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The chief topic of this paper is to investigate the fractional differential system on an infinite interval. By introducing an appropriate
compactness criterion in a special function space and applying the Schauder fixed-point theorem and the Banach contraction
mapping principle, we established the results for the existence and uniqueness of positive solutions. An example is then given to

show the utilization of the main results.

1. Introduction

In this paper, we investigate the following fractional dif-
ferential system on an infinite interval:

Dolu(t) + f1 (tu(t),v(t) =0,
Dgv(t) + £, (t,u(t),v(t) =0,

where 1<n-1<a;<n, 1<m-1<a,<m, and n, m=2,
Dy is the Riemann-Liouville derivative operator. y;>0 s a
constant, go a, (Hu(t)dA, (t) and .[0 a, (t)v(t)dA, (1)
denote the Riemann-Stieltjes integral, and A; is a function
of bounded positive variation. a;€L[0, +00), y; Igo
a; ()% 1A, () <T(a), [o a;()dA; () < +oo, and f [0,
+00) X [0, +00) X [0, +00) — [0, +00) is continuous, i=1,
2.

Numerous models in physics, chemistry, biology, medi-
cine, and other fields have promoted the research of differential
equations, for instance, evaluation of water quality on receiving

< u(O) =y (0) — Ll"(O) = u(n—z)(o) —

v(0)=v'(0) =" (0) =--- =v"™2(0) =0

0<t< +00,

DY u(+00) = j:o a, (Hu(t)dA, (1), (1)

Dy v (+00) = 4, J:O a, (Hv(t)dA, (1),

water [1], and the advection-dispersion equation can be for-
mulated as shown for the case of one-dimensional flow:

a_C+ a_C—DaZ_C
or Yox T Tltop

where C is the concentration of a generic pollutant, ¢ is the
time, x is the longitudinal displacement, u is the velocity, Dy
is the diffusion coefficient, and f(C) is a generic term for
reactions involving the pollutant C. Westerlund [2] estab-
lished a one-dimensional model to describe the transmission
of the electromagnetic wave:

- (O (2)
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O’E(x,t)

O’E(x,t)
ue o

0x?

+ pe(DE (x,t) + 0, (3)
where p, & and ( are constants and D)E(x,t) =
(0"E(x,t))/ot” is a fractional derivative. In the process of
establishing the model, k-Hessian equations [3], Sobolev
equations [4], and Schrodinger elliptic equations [5, 6], there
are also huge applications.

Under the proper initial or boundary conditions, to
study the positive solution of the above models is very
necessary; especially, for the boundary value problems on
the infinite interval, many authors put their interest in it
[7-16]. Liang and Zhang [17] applied the fixed-point the-
orem to obtain the existence of positive solutions for the
following fractional differential equation:

D§u(t)+a(t)f (u(t)) =0, 0<t< +oo,

m=2
u(0) =u' (0) =0, Jim Dgtu() = ) fu(),
°° i=1

(4)

where 2<a<3, Dj. is the Riemann-Liouville fractional
derivative, 0< &, <& <+ <&, ,<+00, f;>0, 0< Zzzzﬁiu
(&) <T(«), and f: [0, +0c0) —> [0, +00)is continuous.

For all we know, there are few studies on fractional
differential systems of infinite intervals, although it is nec-
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Io.u(t) =ﬁjo (t— ) 'u(s)ds (5)

the Riemann-Liouville fractional integral of u of order a.

Definition 2 (see [18, 19]). The Riemann-Liouville fractional
derivative of order >0, n—1<a<n, n €N, is defined as

1 <d> Jt (=" lu(s)ds, (6)
0

Dot =6 \a

where N denotes the natural number set and the function
u(t) is n times continuously differentiable on [0, +00).

Lemma 1 (see [18, 19]). Let a>0, and if the fractional
derivative D3 u (t) and D§.u (t) are continuous on [0, +00),
then,

B.D5u() =u(t) + ot "+t 2+t (7)

where ¢, ¢3 ..., €,€(—00, +00), n is the smallest integer
greater than or equal to a.

