let S be parameterized by angle x, H ≔H1ðSÞ be the
Sobolev space equipped with the usual normal

∥u∥ =
ð
S

u′
� �2

+ u2dx
� �1/2

: ð21Þ

Define Fðx, uÞ = Ð u
0 f ðx, tÞdt. Under the assumptions

ð f1Þ − ð f3Þ, we have the following C1 variational function
of (1).

I uð Þ = 1
2

ð
S1
u′2dx − λ

2

ð
S1
u2dx −

ð
S1
F x, uð Þdx: ð22Þ

The related Nehari manifold is defined by

N ≔ u ∈H1 S1
	 


\ 0f g:
ð
S1
u′2dx − λ

ð
S1
u2dx

�

−
ð
S1
f x, uð Þudx = 0

�
:

ð23Þ

Similar to Lemma 4.1 in [17], we have the following
lemma.

Lemma 2. Assume ð f1Þ − ð f6Þ hold. Let u ∈H be nontrivial
and hðtÞ = IðtuÞ for t > 0 . If λ < 0 , there exists tu > 0 such that
tuu ∈N , hðtuÞ =max

t>0
hðtÞ . The map u⟶ tu is continuous,

and u⟶ tuu defines a homeomorphism of the unit sphere
of H with N .

Proof. If λ < 0, we see that 1/2Ð S1 u′2dx − λ/2Ð S1 u2dx > 0 for
the nontrivial u ∈H. For any u ∈N , let gðtÞ = 1/t

Ð
S1 f ðx, tuÞ

dx. Then g is an increasing function of t by ð f6Þ. By the def-
inition of hðtÞ = IðtuÞ, we see that hð0Þ = 0, and tuu ∈N if and

only if
Ð
S1 u′

2
dx − λ

Ð
S1 u

2dx = 1/tu
Ð
S1 f ðx, tuuÞudx, which is

equivalent to h′ðtuÞ = 0. Under the assumptions ð f3Þ − ð f5Þ,
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we see that hðtÞ > 0 for small t > 0 and hðtÞ < 0 for large t.
Therefore, there exists a unique tu such that h′ðtuÞ=0 and
tuu ∈N . By ð f4Þ, there exists a constant C0 > 0 such that

C0 uj jα − 1ð Þ ≤ uf x, uð Þ, ð24Þ

where α > 2 is given by ð f4Þ.
Assume that there exists a nontrivial sequence un ⟶

n u
in H1ðS1Þ with u=0, we have a sequence ftung that tunun ∈
N . This and ð f4Þ imply that

Ctun∥un∥
2 ≥ tun

ð
S1
u2
n′dx − λ

ð
S1
u2ndx

� �

=
ð
S1
f x, tunun
	 


undx

≥
ð
S1
C0 tαun unj jα − 1

� �
dx:

ð25Þ

It follows that ftung is bounded. And a subsequence of
ftung converges to a number t0. By using (25) and the
uniqueness of map tu = tðuÞ, we see that t0 = tu. That is, tun
converge to tu. The inverse map of u⟶ tuu is the retraction
u⟶ u/∥u∥.

By using the properties of I in Lemma 2. We obtain the
following Lemma 3.

Lemma 3. Assume ð f1Þ−ð f6Þ hold and λ < 0 . Let c1 = inf
u∈N

IðuÞ
, then c1 > 0 . If v ∈N and IðvÞ = c1, then v is a critical
point of I on H.

Proof. Let c2 ≔ inf
u∈H,u=0

max
t≥0

IðtuÞ and c≔ inf
γ∈Γ

max
t∈½0,1�

IðγðtÞÞ,
where Γ≔ fγ ∈ Cð½0, 1�,HÞ: Iðγð1ÞÞ < 0, γð0Þ = 0g. We prove
this Lemma by the following two steps.

