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In this paper, we develop a generalized quasilinearization technique for a class of Caputo’s fractional differential equations when the
forcing function is the sum of hyperconvex and hyperconcave functions of order m (m ≥ 0), and we obtain the convergence of the
sequences of approximate solutions by establishing the convergence of order k (k ≥ 2).

1. Introduction

Fractional differential equations have received attention from
some researchers because they have extensive application in
mechanics, biochemistry, electrical engineering, medicine,
and many other fields (see [1–6]). For more information
about the basic theory of fractional differential equations,
we can refer to the monographs [7–9] and references cited
therein. It is well known [10] that the monotone iterative
technique offers an approach for obtaining approximate
solutions to a wide variety of nonlinear differential equations.
Recently, there are some results on the monotone sequences
of approximate solutions converging uniformly to a solution
of fractional differential equations by employing monotone
iterative technique and generalized monotone iterative
method coupled with the method of upper and lower solu-
tions, which can be found in [11–21].

In view of applications, it is very significant to study the
rate of convergence of solutions. The quasilinearization
method [22] is one of the effective methods to obtain a
sequence of approximate solutions with quadratic conver-
gence, and it is extremely useful in scientific computations
due to its accelerated rate of convergence as in [23, 24]. A
few results of quadratic convergence for fractional differen-
tial equations were also obtained by applying quasilineariza-
tion, such as the initial value problem of Caputo’s fractional
differential equations [13, 25, 26], fractional differential

equations via initial time different lower and upper solutions
[27], and the system of fractional differential equations [28].
However, to the best of our knowledge, there are few results
of rapid convergence of fractional differential equations.
Recently, Wang and others obtained the results on rapid
convergence of solutions for various differential equations
[29–33]. Inspired and motivated by [34, 35], in the present
paper, we will discuss the rapid convergence of approximate
solutions of fractional differential equations when the forcing
function is the sum of hyperconvex and hyperconcave func-
tions with coupled lower and upper solutions, and construct
sequences of approximate solutions that converge rapidly to
the extremal solutions of (1) by using an improved quasili-
nearization method (rate of convergence k ≥ 2).

2. Preliminaries

Consider the initial value problem of Caputo’s fractional dif-
ferential equations (IVP):

cDq x = f t, xð Þ + g t, xð Þ, x t0ð Þ = x0, ð1Þ

where f , g : J × R⟶ R are continuous functions, J = ½t0, T�
and 0 < q < 1.

A function xðtÞ is called a solution of IVP (1) if it
satisfies (1).

Firstly, we give the following definitions and lemmas.
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Definition 1. The locally Hӧlder continuous functions α0,
β0 : J ⟶ R are coupled lower and upper solutions of
type I of IVP (1) if the following inequalities hold:

cDqα0 ≤ f t, α0ð Þ + g t, β0ð Þ, α0 t0ð Þ ≤ x0,
cDqβ0 ≥ f t, β0ð Þ + g t, α0ð Þ, β0 t0ð Þ ≥ x0:

(
ð2Þ

Definition 2. The locally Hölder continuous functions α0,
β0 : J ⟶ R are coupled lower and upper solutions of type
II of IVP (1) if the following inequalities hold:

cDqα0 ≤ f t, β0ð Þ + g t, α0ð Þ, α0 t0ð Þ ≤ x0,
cDqβ0 ≥ f t, α0ð Þ + g t, β0ð Þ, β0 t0ð Þ ≥ x0:

(
ð3Þ

Let f ðkÞðt, xÞ = ∂k f ðt, xÞ/∂xk denote the kth partial of f
with respect to x, k ∈N. jjxjj = sup

t∈J
jxðtÞj.

Definition 3. A function f is called m-hyperconvex, m ∈N, if
f ðm+1Þðt, xÞ ≥ 0; f is calledm-hyperconcave if the inequality is
reversed.