Lemma 2. Let y; € C(0, +00) N L[0, +00); then, the fractional
system

[ Dgiu(t) +y,(t) =0,
essary to do so. In this paper, we aimed at getting the ex- 2+u( V)
istence and uniqueness of positive solutions for system (1) Dyiv(t) + y,(t) =0,
on infinite interval. Compared with the existing literature, 0<t< +00,
the innovations of this paper are as follows. Firstly, the paper ) ) 2
which we discuss is the system rather than a single equation. ] u@=u (0)=u (0)=---=u (0) =0, (8)
Secondly, we study the system with integral boundary value -1 B o0
conditions on infinite intervals, which are more general than Dyi u(+00) =y 0 a (Du()dA, (1),
those of two-point, three-point, and multipoint boundary 1 " (m-2)
0)=v(0)=v0)=--.= 0) =0,
value condition. At last, we use two different techniques: the v(0) =vi(0) = v ())o Y ©
Schauder fixed-point theorem and the Banach contraction Dgiflv(ﬂx,) =l J a, (t)v(t)dA, (t),
mapping principle, for system (1), not only to obtain the ‘ 0
exis.te.nce of positive solutions but also the uniqueness of 5 o/ unique integral representation
positive solutions. .
u) = [ "G (69 (s,
2. Preliminaries and Lemmas 0 (9)
[ee]
t) = G, (t, ds,
Definition 1 (see [18, 19]). Let >0 and u be piecewise v(t) Jo 2(£:5)y2 (5)ds
continuous on (0, +00) and integrable on any finite sub- |
interval of [0, +00). Then, for >0, we call where
G;(t,s) =G =(t,8) + G, (t,5), i=1,2,
. el (- )%l 0<s<t< 400,
Gil (t, S) =
I'(o;
(@) a1, 0<t<s< +00, (10)
‘u.tzxi— 1 00
Goy(t,5) = i | a6, .90 0

ra) - |

0

a; ()t A, (1)



Journal of Function Spaces

Proof. By Lemma 1, the equations in system (8) can be
transformed into the equivalent integral equations
u) =TIy, () + et et e+ o 9" € (00, +00), j=1,2,...,m,
0+ V1 1 2 n j J (11)
11
v(t) = -I%y, () + ¢t L+t P et E € (—00,+00), j=1,2,....m,
0+Y2 1 2 m j J
that is,
t
u(t) = _F(oc ] Jo (t—s) "y ()ds+c " 4ot T cnt“’_”,cj € (-00,400), j=12,...,n,
1
t (12)
v(t) = Ty Jo (t—s) 2"y, (s)ds+ ¢t + 5t 4. +C,t" "¢ € (-00,+00), j=1,2,...,m.
2
Since we obtain
=u =g 2 1 00 +00
w(0) =1 (0) == u? =, 03 ‘= )</,¢1 JO ay () ()dA, (s) + jo y1(9ds ),
v(0) =+ (0) =--- = v (0) = 0, '
1 (o] +00
we have = (], 2 Ov@aa @+ [ nas)
2
62:C3:"':Cn20’ (14) (18)
Cr =Cr = =c. =0
2= Cm Combining (15) and (18), we have
o (0 (-9 (st
u(t) =-———= =s)" Ty (s)ds+ it
o |
w =z =9y s e, (1) Jo
r(al) 0 ) t(xl—l 00
Lo 1 W - [ "Gu s e+ ) | " @uaa, o,
VO =g [ -9 ods rar 1
T(ay) Jo & ' (19)
We also have 1 t
t v(t) = ——— J (t—s)%" lyz (s)ds + Elt'xz_l
Dy u(t) = T (o)) - J- ¥, (s)ds, T(ay) Jo
0 (16) 00 ‘blztaz_l (o]
» t = J G, (t, )y, (s)ds + J a, (t)v(t)dA, (t).
Dy v(t) =¢,T(ay) - J ¥, (s)ds. 0 () Jo
’ (20)
For - (19) and (20) are multiplied by a;(¢) and a,(t), respec-
DS u(+00) = J a, (s)u(s)dA, (s), tively, and then solved the integral from 0 to +co with re-
0

