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In this paper, we derive analytical solutions of the Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGSK) equation via symbol
calculation approach. Applying the exp(—¢(z))-expansion method, we achieve the trigonometric, exponential, hyperbolic, and
rational function solutions for the CDGSK equation. By choosing the appropriate parameters, we give some computer

simulation to the analytical solutions of the CDGSK equation.

1. Introduction

Nonlinear fractional and integer order differential equations
are widely utilized in fluid dynamics, solid state physics,
plasma physics, biology, nonlinear optics, chemistry, etc. It
has aroused the strong interest of researchers to these dif-
ferential equations [1-18]. The study to exact solutions of var-
ious NLDE:s is extremely important in modern mathematics
with ramifications to some areas of physics, mathematics,
and other sciences. There are many systematic methods to
seek exact solutions of nonlinear differential equations, for
example, the Hirota bilinear method [19], Tanh method
[20], Lie symmetry [21], modified Kudryashov method [22],
Exp-function method [23], sine-Gordon expansion method
[24], complex method [25-29], and exp(—¢(z))-expansion
method [30-32].

Sawada and Kotera [33] proposed one of basic models in
soliton theory as follows:

Upoe +15uu, + 150 u, +45u”u, +u, =0, (1)

which is also introduced by Caudrey et al. independently
[34]; so in literature, Equation (1) is called the Caudrey-
Dodd-Gibbon-Sawada-Kotera equation. Many years have
passed by, lots of research results for the CDGSK equation

have been developed. As to this equation, the finite dimen-
sional reduction was investigated by Enolski et al. [35], and
N-soliton solutions were discovered by Parker [36] via the
dressing method. Darboux transformation [37] and Béck-
lund transformation in bilinear forms [38] were applied to
study the CDGSK equation. Riemann theta function solu-
tions of the CDGSK equation were also established [39]. In
this paper, we employ the exp(-¢(z))-expansion method
[30-32] to obtain the exact solutions of the CDGSK equation.

2. The exp(—¢(z))-Expansion Method

In this section, we give the main steps of the mentioned
method.

Step 1. Inserting traveling wave transform

u(x,t)=u(z), z=Ax+wt (2)
into a nonlinear PDE
Pty Uy, thyy Uy, Uy Uy, Uyyr) =0 (3)

yields
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F(u,u’,u",-u) =0, (4)
in which F is the polynomial of u along with its derivatives.

Step 2. Assume that Equation (4) has analytical solutions as
follows:

u(@)= ¥ Bi(exp (-9(2))" (5)

7=0

where B, (0 <7 < m) are constants which will be ascertained
subsequently, such that B, # 0 and ¢ = ¢(z) satisfy

¢'(z) =

The solutions of Equation (6) are given in the following:
When y* - 49>0,9#0,

o in (—mtanh (Vv =192)(z+0)) - )

Y +exp (=¢(2)) + 9 exp (¢(2))- (6)

29
(7)
—\/(7419c0th \/—/2 zZ+c)
¢(z)=In ( ((29 ) ) .
(8)
When y* -49<0,9+0,
(49— y?) tan 49-92/2)(z+¢c)) -y
(p(z):ln (( 55 ) ) ,
/(49 —2) cot ((«/49 y /2) z+c)
¢(z) =In 59
©)
When y* -49>0,y+0,9=0,
- (—Y )
7@t (CXP(Y(Z”))—l) 1o
When y* -49=0,y#0,9+0,
¢(z)=In <—%) (11)
When y* -49=0,y=0,9=0,
¢(z)=In (z +¢). (12)

In Equations (7)-(12), B, #0,y, 9, c are constants. Tak-
ing the homogeneous balance between the nonlinear terms
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and highest order derivatives of Equation (4) yields the pos-
itive integer m.

Step 3. Insert Equation (5) into Equation (4), and collect the
function exp(—¢(z)) to yield the polynomial to exp(-¢(z)).
Let all coefficients with the same power of exp(—¢(z)) be zero
to obtain a system of algebraic equations. In solving these
equations, we achieve the values of B, # 0, p, 9 and substitute
them into Equation (5) as well as Equations (7)-(12) to
accomplish the determination for analytical solutions of the
original PDE.