The linear IVP of Caputo’s fractional differential equa-
tion is given by

cDq x = λx + θ tð Þ, x t0ð Þ = x0, ð4Þ

where θ : J ⟶ R is a locally Hölder continuous function,
t ∈ J , λ ∈ R. The unique solution of (4) can be expressed
in the following form [7]:

x tð Þ = x0Eq λ t − t0ð Þqð Þ +
ðt
t0

t − sð Þq−1Eq,q λ t − sð Þqð Þθ sð Þ� �
ds,

ð5Þ

where

Eq tð Þ = 〠
∞

k=0

tk

Γ qk + 1ð Þ ,

Eq,q tð Þ = 〠
∞

k=0

tk

Γ qk + qð Þ ,
ð6Þ

are Mittag-Leffler’s functions, and Γ denotes the Gamma
function.

Remark 4. We note that (5) remains valid if x and θðtÞ are
functions mapping from J ⟶ Rn, x0 ∈ Rn, and λ is an n × n
matrix.

We need the following lemmas to prove our main results,
which proofs can be found in literature [26].

Lemma 5. Assume that x : J ⟶ R is a locally Hӧlder contin-
uous function such that for t1 ∈ ðt0, T�, xðt1Þ = 0 and xðtÞ < 0
for t ∈ ½t0, t1Þ. Then cDqxðt1Þ ≥ 0.

Lemma 6. Assume that fxnðtÞg is a family of continuous
functions on J . For each n > 0 and the Caputo’s fractional
differential equations, we have the following:

cDq xn tð Þ = f t, xn tð Þð Þ, xn t0ð Þ = x0, ð7Þ

the functions f ðt, xnðtÞÞ satisfy j f ðt, xnðtÞÞj ≤M for t ∈ J .
Then, the family fxnðtÞg is equicontinuous on J .

In our further investigations, we need the following com-
parison results.

Lemma 7. Assume that one of the following conditions holds:
H1α0, β0 are coupled lower and upper solutions of type I of

(1) and

f t, x1ð Þ − f t, x2ð Þ ≤ L x1 − x2ð Þ,
g t, x1ð Þ − g t, x2ð Þ ≥ −L x1 − x2ð Þ,

ð8Þ

where x1 ≥ x2, L ≥ 0 is a constant
H2α0, β0 are coupled lower and upper solutions of type II

of (1) and

f t, x1ð Þ − f t, x2ð Þ ≥ −L x1 − x2ð Þ,
g t, x1ð Þ − g t, x2ð Þ ≤ L x1 − x2ð Þ,

ð9Þ

where x1 ≥ x2, L ≥ 0 is a constant
Then, α0ðt0Þ ≤ β0ðt0Þ implies α0ðtÞ ≤ β0ðtÞ on J .

Proof. Firstly, we prove that the conclusion is valid when H1

holds. To do this, let ~β0ðtÞ = β0ðtÞ + εEqð3Lðt − t0ÞqÞ and ~α0
ðtÞ = α0ðtÞ − εEqð3Lðt − t0ÞqÞ for any small ε > 0 so that ~β0ðtÞ
> β0ðtÞ, ~α0ðtÞ < α0ðtÞ, and ~β0ðt0Þ > β0ðt0Þ ≥ α0ðt0Þ > ~α0ðt0Þ.
Then, in view of H1, we have

cDq~α0 ≤ f t, α0ð Þ + g t, β0ð Þ − 3LεEq 3L t − t0ð Þqð Þ
< f t, ~α0ð Þ + g t, ~β0

� �
:

ð10Þ

Similarly, we have cDq~β0 > f ðt, ~β0Þ + gðt, ~α0Þ.
We next show that ~α0ðtÞ < ~β0ðtÞ on J , which proves the

conclusion as ε⟶ 0. Letting QðtÞ = ~α0ðtÞ − ~β0ðtÞ, suppose
that QðtÞ < 0 is not true on J . Then, there exists a t1 ∈ ðt0, T�
such that Qðt1Þ = 0 and QðtÞ < 0 for t ∈ ½t0, t1Þ. In view of
Lemma 5, cDqQðt1Þ ≥ 0, that is, cDq~α0ðt1Þ≥cDq~β0ðt1Þ. Thus,
we arrive at the following contradiction:

f t1, ~α0 t1ð Þð Þ + g t1, ~β0 t1ð Þ
� �

>cDq~α0 t1ð Þ≥cDq~β0 t1ð Þ
> f t1, ~β0 t1ð Þ
� �

+ g t1, ~α0 t1ð Þð Þ:
ð11Þ

Similar to the proof process above, we can obtain the result
of Lemma 7 when H2 holds.
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Lemma 8. Assume that f , g ∈ C½Ω, R�, where Ω = fðt, xÞ: α0
ðtÞ ≤ x ≤ β0ðtÞ, t ∈ Jg, and one of the following conditions
holds:

