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In this paper, we study the pointwise estimates of solutions to the viscous Cahn-Hilliard equation with the inertial term in
multidimensions. We use Green’s function method. Our approach is based on a detailed analysis on the Green’s function of the
linear system. And we get the solution’s Lp convergence rate.

1. Introduction

In this paper, we study the pointwise estimates of the solution
ρðx, tÞ to the Cauchy problem:

ηρtt + ρt + Δ2ρ − kΔρt − Δf ρð Þ = 0,  x, tð Þ ∈ℝn × 0,∞ð Þ,
ρ x, tð Þjt=0 = ρ0 xð Þ, ρt x, tð Þjt=0 = ρ1 xð Þ,

(

ð1Þ

where n ≥ 4. f ðρÞ is the intrinsic chemical potential which
is smooth in the small neighborhood of the origin, and f
ðρÞ =Oðρ1+θÞ when jρj ≤ 1 and θ is a positive integer.
When η = 0, Eq. (1) is the well-known Cahn-Hilliard equa-
tion. When η ≠ 0, ηρtt is the inertial term. When k ≠ 0, −kΔρt
is the viscous term.Without loss of generality, we let η = 1 and
k = 1.

The classical Cahn-Hilliard equation was proposed in the
sixties by Cahn and Hilliard which describes the phase sepa-
ration in materials science, and it has been widely studied.
The reader may see references ([1–6]) and the related refer-
ences therein. The Cahn-Hilliard equations with inertial
term model nonequilibrium decompositions caused by deep
supercooling in certain glasses. As we know, the well-
known Cahn-Hilliard equation is a parabolic equation, but
the Cahn-Hilliard equation with the inertial term is a hyper-

bolic equation with relaxation which brings manymathemat-
ical difficulties to study. For which, without smallness
assumption on initial data, [7] got the global existence of
the classical solution. [8] obtained the global existence and
the optimal decay rate of the classical solution by the Fourier
splitting method. Wang and Wu [9] obtained the global exis-
tence and optimal decay rate of the classical solution by long
wave-short wave method. Li and Mi [10] got the pointwise
estimates and the Lp (1 ≤ p≤∞) convergence rate of the solu-
tion by Green’s function method. Some other works on the
Cahn-Hilliard equation with the inertial term can be seen
in [11–13].

For viscous Cahn-Hilliard equation, [14] discussed the
large time behavior of solutions when the dimension n ≤ 5.
For the viscous Cahn-Hilliard equation with the inertial
term, it describes the early stages of spinodal decomposition
in certain glasses (see [15–16]). And for which, [17] estab-
lished the existence of families of exponential attractors and
inertial manifolds; [18] studied the long time dynamic of
the system in three-dimensional. In this paper, we are inter-
ested in the viscous Cahn-Hilliard equation with the inertial
term. Under the smallness assumption on initial data, based
on the detailed analysis of the Green’s function, we get the
pointwise estimates of solutions. From the representation of
the symbol value to the Green’s function for the linear prob-
lem of Eq. (1), we also find that the decay rate mainly
depends on the lower-frequency part, i.e., the long wave part.
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It is shown that the solution’s decay rate is the same as [10].
Our study bases on Section 4 in [9].

To the best of our knowledge, this is the first time to
obtain the pointwise estimates of the solution to Eq. (1).

Throughout this paper, C denotes the generic positive
constants. Wm,p =Wm,pðℝnÞ ðm ∈ℤ+, p ∈ ½1,∞�Þ denote the
usual Lebesgue space with norms k·kLp and the usual Sobolev
space with its norm

fk kWm,p = 〠
m

∣α∣=0
∂αx fk kLp : ð2Þ

In particular, we use Wm,2 =Hm.
The main result can be stated as following Theorem 1:

Theorem 1. If kρ0kHs+1∩W1,1 + kρ1kHs∩L1 ≤ ε, s ≥max f½n/2�
+ 5, 2ng, and for any multi-index β, jβj < s − ðn/2Þ, there
exists a constant d > ðn/2Þ, such that