(17) spect to A;(#) and A,(#); then, we have
D%y (+00) = JO a, () (s)dA, (s),

JOO a, (Hu(H)dA, (t) = r(o‘zfl) joo a, (t) JOO Gy, (t,8)y, (s)dsdA, (1),
‘ M) - [ a0dam 0

IOO a, (t)v(t)dA, (1) = r((:fz) JOO a, (t) JOO G, (t,5)y, (s)ds dA, (1).
° Ma) - | a0’

(21)



Therefore,

[ a—1 0
u(t) = JO Gy, (69, (s)ds+#r1€al) jo a, (Du (DA, (1)
t totl—l
Ca) - [ @y 044, 0

= Jo Gy, (t,8)y, (s)ds +

. ro a, (1) ro Gy, (£, 5)y, (s)ds dA, (1)
0 0

- JOO Gy (6, 9)y, (s)ds + ro Gy, (t,5)y, ()ds,
0 0

0 a,-1 roo
v(t) = Jo G, (t,5)y, (s)ds +‘u2t jo a, (t)v(t)dA, (1)

T'(ay)

00 a—1
= J G,, (t,8)y, (s)ds + ot
’ [(a) — s J- a, (t)dA, (1)

- ro a, (1) JOO Gy, (£, 9)y, (s)ds dA, (1)
0 0

- JO Gy (£, 5)y, (s)ds + JO Gy (£,5)y, (5)ds.
(22)
So, (9) holds. The proof is completed.

Lemma 3. The Green function in Lemma 2 has the following
properties:

(1) Gii(t, s) is continuous and Gy (t, s)>0, (t, s)€[0,
+00) X [0, +00).

(2) (G, (t, 8)/1 +t% 1)< (1/T (o)), (G; (t, $)/1 + % 1)
<, (t,s) € [0,+00) X [0, +00),

where

(&)

1 T(a))+u, JO L(HdA, (

I‘(Oh) +T(oc T(tx ) th joo

a, (1A, (t))

0

@ = max 3
(o9

1 +yzj a, (t)dA, (¢

+ 0

[e) I'(ay) r(“z #ZJ

a, (D171 dA, (t))
0

(23)

The space X = E; x E, will be used in the study of system
(1), where
+oo},

v(t)
E, =4v € C[0,+00): SuPte[0+oo)m< +eo

u(t)
E, = {u € C[0,+00): Supte[o,mo)m
(24)
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Then, (Ey, ||-|) and (E,, ||||) are the Banach space with the
norm
u(t)
lutll = suPrefoso0r ] at
(25)
v(t)

VIl = supyeqo, +00) ] pop-1"

Clearly, (X, |Ill) is a Banach space with the norm
e, vl = llull + Vl. Define nonlinear integral operators T;:
X—E;and T:X — X by

T (,v) () = J:O G (L) f: (s u(shv(s)ds, i=1,2,
(26)

T (u,v) = (T, (u,v), T, (u, ). (27)

Thus, the existence of solutions to system (1) is equivalent
to the existence of solutions in X for operator equation
T (u,v) = (u,v) defined by (27).

Lemma 4 (see [20, 21]). Let E be defined as (24) and M be
any bounded subset of E. Then, M is relatively compact in E if
{(x(@)/1+t1): x € M} is equicontinuous on any finite
subinterval of ], and for any given € > 0, there exists N > 0 such
that |(x(t)/1+ 1571 = (x(t,)/1 + t57")| < & uniformly with
respect to all xe M, and t;, t,> N.

3. Main Results

We list the conditions to be used later: (H;) there exist
nonnegative functions p; (t), g;(t), h; (t) € L'[0,+00) and
t%17 g, (t), t* 'h, (t) € L' [0, +00) such that

|fi ()| < pi (8) + g; (Olul + b (DIV], (£,u,v) € [0, +00)
% [0, +00) x [0, +00).

(28)
(H,) |fi(t, 0, 0)| € L'[0, +00), there exist nonnegative
functions g, (t), h(t)eL'[0, +oco) and % lg(t),

t*~'h, (t) € L'[0,+00) such that

|fi (touy,vy) = fi(tuy, V2)| =g (t)|“1 - ”zl + hi(t)|V1 - Vzl)
(t,uy, vp), (8 uy,vp) € [0,+00) X [0, +00) X [0, +00).