Step 1. c1 = c2 = c > 0.
By Lemma 2, we see that IðtuuÞ =max

t≥0
IðtuÞ if and only if

tuu ∈N . This and the definitions of c1, c2 imply that c1 = c2.
By ð f1Þ − ð f2Þ, we see that IðtuÞ < 0 for u=0 and t > 0 large.
Hence, c ≤ c2. From Lemma 2, we see that the Nehari man-
ifold N separates H into two parts. By assumptions ð f1Þ −
ð f3Þ, we deduce that inf

u∈N
∥u∥>0 and there exists r > 0 such

that

min
∥u∥≤r

I uð Þ = 0,  inf
∥u∥=r

I uð Þ > 0: ð26Þ

It follows that the pass γ ∈ Γ has to cross N and
c ≥ inf

∥u∥=r
IðuÞ > 0. These facts imply that c1 ≤ c.

Step 2. v is a critical point of I.

Assume that I ′ðvÞ=0. Then there exists δ > 0 and ε > 0
such that

inf
ϕ=0

I ′ uð Þϕ
∥ϕ∥

≥ ε for all ∥u − v∥ ≤ 3δ: ð27Þ

For ε≔ fc/2, εδ/8g and S≔ Bðv, δÞ, Lemma 1 yields a
deformation η such that

(i) ηð1, uÞ = u if u∈fu ∈H : c − ε ≤ IðuÞ ≤ c + 2εg,
(ii) ηð1, Ic+ε ∩ Bðv, δÞÞ ⊂ Ic−ε

(iii) Iðηð1, uÞÞ ≤ IðuÞ, u ∈H
We deduce that max

t>0
Iðηð1, tvÞÞ ≤ c − ε < c = c2, which

contradicts the definition of c2.

By Lemma 3, we see that c1 = inf
u∈N

IðuÞ > 0. There exists a
sequence of fung ⊂N such that IðunÞ⟶ c1 as n⟶ +∞,
that is,

1
2

ð
S1
u′2dx − λ

2

ð
S1
u2dx −

ð
S1
F x, uð Þdx = c1 + o 1ð Þ, as n⟶ +∞,

ð28Þ
ð
S1
u′2dx − λ

ð
S1
u2dx −

ð
S1
f x, uð Þudx = 0, ð29Þ

Let α > 2 be given by ð f4Þ, it follows from (28) and (29)
that

α − 2
2

ð
S1
u′2dx − λ

ð
S1
u2dx

� �
≤ 2c1 for large n: ð30Þ

Since λ < 0, we have that f∥un∥g is bounded. Then, there
exists a weak limitation v of the sequence fung in H, i.e., up
to a subsequence, un ⇀ v weakly in H and un ⟶ v uni-
formly on S1 as n⟶ +∞. This together with the assump-
tions ð f1Þ − ð f3Þ imply that

lim
n→+∞

ð
S1
f x, unð Þundx =

ð
S1
f x, vð Þvdx: ð31Þ

It follows from (29) and (31) that lim
n→+∞

∥un − v∥ = 0,
which implies that v ∈N and c1 = inf

u∈N
IðuÞ = IðvÞ. By Lemma

3, we see that I ′ðvÞ = 0. Let v+ = max f0, vg and v− = −max
f0,−vg. Then, we deduce that Iðv+Þv+ = IðvÞv+ = Iðv−Þv− =
IðvÞv− = 0. If v is a sign-changing function, then v− and v+

are nontrivial. It follows that v−, v+ ∈N . We thus deduce
the following contradiction

c1 = I vð Þ = I v+ð Þ + I v−ð Þ ≥ 2 inf
u∈N

I uð Þ = 2c1 > 0: ð32Þ

So, v is not a sign-changing function. By the second part
of ð f1Þ, we see that IðvÞ = Ið−vÞ. Without loss of generality,
we assume that v is nonnegative. A standard regularity
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shows that v is C2 on S1. Since the nonlinear term f satisfies
assumptions ð f1Þ and ð f3Þ, we can apply Theorem 1 to get
that v is strictly positive.