Dβ
xρ0 xð Þ

��� ��� + Dβ+2
x ρ0 xð Þ

��� ��� + Dβ
xρ1 xð Þ

��� ��� ≤ CE 1 + xj j4� �−d , ð3Þ

then for ∣β ∣ <n, the solution to Eq. (1) has the following esti-
mates:

Dβ
xρ x, tð Þ

��� ��� ≤ C 1 + tð Þ− n+ βj j/4ð ÞBd xj j2, t� �
, ð4Þ

where ε and E is sufficiently small positive constants, ½m� =
max fa ∣ a ∈ℤ, a ≤mg, Bdðjxj, tÞ = ð1 + ðjxj2/1 + tÞÞ−d:

Corollary 2. Under the assumptions of Theorem 1, for p ≥ 1,
jβj < n, we have that

Dβ
xρ x, tð Þ

��� ���
Lp
≤ C 1 + tð Þ− n/4ð Þ 1− 1/pð Þð Þ− βj j/4: ð5Þ

Remark 3.We get the same decay rate of the solution as [10].

Remark 4. Our study bases on [9, 10], where the spacial
dimension n ≥ 4. Then in this paper, we have the same
assumptions for the spacial dimension.

2. The Green Function

We first study the Green’s function to Eq. (1)which satisfies

Gtt + Gt + Δ2G − ΔGt = 0,  x, tð Þ ∈ℝn × 0,∞ð Þ,
G x, tð Þjt=0 = 0, Gt x, tð Þjt=0 = δ xð Þ:

(
ð6Þ

We apply the Fourier transform f̂ ðξ, tÞ = Ð
ℝn f ðx, tÞe−ix·ξ

dx and the inverse Fourier transform ðF−1 f̂ Þðx, tÞ = ð2πÞ−2nÐ
ℝn f̂ ðξ, tÞeix·ξdξ:

By applying the Fourier transform with respect to the
variable x, we get

∂2t + ∂t 1 + ξj j2
� �

+ ξj j4
h i

Ĝ ξ, tð Þ = 0,

Ĝ ξ, tð Þ��t=0 = 0, Ĝt ξ, tð Þ��t=0 = 1,

8<
: ð7Þ

the symbol of which is

ν2 + ν 1 + ξj j2
� �

+ ξj j4 = 0: ð8Þ

Here, ν and ξ correspond to ∂t and Dxj
= ð1/iÞ∂xj , j = 1,

2,⋯, n: By a direct calculation, we have

ν = ν± ξð Þ =
− 1 + ξj j2
� �

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ξj j2� �2 − 4 ξj j4

q
2 , ð9Þ

Ĝ ξ, tð Þ = 1 + ξj j2
� �2

− 4 ξj j4
	 
−1/2

eν+ ξð Þt − eν− ξð Þt
� �

:

ð10Þ

By Duhamel’s principle, we get the solution of the non-
linear problem (1)

ρ x, tð Þ =G tð Þ ∗ ρ0 + ρ1 − Δρ0ð Þ + ∂tG ∗ ρ0

+
ðt
0
G t − τð Þ ∗ Δf ρð Þ τð Þdτ:

ð11Þ

Now we decompose Ĝðξ, tÞ = Ĝ
+ðξ, tÞ + Ĝ

−ðξ, tÞ, where

Ĝ
±
ξ, tð Þ = ±ν0 ξð Þeν± ξð Þt , ν0 ξð Þ = 1 + ξj j2

� �2
− 4 ξj j4

	 
−1/2
:

ð12Þ

Let

Γ1 ξð Þ =
1, ξj j ≤ s,
0, ξj j > 2s

(
, Γ3 ξð Þ =

1, ξj j > R + 1,
0, ξj j ≤ R

(
ð13Þ

and Γ2ðξÞ = 1 − Γ1ðξÞ − Γ3ðξÞ be smooth cut-off functions,
where s, R > 0, 2s < R.