3. Exact Solutions of the CDGSK Equation

Inserting

u(x,t)=u(z), z=Ax+wt (13)

into Equation (1) and then integrating it, we obtain
Xu"" + 15 % uu” + 150 + wu +8=0, (14)

where § is the integration constant.
Taking the homogeneous balance between u?* and u"" of
Equation (14) yields

u(z) = By + B, exp (—¢(z)) + B, (exp (—go(z)))z, (15)

where B, # 0 and B, and B, are constants.

Substituting u"", uu", u?, u into Equation (14) and let-

ting the coeflicients about exp (—¢(z)) be zero, we obtain

90@) NB,y*9+141°B, y292 +8A°B, y &
+16A°B, 9 +15A°By B, 9y + 30 A’B, B, &
+15AB; +wBy+8=0,

e!2@) B w+ B, y*A° + 30 B, y*A°9 + 22 B, y*1°9
+120B,y 1’9 + 30 A’B, B, 9+ 15 B, B, y*\’
+90B, B, yA*9+15B,°y A*9+ 30 B, B, \*9*
+16 B, A°9* + 45B,*B, A =0,

?2) 16 B, y*A° + 15 4°B, y° + 232 B, y*A°9
+60B, yA’9+136 B, A°9* + 15B,*y*\°
+60 B, B, y*A* + 105 B, B, y A*9 + 30 B,°A*9*
+45B, B, p A’ + 120 B, B, A*9 + 30 B,*A*9
+45B,*B,A+45B,B,*A+B,w =0,

9= 130 B, y°A° + 50 B, y*A° + 440 B, y A°9
+75B, B, y*A* +40 B, ’9+ 15 B3A
+150 By By p A’ +45 B2y A’ + 150 B, B, A*9
+30B, B, A’ +90 By B, B,A + 90 B2y 1’9 =0,
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¢*9) 1 330 B, 1?A° + 60 B, y A* + 60 B2y*A°
+240B,A°9+ 195B, B,y A’ + 30 B\’
+120 B3A*9+ 90 By B, A* + 45 By B3A
+45B1B, A =0,

e#() 1 336 B, y A° + 24 B, A° + 150 B2y \’°
+120B, B, A’ +45B, B2A =0,

®9) 1 120 B, A* + 90 B2A* + 15B3A = 0.

(16)

We solve the above algebraic equations and then obtain
two different cases:

Case 1.
B, =-2)\%
B, = —2y)t2,

~50°(y* +89) + \/5A6(y2—49)2—2om
B 301 ’

N (y*-49)°

9
) A

49)* - 4w) (2A5(y2 -49)* +w>
451 '
(17)

where 9 and y are arbitrary constants.
Substituting Equation (17) into Equation (15) yields

SSA(y +89) + /502 - 492 - 20 A
301 (18)
= 2pN exp (—9(2)) = 24°(exp (-9(2)))".

u(z) =

Applying Equations (7)-(12) into Equation (18), respec-
tively, yields analytical solutions of the CDGSK equation as
follows:

Case 1.1. When y? — 49> 0,9 +#0,

513 (y* +89) + \/5/\6()»2—49)2—20)&@

uyy(2) = 300
. 41%p9
v/ (y* —49) tanh ((\ /y? - 49/2) (z+ c)) +
829

(\/Wtanh (( ¥ —49/2) (z+c)) +y)2)

3
=50°(y2 +89) + \/5/\6(y2 -49)2-20 w
up(2) = 300
419
+
V/(y? —49) coth ((,/yz— /2) (z+¢ )
8A*Y?
- .
(\/(y2—49 ) coth ((\/yz— /2) z+c) )
(19)
Case 1.2. When y* —49<0,9+0,
SSA(p +89) +/50°(y2 49 - 20 A
u13(z) = 30
B 41%y9
/(49 —9?) tan ((\/49 y2/2) (z+¢) ) y
~ 8A*Y?
( (49 - y2) tan (( 48—)/2/2) (z+c)) —y)z
SSA(y +89) + /5052 - 49) - 20 A
uiy(2) = 301
B 41%p9
/(49 = y2) cot (( 49—y2/2)(z+c)) -y
8A*Y?
- .
(«/(49 y?) cot <<\/49 )/2/2) (z+c ) y)
(20)
Case 1.3. When y? —49> 0,y +#0,9=0,
—50%)% + ( [SA(Ayt - 4w) 2022
s5(2) = 301 Cexp (y(z+0)) -1
~ 22%y?
(exp (y(z+0)) —1)*
(21)