H3α0, β0 are coupled lower and upper solutions of type I of
(1) such that α0ðtÞ ≤ β0ðtÞ on J , and gðt, xÞ is monotone non-
increasing in x for t ∈ J

H4α0, β0 are coupled lower and upper solutions of type II
of (1) such that α0ðtÞ ≤ β0ðtÞ on J , and f ðt, xÞ is monotone
nonincreasing in x for t ∈ J

Then, there exists a solution xðtÞ of (1) satisfying α0ðtÞ
≤ xðtÞ ≤ β0ðtÞ on J .

Proof. Suppose that H3 holds. Consider the mapping
P : J × R⟶ R defined by

P t, xð Þ =max α0 tð Þ, min x tð Þ, β0 tð Þ½ �f g: ð12Þ

Then

cDqx = f t, P t, xð Þð Þ + g t, P t, xð Þð Þ, ð13Þ

and it has a solution xðtÞ on J with xðt0Þ = x0.
Firstly, we prove that α0ðtÞ ≤ xðtÞ on J . Letting

�α0ðtÞ = α0ðtÞ − εEqðLðt − t0ÞqÞ, for any small ε > 0 such that
�α0ðtÞ < α0ðtÞ on J . We can prove that �α0ðtÞ < xðtÞ on J , which
shows that α0ðtÞ ≤ xðtÞ as ε⟶ 0. SettingmðtÞ = �α0ðtÞ − xðtÞ,
supposemðtÞ < 0 is not true on J , then there exists a t2 ∈ ðt0, T�
such that mðt2Þ = 0 and mðtÞ < 0 for t ∈ ½t0, t2Þ. From
Lemma 5, it follows that cDqmðt2Þ ≥ 0, that is, cDq�α0ðt2Þ ≥
cDqxðt2Þ. Therefore,

cDqx t2ð Þ ≤ cDq�α0 t2ð Þ < cDqα0 t2ð Þ ≤ f t2, α0 t2ð Þð Þ + g t2, β0 t2ð Þð Þ:
ð14Þ

On the other hand, we have

cDqx t2ð Þ = f t2, P t2, xð Þð Þ + g t2, P t2, xð Þð Þ
≥ f t2, α0 t2ð Þð Þ + g t2, β0 t2ð Þð Þ, ð15Þ

and it contradicts with (14). This contradiction proves the
claim.

Similarly, letting �β0ðtÞ = β0ðtÞ + εEqðLðt − t0ÞqÞ, we can
find that xðtÞ ≤ β0ðtÞ.

It is easy to construct the proofs of the results relative to
H4. We omit the details.

To obtain the results of this paper, we need to consider
two-dimensional Caputo’s fractional differential systems:

cDqX =H t, Xð Þ, X t0ð Þ = X0, ð16Þ

where H ∈ C½J × R2, R2� and X : J ⟶ R2 is a locally Hölder
continuous function.

Lemma 9. Assume that v,w : J ⟶ R2 are locally Hölder con-
tinuous functions satisfying the following:

cDqv ≤H t, vð Þ,
v t0ð Þ ≤ X0,
cDqw ≥H t,wð Þ,
w t0ð Þ ≥ X0,

ð17Þ

and whenever X ≥ Y ,

Hi t, x1, x2ð Þ −Hi t, y1, y2ð Þ ≤ L x1 − y1ð Þ + x2 − y2ð Þ½ �, ð18Þ

where L ≥ 0 is a constant, i = 1, 2. Then vðt0Þ ≤wðt0Þ implies
vðtÞ ≤wðtÞ on J .