Set

Ĝ
±
i ξ, tð Þ = Γi ξð ÞĜ±

ξ, tð Þ, i = 1, 2, 3: ð14Þ

Now we estimate the Green’s function Gðx, tÞ.
2.1. Lower-Frequency Part. First, we give the following
Lemma.
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Lemma 5. If ŷðξ, tÞ has compact support in the variable ξ,N is
a positive integer, and there is a constant u > 0, such that

Dβ
ξ ξαŷ ξ, tð Þ� ���� ��� ≤ C ξj j αj j− βj jð Þ+ + ξj j αj jt βj j/4

h i
1 + t ξj j4

� �k
e−u ξj j4t ,

ð15Þ

for any multi-indexes α, β with ∣β ∣ ≤4N , then

Dα
xy x, tð Þj j ≤ Ct−n+ αj j/4BN xj j2, t� �

, ð16Þ

where k is any fixed positive number, ðsÞ+ = max f0, sg.

The proof of Lemma (9) can be seen in [10].
For ∣ξ ∣ is sufficiently small, from (9) and the Taylor

expansion, we have

ν+ ξð Þ = − ξj j4 +O ξj j6
� �

, ν− ξð Þ = −1 − ξj j2 + ξj j4

+O ξj j6
� �

, ν0 ξð Þ = 1 +O ξj j2
� �

,

eν+ ξð Þt = e− ξj j4t 1 +O ξj j8
� �

t
� �

, eν− ξð Þt

= e−te− ξj j2te ξj j4t 1 +O ξj j6
� �

t
� �

:

ð17Þ

Then

Ĝ
+
ξ, tð Þ = ν0 ξð Þeν+ ξð Þt = 1 +O ξj j2

� �� �
� 1 +O ξj j6

� �
t

� �
e− ξj j4t = 1 +O ξj j2

� �h
+O ξj j6

� �
t
i
e− ξj j4t:

ð18Þ

Since G∧±ðξ, tÞ are smooth functions to variable ξ near
∣ξ ∣ = 0, we obtain that when ∣β ∣ ≤4N ,

Dβ
ξ ξαĜ

+
1 ξ, tð Þ

� ���� ��� = 〠
μ1+μ2=β

β!

μ1!μ2!
Dμ1
ξ χ1 ξð Þ

� ������
� Dμ2

ξ ξαĜ
+
ξ, tð Þ

� �� ����� ≤ C ξj j αj j− μj j2ð Þ
h

+ ξj j αj jt μ2j j/4
i

1 + t ξj j4
� � 3/4ð Þ μ2j j

e− ξj j4t

≤ C ξj j αj j− βj jð Þ+ + ξj j αj jt βj j/4
h i

� 1 + t ξj j4
� � 3/4ð Þ βj j

e− ξj j4t:

ð19Þ

By Lemma (9), we get

Dα
xG

+
1 x, tð Þj j ≤ Ct− n+ αj j/4ð ÞBN xj j2, t� �

: ð20Þ

For Ĝ
−ðξ, tÞ, we have

Ĝ
−
ξ, tð Þ = −ν0 ξð Þeλ− ξð Þt = − 1 +O ξj j2

� �� �
� 1 +O ξj j6

� �
t

� �
e−te− ξj j2te ξj j4t

= − 1 +O ξj j2
� �

+O ξj j6
� �

t
h i

e−te− ξj j2te ξj j4t:

ð21Þ

Then, we have

Dβ
ξ ξαĜ

−
1 ξ, tð Þ� ���� ��� = 〠

μ1+μ2+μ3=β

β!

μ1!μ2!μ3!
Dμ1

ξ χ1 ξð Þ
� ������

� Dμ2
ξ ξα
� �� �

Dμ3
ξ Ĝ

−
ξ, tð Þ� �� �����

≤ C ξj j αj j− βj jð Þ+ + ξj j αj jt βj j/4
h i

� 1 + t ξj j2
� � 3/4ð Þ βj j+1

e − 1/2ð Þ− ξj j2+ ξj j4ð Þt

≤ C ξj j αj j− βj jð Þ+ + ξj j αj jt βj j/4
h i

� 1 + t ξj j4
� � 3/4ð Þ βj j

e− 1/2ð Þ− ξj j4ð Þte− r/2ð Þt ,

ð22Þ

where r > 0.
By Lemma (9), we get

Dα
xG

−
1 x, tð Þj j ≤ Ce− r/2ð Þt t−n+ αj j/2BN xj j2, t� �

≤ Ct−n+∣α∣/4BN xj j2, t� �
:

ð23Þ

From (20)–(23), we have the following proposition:

Proposition 6. For sufficiently small s, we have

Dα
xG1 x, tð Þj j ≤ Ct−n+ αj j/4BN xj j2, t� �

: ð24Þ

2.2. Middle-Frequency Part. We can get the following
proposition.

Proposition 7. For fixed s and R, there exist positive numbers
m and C such that

Dα
xG2 x, tð Þj j ≤ Ce−mtBN xj j2, t� �

: ð25Þ

The proof of Proposition 7 is similar to that of Proposition
12 in [10], so we omit it.
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2.3. Higher-Frequency Part. For ∣ξ ∣ is large enough, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ξj j2� �2 − 4 ξj j4

q
= ξj j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ξj j−2 + ξj j−4 − 3

q
=

ffiffiffi
3

p
i ξj j2 − 1

3 ξj j−2 +O ξj j−4
� �	 


,

ν0 ξð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ξj j2� �2 − 4 ξj j4

q
= ξj j−2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ξj j−2 + ξj j−4
q

− 3
=

ffiffiffi
3

p

3 i ξj j−2 +O ξj j−4
� �� �

:

ð26Þ

Then, we have

Ĝ
+
3 ξ, tð Þ = ν0 ξð Þeν+ ξð Þt = 1ffiffiffi

3
p i ξj j−2 +O ξj j−4

� �� �
� e − 1/2ð Þ− 1/2ð Þ 1− ffiffi

3
p

ið Þ ξj j2−
ffiffi
3

p
i/3ð Þ ξj j−2+O ξj j−4ð Þ½ �t

= e − 1/2ð Þ− 1/2ð Þ 1− ffiffi
3

p
ið Þ ξj j2½ �t 〠

k

j=0
B+
j tð Þ ξj j−2j

"

+ B+
k+1 tð ÞO ξj j−2 k+1ð Þ

� ��

Ĝ
−
3 ξ, tð Þ = −ν0 ξð Þeν− ξð Þt = −

1ffiffiffi
3

p i ξj j−2 +O ξj j−4
� �� �

� e − 1/2ð Þ− 1/2ð Þ 1+ ffiffi
3

p
ið Þ ξj j2+

ffiffi
3

p
i/3ð Þ ξj j−2+O ξj j−4ð Þ½ �t

= −e − 1/2ð Þ− 1/2ð Þ 1+ ffiffi
3

p
ið Þ ξj j2½ �t 〠

k

j=0
B+
j tð Þ ξj j−2j

"

+ B+
k+1 tð ÞO ξj j−2 k+1ð Þ

� ��
,

ð27Þ

where B±
j ðtÞ are polynomials in t with degree no more than j.

Let

R̂
+
ξ, tð Þ = Γ3 ξð Þe − 1/2ð Þ− 1/2ð Þ 1− ffiffi

3
p

ið Þ ξj j2½ �t 〠
∣α∣+ n+1/2ð Þ

j=0
B+
j tð Þ ξj j−2j,

R̂
−
ξ, tð Þ = −Γ3 ξð Þe − 1/2ð Þ− 1/2ð Þ 1+ ffiffi

3
p

ið Þ ξj j2½ �t 〠
∣α∣+ n+1/2ð Þ

j=0
B−
j tð Þ ξj j−2j,

R̂ ξ, tð Þ = R̂
+
ξ, tð Þ + R̂

−
ξ, tð Þ:

ð28Þ

Because

x2γDα
x G±

3 − R±� �
x, tð Þ�� �� ≤ ð

ℝn
D2γ
ξ ξα Ĝ

±
3 − R̂

±� ���� ���dξ ≤ Ce−bt ,

ð29Þ

taking ∣γ ∣ = 0 or ∣γ ∣ = 2N , we get the following proposition:

Proposition 8. For R being sufficiently large, we have

Dα
x G±

3 − R±� �
x, tð Þ�� �� ≤ Ce−mtBN xj j2, t� �

, ð30Þ

where m > 0.