(29)
Remark 1. If (H;) holds, then
Jo Ifi u@),v)|de<p” + (g + ), (wv) € X,
(30)
where
P = jo pi(t)dt,
gi = j (1467, (0)dt, (31)
0

=
*
1]

o a—1
; IO (1+%"Dhy (1)dt.



Journal of Function Spaces 5

In fact, by (H;), for any (u,v) € X, we have
["1s. uovienfar

s JZO (pi (1) + g; Ol @®)] + b (D (B)])dt

« - |u (£)] a- lv (@)l
o<pi(t)+(1+t o0t 1)h"(t)1+t“zl)dt (32)

0

. (pi (&) +(1+ 7 1) g, (Ollall +(1 + %7 )hy (D)1v]])dt

" p(Ddt + JOO(1 971 g, (Dl + ro(1 #1970t
0 0

0

IN
:p —— — —y
*

+g; lull + b7V < p;” + (g7 + k7 ), V).

Theorem 1. Assume that (H;) holds; then, T: X — X is a Proof. First, we show that T:X — X is continuous. Sup-

completely continuous operator. pose {(u,,v,)}cX, (u,v)eX with [(u,,v,)—(uv)|—0
(n —> +00), and there exists a constant r>0 such that
(e, vl <7 and ||(u, v)|| < 7. By (H;) and (30), we have

U:o G, () f, (5,1, (5), v, (5))ds - jzo G, (6)f, (5, 14(s), v(s))ds

< j:o G, (t,9)f1 (s, u,(s),v,(s))ds + JZO G, (t,8) f (s,u(s),v(s))ds

(33)
ga)J 1 (11, (), v, (5))ds + @J (s u(s),v(s)ds
0 0
<20(p; + gy lull + A{ V) <20 (py + (g7 + A, v)I) < +00.
From (H;) and (33), for any ¢ > 0, there exists sufficiently On the contrary, by the continuity of fi(t, u,v) on
large M, such that [0, M) x [0, (1 + M ")r] x [0, (1 + Mg "")r], there exists
) ) N> 0 such that when n>N and ¢ € [0, Mo] we have
JM G, (t,9) f1 (s, 1, (s), v, (s))ds + JM G, (t9)f,
0 0 (34) |f1 (514, (), (8)) = f1 (s,u(s),v(s)] < 200, (35)

€
- (s,u(s), v(s))ds <5 Hence, for any t€ [0, +00) and > N, we obtain

Ty (o v) () Ty () (B)|

| 1+t 1+t |
7 e [ 2 o
< [ O (50,9, £y u @D
+ jM Gl 1 (s, <s),vn(s>)ds+j G0 1 (s w9 v()ds



J’ G, (t,s)

1 +ta-l
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|1 (514, (), v, (8)) = £, (s,u(s),v(s))|ds

J Gy (1) fy (5,1, (5), v, (5))ds + J: G, (65)f, (5, u(s), v(s))ds

<

S

Nlm
l\JImO

Thus, we know that |[Ti(w,,v,)—-Ti(u,v)|—0
(n—> +00). By the similar proof as (33)-(36), we know
I T5(u,,, v,,) — To(u, v)| — 0 (n—> +00). So, T: X — X is
continuous.

Next, we show that T': X — X is relatively compact. Let
0 be a bounded subset of X; then, there exists constant M > 0
such that [[(u, V)| <M, (u,v) € Q. For any (u,v) €Q, te€[0,
+oo) and by (32), we obtain

W) (B _ °°G(t5)
1+t"‘1 o 1+t

‘DJO |f1(5) u,(s), v, (S))|d5 (37)

<@(py +(gr +h)lw 1)
<a(p; + (g1 +h))M

f1(su,(s),v, (S))ds

)< +00.

|T1 w)(t,) Ti(wv) (t1)|

1+t57 14+
G, (t2> s)
jo - —f1(s,u(s),v(s))ds - .[o -

J' |G11(t2>5) Gy, (tl’

[1+6970 14

J' 'Glz(t2>5) Glz(tl’)

|1+t 1+t

J |f1 (5,1, (5),v,,(8))ds = f (s,u(s), v(s))|ds+—
+

Gl( s)

(36)
Similarly, we have
T un’ Vn (t) * * %
% <@(py + (g1 +h)lw )
1+t (38)

<@(p; +(gy +h)M) < +oo0.