Let us consider the constrained optimal problem

c = inf
F uð Þ=1

I uð Þ, ð33Þ

where

I uð Þ =
ð
S

u′
� �2

− λu2dx, ð34Þ

F uð Þ =
ð
S
g xð Þ uj jp+1dx: ð35Þ

For λ ≥ 0, it follows from reverse Hölder inequality and
(34) that

inf
F uð Þ=1

I uð Þ = inf
F uð Þ=0

I uð Þ
F uð Þf g2/p+1

≥ inf
F uð Þ=0

−λ
Ð
S1 uj j2dxÐ

S1 g xð Þ2/ 1−pð Þdθ
n o 1−pð Þ/2Ð

S1 uj j2dx

= −λ
ð
S1
g xð Þ2/ 1−pð Þdθ

� � p−1ð Þ/2
> −∞,

ð36Þ

which implies that IðuÞ is bounded in H1ðSÞ from below
under the constrained condition that FðuÞ = 1. By the defini-
tion of I, F in (34) and (35), there exists a nonnegative min-
imizing sequence fung ⊂H1ðSÞ such that FðunÞ = 1 and

I unð Þ⟶ inf
F uð Þ=1

I uð Þasn⟶ +∞: ð37Þ

It follows from 2/ðp − 1Þ > ðp − 1Þ/ðp + 1Þ and the Hölder
inequality that

ð
S1
g xð Þ− p−1ð Þ/ p+1ð Þdx ≤ C

ð
S1
g xð Þ2/ 1−pð Þdx

����
����

p−1ð Þ2
2 p+1ð Þ

< +∞: ð38Þ

Since FðunÞ = 1, by Hölder inequality we see that

ð
S1
u2ndx ≤

ð
S1
g xð Þ− p−1ð Þ/ p+1ð Þdx

� � p+1ð Þ/ p+2ð Þ ð
S1
g xð Þup+1n dx

� �2/ p+1ð Þ

=
ð
S1
g xð Þ− p−1ð Þ/ p+1ð Þdx

� � p+1ð Þ/ p+2ð Þ
< +∞:

ð39Þ

This together with IðunÞ ⟶
ðn→+∞Þ inf

FðuÞ=1
IðuÞ imply that

fungis bounded inH1ðSÞ. So, there is a subsequence such that

un ⟶
n

v weakly in H1 S1
	 


: ð40Þ

By the compactness of Sobolev imbedding, up to a subse-
quence, we have

un ⟶
n

v strongly in Cα S1
	 


 for α ∈ 0, 1/2ð Þ: ð41Þ

It follows that Fð∣v ∣ Þ = 1, and therefore v=0.

ð2π
0
g θð Þ vj jp+1dθ = lim

n→+∞

ð2π
0
g θð Þ unj jp+1dθ = 1: ð42Þ

By the Fatou lemma, we get

inf
F uð Þ=1

I uð Þ ≤ I ∣v ∣ð Þ ≤ lim
n→+∞

I unð Þ = inf
F uð Þ=1

I uð Þ, ð43Þ

So, ∣v ∣ is a minimizer of I under constrained condition
that FðuÞ = 1. There exists ω ∈ℝ such that

I ′ ∣v ∣ð Þ = ωF ′ vj jð Þ in H−1 Sð Þ: ð44Þ

It follows from the regularity theorem that ∣v ∣ ∈C2ðSÞ is a
classical nonnegative solution of

−u″ − λu = ω p + 1ð Þ
2 g xð Þ uj jp−1u, x ∈ S1: ð45Þ

Let w = ðωðp + 1Þ/2Þ1/ðp−1Þ ∣ v ∣ , we see that w is nonnega-
tive solution of (1) with f ðx, uÞ = gðxÞjujp−1u. By applying
Theorem 1, we see that w is positive.
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