Combining Proposition 6–8, we obtain the following esti-
mate of the Green’s function:

Proposition 9. For any multi-index α, we have

Dα
x G − Rð Þ x, tð Þj j ≤ C 1 + tð Þ−n+ αj j/4BN xj j2, t� �

: ð31Þ

3. The Proof of Theorem 1

In this section, we shall give the pointwise estimates of the
solution to the problem (1). From (3), we have

ρ x, tð Þ =Φ1 −Φ2 +Φ3: ð32Þ

where

Φ1 =G tð Þ ∗ ρ0 + ρ1ð Þ,
Φ2 =G tð Þ ∗ Δρ0,

Φ3 = ∂tG ∗ ρ0 +
ðt
0
G t − τð Þ ∗ Δf ρð Þ τð Þdτ:

ð33Þ

For Φ1 and Φ3, we have the following proposition:

Proposition 10.

Dα
xΦ1j j ≤ CE 1 + tð Þ−n+ αj j/4Bd xj j2, t� �

,

Dα
xΦ3j j ≤ CΘ tð Þθ+1 1 + tð Þ−n+ αj j/4Bd xj j2, t� �

,
ð34Þ

where jαj < n and n ≥ 4, ψðx, tÞ = ð1 + tÞn+jαj/4
ðBdðjxj2, tÞÞ

−1,

Θ tð Þ = sup x,τð Þ∈ℝn× 0,t½ Þ, αj j<n D
α
xρ x, τð Þj jψ x, τð Þ: ð35Þ

The proof of the above proposition is similar to proposition
4.1-4.2 in [10], so we omit it.

Next, we give a Lemma which is important to estimateΦ2
and has been proved in [10].

Lemma 11. If a, b > ðn/2Þ, c =min ða, bÞ, we have
ð
ℝn

1 + x − yj j4
1 + t

	 
−a

1 + yj j4� �−b
dy ≤ C 1 + xj j4

1 + t

	 
−c

: ð36Þ

We write

Φ2 = G ∗ Δρ0 = G − Rð Þ ∗ Δρ0 + R ∗ Δρ0 ≕ S1 + S2: ð37Þ
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Making use of (31), Lemma 11 and (3), we have

Dα
xS1j j ≤ C 1 + tð Þ−n+ αj j/4BN xj j2, t� �

∗ Δρ0 xð Þ
≤ CE 1 + tð Þ−n+ αj j/4

ð
ℝn
BN x − yj j2, t� �

1 + yj j4� �−d
dy

≤ CE 1 + tð Þ−n+ αj j/4Bd xj j2, t� �
,

ð38Þ

where d > ðn/2Þ.
From the definition of Rðx, tÞ, we have

xγDα
xR x, tð Þj j ≤ C

ð
ℝn

Dγ
ξξ

αR̂ ξ, tð Þ
��� ���dξ ≤ Ce−mt , ð39Þ

taking jγj = 0 or jγj = 4N , we obtain

Dα
xR x, tð Þj j ≤ Ce−mtBN xj j2, t� �

, ð40Þ

then, we get

Dα
xR x, tð Þ ∗ ρi−1 xð Þj j ≤ Ce−mtBN xj j2, t� �

∗ 1 + xj j4� �−d
≤ Ce−mtBr xj j2, t� �

, i = 1, 2:
ð41Þ

Thus, we obtain

Dα
xS2j j ≤ Ce−mtBd xj j2, t� �

: ð42Þ

Together with (38) and (42), we obtain the following
result:

Proposition 12. If jαj < n, then

Dα
xΦ2j j ≤ CE 1 + tð Þ−n+ αj j/4Bd xj j2, t� �

: ð43Þ

Combining Proposition 10–12, we have the following
result:

Proposition 13.

Dα
xρ x, tð Þj j ≤ C E +Θ tð Þθ+1

� �
1 + tð Þ−n+ αj j/4Bd xj j2, t� �

, ð44Þ

where ∣α ∣ <n:
By the smallness of E and the continuity of ΘðtÞ, we have

Dα
xρ x, tð Þj j ≤ CE 1 + tð Þ−n+ αj j/4Bd xj j2, t� �

: ð45Þ

Thus, we complete the proof of Theorem 1.
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