Consequently, T(Q) is uniformly bounded.
Given I c [0, +00) be any compact interval. For any t;,
el t;<t, and (u,v) € Q, we deduce

f1 (s,u(s),v(s))ds

= Ifl (s,u(s),v(s))ds

1 f1 (s, u(s),v(s))ds

(39)

f1(s,u(s),v(s))ds

J' IGn(tz)Sl) Gll(tl’ |f1 (s, 1(s), v(s))ds
1+t 1+t |
- -1 o al ()G, (t,s)dA, (1)
| ty" £ |J
|1 +1) 1+ t‘f‘_1|

J |G11(t2,5) Gy (t, )|

[1+6970 144977

J’ |G11(l‘1,5) Gll(tl’)

1+ 1!

O T(a) - JO a, (Ot 1A, (1)

f1(s,u(s),v(s))ds

f1(s,u(s),v(s))ds

L o | ro “ Jzoal(t)Gu(t,s)dA (1)

O T(a) - MIJ a, (D LA, (1)

|1+t 1+t"‘1 1|

f1(s,u(s),v(s))ds.
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Since

2\ f1 (s, u(s), v(s))ds

JDO|G11 (tys) _ Gy (tl’s)l
0 [1+657 14

_ Jf1|G11 tz,S) G11(t1’s)=fl(s u(s), v(s))ds

ol 1+e87

Gll (t2’ ) Gll

t

tZ
+ J
tl

1+t 1+

S)Ifl (s,u(s),v(s))ds

J’ |G11 tz,S) Gy, (tlr )fl (s,u(s),v(s))ds

b1+ o 1+
1 r e N [ R (D S
() Jo 1+657
(s, u(s),v(s))ds
1 J>tz t;l_l - t?l ! (t2 - S)IX171| (
+ S, Uu
I(ay) ), 1+657" S
- (8), v(s))ds
1 oo |t§¢1—1 _ tal—l‘
+ (s,u(s), v(s))ds
T (a,) J 1 Ji
— 0, ast; — t,.

(40)

|T1 w)(t,) Ti(wv) (t1)|

| 1+69

|,

! 1+t07 |

In the same way, we can know

J |G11(t1, ) _Gults |f1(s u(s), v(s))ds — 0, ast, — t,.

R T P
(41)
So,
T, (u,v)(t T, (u,v)(t
1( a)—(IZ) - 1( tx)—(ll) — 0, as tl - t2' (42)
1+t L+t

Similar to (39)-(41), we have

T,(w)(t,) T,(wv)(t)

a-1 -1 —0,
1+t 1+t

ast; — t,.  (43)

Therefore, T(Q) is equicontinuous.
By (H;) and (30), for any € > 0, there exists « > 0 such that

J-OO F(su,(s),v,(s))ds, <e. (44)

Due to lim, (£ /1 +t%~1) = 1, there exists suf-
ficiently large N; >0 such that, for any ¢, t, > N;, we have

totl—l ttxl—l
Il +2t;“_1 1 +1t‘f1_1| h

(45)

Also because of lim, . ((t- KO YL 4ty =1,
there exists sufficiently large N, >« such that, for any #,
t, >N, and 0<s<«k, we have

(t _S)(xlfl (t _s)txlfl
I 12+t°‘1_1 - 11+t‘"‘_1 |<e' (16)
2 1

Choose N> max{N;, N,}; for any t;, t, >N, we get

|G11(t2>5) G“(tl’ )|f1 (s,u(s),v(s))ds

|1+t 1|

o b | @06y 69 ©

(47)

f1(s,u(s),v(s))ds.