Proof. Let �wðtÞ =wðtÞ + εEqð2Lðt − t0ÞqÞ and �vðtÞ = vðtÞ − ε

Eqð2Lðt − t0ÞqÞ for any small ε > 0 and ε = ðε1, ε2Þ so that �w
ðtÞ >wðtÞ, �vðtÞ < vðtÞ, and �wðt0Þ >wðt0Þ ≥ vðt0Þ > �vðt0Þ.
Consequently, we obtain, for each i

cDq�vi= cDqvi − 2LεiEq 2L t − t0ð Þqð Þ
≤Hi t, �v1, �v2ð Þ − LεiEq 3L t − t0ð Þqð Þ
<Hi t, �v1, �v2ð Þ:

ð19Þ

Similarly, we have

cDq �wi= cDqwi + 2LεiEq 2L t − t0ð Þqð Þ >Hi t, �w1, �w2ð Þ: ð20Þ

We next prove that �vðtÞ < �wðtÞ on J , which shows the
required conclusion as ε⟶ 0. Suppose that �vðtÞ < �wðtÞ is
not true on J , then there exists an index j, and a t3 ∈ ðt0, T�
such that �vjðt3Þ = �wjðt3Þ and �vjðtÞ < �wjðtÞ for t ∈ ½t0, t3Þ. Set
mðtÞ = �vjðtÞ − �wjðtÞ, it then follows from Lemma 5 that cDq

mðt3Þ ≥ 0, that is cDq�vjðt3Þ≥cDq �wjðt3Þ. Furthermore,

Hj t3, �v1 t3ð Þ, �v2 t3ð Þð Þ>cDq�vj t3ð Þ >Hj t3, �w1 t3ð Þ, �w2 t3ð Þð Þ,
ð21Þ

which leads to a contradiction. This completes the proof.

3. Main Results

In this section, we consider that f ðt, xÞ and gðt, xÞ are hyper-
convex and hyperconcave in x of order m − 1, respectively.
We first give some inequalities depending on whether m is
even or odd [34]:
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(i) m = 2k

f t, ηð Þ ≥ 〠
2k−1

i=0

f ið Þ t, ξð Þ η − ξð Þi
i!

, ð22Þ

f t, ηð Þ ≤ 〠
2k−2

i=0

f ið Þ t, ξð Þ η − ξð Þi
i!

+ f 2k−1ð Þ t, ηð Þ η − ξð Þ2k−1
2k − 1ð Þ! ,

ð23Þ

g t, ηð Þ ≤ 〠
2k−1

i=0

g ið Þ t, ξð Þ η − ξð Þi
i!

, ð24Þ

g t, ηð Þ ≥ 〠
2k−2

i=0

g ið Þ t, ξð Þ η − ξð Þi
i!

+ g 2k−1ð Þ t, ηð Þ η − ξð Þ2k−1
2k − 1ð Þ! :

ð25Þ

(ii) m = 2k + 1

f t, ηð Þ ≤ 〠
2k−1

i=0

f ið Þ t, ξð Þ η − ξð Þi
i!

+ f 2kð Þ t, ηð Þ η − ξð Þ2k
2kð Þ! , η ≥ ξ,

ð26Þ

f t, ηð Þ ≥ 〠
2k−1

i=0

f ið Þ t, ξð Þ η − ξð Þi
i!

+ f 2kð Þ t, ηð Þ η − ξð Þ2k
2kð Þ! , η ≤ ξ,

ð27Þ

g t, ηð Þ ≥ 〠
2k−1

i=0

g ið Þ t, ξð Þ η − ξð Þi
i!

+ g 2kð Þ t, ηð Þ η − ξð Þ2k
2kð Þ! , η ≥ ξ,

ð28Þ

g t, ηð Þ ≤ 〠
2k−1

i=0

g ið Þ t, ξð Þ η − ξð Þi
i!

+ g 2kð Þ t, ηð Þ η − ξð Þ2k
2kð Þ! , η ≤ ξ,

ð29Þ

Based on the above inequalities, we have the following
result which is relative to the coupled lower and upper solu-
tions of type I in Definition 1 when m is even.

Theorem 10. Consider the following assumptions:
A1α0, β0 are coupled lower and upper solutions of type I of

(1) with α0 ≤ β0 on J
A2f , g ∈ C2k½Ω, R� such that f ðt, xÞ and gðt, xÞ are the

hyperconvex and hyperconcave in x of the order 2k − 1,
respectively

A3gxðt, xÞ satisfies

gx t, xð Þ ≤min g 2kð Þ t, xð Þ
h i β0 − α0ð Þ2k−1

2k − 2ð Þ! ≤ 0 onΩ ð30Þ

Then, there exist monotone sequences fαnðtÞg and
fβnðtÞg converging uniformly to the solution xðtÞ of (1) on
J and the convergence is of the order 2k.