Case 1.4. When y? —49=0,y #0,9+0,

300’9+ V-5 w A2y3 (z+¢)

t(2) = 151 y(z+c) +2 (22)
- VPyi(z+c)?
2(p(z+c) +2)*
Case 1.5. When y* -49=0,y=0,9=0,
5w 2\
Uy (2) = (23)

150 (z+c)*



4
Case 2.
B, =-2A%
B, = —2yA%,
A (2 +89) +,/51°(2 ~49) - 201w
By=- )
301
7 (22 _ 3
5o A (y* -49)
9
V(2 - 497 -40) (22°( - 49) + w)
+ b
45\

(24)

where 9 and y are arbitrary constants.
Substituting Equation (24) into (15) yields

5A°(y?+89) + \/SAG()/Z -49)’-20Aw
u(z) =~ 301 (25)

~ 2%y exp (~g(2)) - 23 (exp (~9(2)))’,

Applying Equations (7)-(12) into Equation (25), respec-
tively, yields analytical solutions of the CDGSK equation as
follows:

Case 2.1. When y* —49> 0,9 #0,

50°(y +89) + \/5/\6(y2—49)2—20)tw

Uy (2) = = 3014 J
4\%p9
4
\/(749tanh ((\/-‘““/2)(2+c )
8129

(\/(m tanh ((\/M/z) (z+ c)) + y)2 ’

S +89) +/54°(2 - 492 - 20 A

Up(z) = -

>

301
41%y9
+
\/ (y? —49) coth (( y2 - 49/2) (z+ c)) +y
81’9

(\/Wcoth ((\/-2——_—*/2) z+c)+y) .

(26)
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Case 2.2. When y* —49<0,9+0,

SN (v +89) + /51902 49 - 20 A
304 ’
42%y9

(49 —?) tan (( 49 - y2/2) (z+ c)) -y
8A*Y?

(\/Wtan ((\/AW/Z) z+c) )2’

513 (y2+89) + \/5/\6()12—49)2—20Aw

Up3(2) -

u24(z) == 30A >
B 41%p9
(49 - y2) cot (( 49 - y2/2) (z+ c)) -y
~ 819
=
( (49— y2) cot (( 49 - y2/2) (z+ c)) - y)
(27)
Case 2.3. When y? —49> 0,y #0,9=0,
597+ /5A(Ay* - dw) 2022
Uys(2) = = 301 exp (y(z+¢)) -1
~ 22%y?
(exp (y(z +¢)) - 1)*
(28)
Case 2.4. When y*> —49=0,y+0,9#0,
g (2) = 301°9 + V-5 s MY(z+e)  AMylz+o)
W 151 Y(E+e)+2  2pz+c)+2)°
(29)
Case 2.5. When y? —49=0,y=0,9=0,
5 w2\
=- - . 30
Uy (z) 150 (Z+c)2 (30)

Figures 1-5 show the properties of the solutions.

4. Conclusions

In this paper, abundant analytical solutions of the CDGSK
equation are obtained via symbol calculation approach.
The properties of the solutions are shown by some graphs.
It shows that the exp(—¢(z))-expansion method is an effec-
tive method to seek analytical solutions for nonlinear differ-
ential equations.
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F1Gure 1: The 3D and 2D graphics of u,,(z) by choosing the values y=5,9=6,A=1, w=1/4, c=1, and ¢ = 0 for the 2D graphic.
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F1Gure 3: The 3D and 2D graphics of u,5(z) by choosing the values y=4,9=5,1=1,w=1, c=1, and t = 0 for the 2D graphic.
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Ficure 5: The 3D and 2D graphics of u,5(z) by choosing the values y =2, 9=0,A=1, w=1, c=1, and ¢ = 0 for the 2D graphic.
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