£ t |J
-1
|1+t 1+t | 0 [ (a) - ‘MIJ a, (™~ 1dA (1)
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In (47),

J' I?n(tz»S) Gll(tall’ 1)|f1(5,u(5) v(s))ds
+1y +1 |

_J' |G11 tz’s) Gll(tl’ )fl (s,u(s),v(s))ds

o|1+t L+

YR

I |G11(t2’5) Gul t“ Ifl(su(s) v(s))ds

tz|1+t 1+
1 | t, B t‘i‘l* | (tz _S)‘xl—1 ) (tl _s)al 1|) 5
r("ﬁ)J <|1+t 1+t§‘“1|+ T e | f1(s,u(s),v(s))ds
SN CEDA ')
“1) ('1 +1) 1+t“1’ | 1+t8 -1 | f1(s,u(s),v(s))ds

2\ ifl (s,u(s), v(s))ds

oo| t B
cxl) t2|1+t -

I,
J
K( gt (! |+|(t2 —9n (1 —s)a11-1|>f1 (s, 1(s), v(s))ds
J
J

F(al) Jo

ITYER T 1| | 1407
e (i S-S o
0‘1) °°<|1+t ‘_1:t 1|+1)f1(5”(5) v(s))ds (48)
+r(}x1) lmhﬁgn o 1=f1(s,u(s) v(s))ds

-1

S c [0 K] (u’ v) c Q|f1 (S,M(S) V(S))l JK(' t;l_l B t(icl_l |+'(t2 _5)“1 (tl _5)0‘1—1|)

F(e) A T N I 1+ |
1 JOO tgrl tlfl—l |(t2—s)a171 (tl—s)“11|)
! T et o ) f (s (s vis)ds
r(“l) K<l+tgll 1+t'f11 | 1+t;11 1+tzlxll | fl
1 (e8] t‘le_l t‘{ﬁ—l
" - —+1)f, (s uls), v(s)ds
r(061)L<1+t“1‘ 1+t57! )fl
1 J~oo| t tl -1 '
+ (s,u(s), v(s))ds
M) ) e e
5 104w € Oy (59, v(5) j(' AR N (A (rl—s)a1-1|>ds
Mo o\l e g™ T e

&

_selo K] (uﬂ) € Q|f (s,u(s), V(S))lzxﬁ €
r(“l) I‘(ocl) .
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By (47) and (48), we have

|T1 (u,v) (t,) T () (t1)|
1+ 1+t |

<max5€ [O,K],(u,v)EQlfl (S,M(S), V(S))l ke + 9
= (o) T(a)

_— ro a, (DG, ( 5)dA, (8)
N ej

: fl (s,u(s),v(s))ds.

O T(a) - JO a, (Ht“71dA, ()
(49)
So, Ty(u,v) is equicontinuous on +co, proof similar to
(49), and we know T,(u, v) is equicontinuous on +00; thus,
T(u, v) is equicontinuous on +00. It follows from Lemma 4

that T: X — X is relatively compact. Therefore, T: X — X
is completely continuous. The proof is completed. O

Theorem 2. Assume that (H;) holds; then, system (1) has at
least one positive solution if @(gy + g5 + hi + h3) <1.
Proof. Let

. @(p7 +p3)
1-a(g7 +g5 +hi +h3)

(50)
K={wv) € X, l(w, vl <r}.

Now, we illustrate T(K) c K for any (u,v) € K and t€ [0,
+00); by Lemma 3 and Remark 1, we have

J:OIfi (t,u(t), v(t))|dt

9
T (w,v) ()] _|[* Gi(t9)
| 1+ tu-1 | - JO 1+t0‘1_1f1 (s,u(s),v(s))ds
S(DJO |f1(s,u(s),v(s))|ds (51)
<@(py +(g1 +h)Iw )
<@(p; +(gy +h))r)<r.
Similarly, we have
LD o(p;+(g5 4 m=r ()

By (51) and (52),
IT (e, VIl = | T, (w, )| +[| T (e, )| < @[(p} + (g7 +h7)r)
+(py + (g, +hy)r)] <r.
(53)

Therefore, T(K) c K. By Theorem 1, we know that T
K— K is completely continuous. So, by the Schauder
fixed-point theorem, system (1) has at least one positive
solution. The proof is completed. O

Theorem 3. Assume that (H,) holds; then, system (1) has a
unique positive solution if @(gy + g5 + hj + h3) <1.