Proof. It follows from assumption A2 that the inequalities
(22), (23), (24), and (25) hold. Consider the following frac-
tional differential equations:

cDqv tð Þ = F t, α, β ; v,wð Þ

≜ 〠
2k−1

i=0

f ið Þ t, αð Þ v − αð Þi
i!

+ 〠
2k−2

i=0

g ið Þ t, βð Þ w − βð Þi
i!

+ g 2k−1ð Þ t, αð Þ w − βð Þ2k−1
2k − 1ð Þ! , v t0ð Þ = x0,

ð31Þ

cDqw tð Þ =G t, α, β ;w, vð Þ

≜ 〠
2k−2

i=0

f ið Þ t, βð Þ w‐βð Þi
i!

+ 〠
2k−1

i=0

g ið Þ t, αð Þ v − αð Þi
i!

+ f 2k−1ð Þ t, αð Þ w − βð Þ2k−1
2k − 1ð Þ! , w t0ð Þ = x0:

ð32Þ

Firstly, applying (31) and (32) and taking α = α0, β = β0,
we obtain

cDqv tð Þ = F t, α0, β0 ; v,wð Þ, v t0ð Þ = x0, ð33Þ

cDqw tð Þ =G t, α0, β0 ;w, vð Þ, w t0ð Þ = x0: ð34Þ
Condition A1 and inequalities (22), (23), (24), and (25)

imply

cDqα0 ≤ f t, α0ð Þ + g t, β0ð Þ = F t, α0, β0 ; α0, β0ð Þ, α0 t0ð Þ ≤ x0,

cDqβ0 ≥ 〠
2k−1

i=0

f ið Þ t, α0ð Þ β0 − α0ð Þi
i!

+ 〠
2k−2

i=0

g ið Þ t, β0ð Þ α0 − β0ð Þi
i!

+ g 2k−1ð Þ t, α0ð Þ α0 − β0ð Þ2k−1
2k − 1ð Þ!

= F t, α0, β0 ; β0, α0ð Þ, β0 t0ð Þ ≥ x0,

cDqα0 ≤ 〠
2k−2

i=0

f ið Þ t, β0ð Þ α0 − β0ð Þi
i!

+ f 2k−1ð Þ t, α0ð Þ α0 − β0ð Þ2k−1
2k − 1ð Þ!

+ 〠
2k−1

i=0

g ið Þ t, α0ð Þ α0 − β0ð Þi
i!

=G t, α0, β0 ; α0, β0ð Þ, α0 t0ð Þ ≤ x0,
cDqβ0 ≥ f t, β0ð Þ + g t, α0ð Þ =G t, α0, β0 ; β0, α0ð Þ, β0 t0ð Þ ≥ x0:

ð35Þ
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Employing assumption A3 and the Taylor series expan-
sion with the Lagrange remainder, we get

Fw t, α0, β0 ; v,wð Þ = gw t,wð Þ − g 2kð Þ t, ξ2ð Þ w − β0ð Þ2k−2 ξ1 − α0ð Þ
2k − 2ð Þ! ≤ 0,

Gv t, α0,β0 ;w, vð Þ = gv t, vð Þ − g 2kð Þ t, η1ð Þ v − α0ð Þ2k−1
2k − 1ð Þ! ≤ 0,

ð36Þ

where α0 ≤ ξ2 ≤ ξ1 ≤ β0 and α0 ≤ η1 ≤ β0. Therefore, Fðt,
α0, β0 ; v,wÞ and Gðt, α0, β0 ;w, vÞ are nonincreasing in
w and v, respectively. By Lemma 8, there exist solutions
α1ðtÞ and β1ðtÞ of (33), (34) on J such that α0ðtÞ ≤ α1
ðtÞ ≤ β0ðtÞ and α0ðtÞ ≤ β1ðtÞ ≤ β0ðtÞ. Furthermore, in view
of the inequalities (22), (23), (24), and (25) and condi-
tion A2, we have

cDqα1 = F t, α0, β0 ; α1, β1ð Þ ≤ f t, α1ð Þ + g t, β1ð Þ,
 α1 t0ð Þ = x0,

cDqβ1 =G t, α0, β0 ; β1, α1ð Þ ≥ f t, β1ð Þ + g t, α1ð Þ,
 β1 t0ð Þ = x0,

ð37Þ

and in view of H1, we have α1ðtÞ ≤ β1ðtÞ for t ∈ J .
Hence, α0ðtÞ ≤ α1ðtÞ ≤ β1ðtÞ ≤ β0ðtÞ.