Proof. From (H,), we know
|fi (t, u, v)| < g; (O|ul + h; ()Iv| +|fi (t,0, 0)|. (54)

So, for any (u, v) € X, we have

< J ((9: O®] + by O ()] +] f; (£,0,0)]))dt

00
0

0 1+ tu-l

(o] 00
0

w<(1+t“11)gi(t) (] +(1 427y (1)

< ro((1 + 97D g Ol @) +(1+ 27 ) (v (O +| £, (£,0,0)])dt

lv(®)l

1+t

+|f: (8,0, 0)|>dt

(55)

(1497 ) g, (Odtlu )l + j (146 Y, (Ddelv (Ol + Jzolfi(t, 0,0)|dr

= g lull + 1 vl + JO 1£:(6,0,0)|de < (g + b))l + JO 1 (£,0,0)|dz.
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Forany (u,,v,), (4,,v,) € Xand t € [0, +00), by Lemma 3,
we have
|T1 (uv) () = T (up, ) (t)l
| 1+l

_ _[00 G5 |f1 (54 (9),v1(8)) = f1 (5,145, (5), v, (9))|ds

B o 1+tu-l

<@ J:O(Eh (9)|(uy () =1y (9))] + By (9)|(vy () = v, (s))|)d5
<@ro (1457 |11 (5) = 15 (9))|
<@ | ((Les" g (1

1+ 0!
( |(v1 (s)—v, (S))l>ds

1+ sl

Stxl—l)hl

<a@(g;ur = ] + i vy = va)-
(56)
By the similar proof, we have

T, (uy, vy) (1) = T (1, v,) () .\
|T5 () 11+t(x2721 » V2 IS‘D(%

uy — || + h||v, - 1/2”).
(57)
Now, inequalities (56) and (57) can show that
IT @I <a(g; + g5 + by +hy)(Jus =] + vy = va] ).
(58)

Thus, by the Banach contraction mapping theorem that
T has a unique fixed point in X, system (1) has a unique
positive solution. The proof is completed. O

4. An Example

Consider the following fractional differential system:

DEPu ) + f, (tut),v(t) =

DPv(t) + f,(tult),v(£) =0, 0<t< + 0o,
u(0) =u' (0) =
1 DEPu(ro0) = ¢ Je_tu(t)dt, (59)
0

v(0) =+ (0) =v"(0) =0,

o0
1 _
DEPy (+00) = . je Ly (1)dt,
0

where o, = (5/2), oy = (7/2), y; = (1/5), u, = (1/4), A,
(t) = A, (t) =t, a;(t) =e "= ay(t) =e". Then, we have

Journal of Function Spaces

j a, (DA, (£) = J a, (H)dA, (1) :j e 'dt = 1< + o0,
0 0 0
j a, (D 1dA, (1) = J ¢ 't00d¢ = 23562 < + o0,

0 0
j a, (01" A, (£) = J e 't dt = 33233 < + o0,

0 0

® = 2.0929
(60)
Take
u (t)|cost| v(t)|sin t|

frlbu®ve) =+

(1+t0D)e7t " 7(1+16D)e3r

__ 1 u(f) v(t)
[t u(t),v(t) = 2(1+e) + (1 + t0D)est T3 (14 (G
(61)
Let
91 (t) = m,
92(t) = W+ o)
(62)
h _ 1
{0 = e
hz (1) = m.
Through calculation, we get
1
o 1 tal 1 ¢ J‘ fo o
91 J 1+ )gi(de = | eMdt =,
g;=J (1497 1)g,(Ddt = j adt__
W= JOO(I +t“2’1)h (t)dt :l JOO Sds = 1
R : 7 Jo 21
W= [T e =2 j“’ etar = L
’ 0 : 3Jo 12’
(g, +g, +h +1) = 2.0929(7+6+21 + 12)
=0.9219< 1.
(63)

Then, by Theorem 2, system (59) has at least one positive
solution.
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