By induction, for all n, we can obtain that

α0 tð Þ ≤ α1 tð Þ ≤⋯≤ αn tð Þ ≤ βn tð Þ ≤⋯≤ β1 tð Þ ≤ β0 tð Þ,
ð38Þ

where αn and βn are solutions of

cDqv tð Þ = F t, αn−1, βn−1 ; v,wð Þ,  v t0ð Þ = x0,
cDqw tð Þ =G t, αn−1, βn−1 ;w, vð Þ, w t0ð Þ = x0,

ð39Þ

and

cDqαn = F t, αn−1, βn−1 ; αn, βnð Þ ≤ f t, αnð Þ + g t, βnð Þ,
 αn t0ð Þ = x0,

ð40Þ

cDqβn = G t, αn−1, βn−1 ; βn, αnð Þ ≥ f t, βnð Þ + g t, αnð Þ,
 βn t0ð Þ = x0:

ð41Þ

According to (40) and (41), αn and βn are coupled lower
and upper solutions of type I of (1). We have gx ≤ 0 on Ω
from assumption A3. It then follows from Lemma 8 that
xðtÞ is a solution of (1) on J satisfying αnðtÞ ≤ xðtÞ ≤ βnðtÞ.
Hence, we have

α0 tð Þ ≤ α1 tð Þ ≤⋯ ≤ αn tð Þ ≤ x ≤ βn tð Þ ≤⋯≤ β1 tð Þ ≤ β0 tð Þ:
ð42Þ

By (42), the sequences fαng and fβng are uniformly
bounded on J . From Lemma 6, the sequences fαng and

fβng are equicontinuous on J . Consequently, by employ-
ing the Ascoli-Arzela Theorem, sequences fαng and fβng
are uniformly convergent on J .

Finally, we prove that the convergence of fαng and fβng
is of the order 2k.

Set WnðtÞ = xðtÞ − αnðtÞ ≥ 0 and VnðtÞ = βnðtÞ − xðtÞ ≥ 0
for t ∈ J with Wnðt0Þ =Vnðt0Þ = 0. Using the known condi-
tions and the mean value theorem, we obtain

cDqWn+1 tð Þ = f t, xð Þ + g t, xð Þ

− 〠
2k−1

i=0

f ið Þ t, αnð Þ αn+1 − αnð Þi
i!

"

+ 〠
2k−2

i=0

g ið Þ t, βnð Þ βn+1 − βnð Þi
i!

+ g 2k−1ð Þ t, αnð Þ βn+1 − βnð Þ2k−1
2k − 1ð Þ!

#

= f t, xð Þ + g t, xð Þ

− f t, αn+1ð Þ − f 2kð Þ t, δ1ð Þ αn+1 − αnð Þ2k
2kð Þ!

"

+ g t, βn+1ð Þ − g 2k−1ð Þ t, δ2ð Þ βn+1 − βnð Þ2k−1
2k − 1ð Þ!

+ g 2k−1ð Þ t, αnð Þ βn+1 − βnð Þ2k−1
2k − 1ð Þ!

#

= f x t, δ3ð Þ x − αn+1ð Þ − gx t, δ4ð Þ βn+1 − xð Þ

+ f 2kð Þ t, δ1ð Þ αn+1 − αnð Þ2k
2kð Þ!

−
g 2kð Þ t, δ5ð Þ βn − βn+1ð Þ2k−1 δ2 − αnð Þ

2k − 1ð Þ!
≤ f x t, δ3ð ÞWn+1 tð Þ − gx t, δ4ð ÞVn+1 tð Þ

+ f 2kð Þ t, δ1ð Þ x − αnð Þ2k
2kð Þ!

−
g 2kð Þ t, δ5ð Þ βn − xð Þ2k−1 βn − xð Þ + x − αnð Þ½ �

2k − 1ð Þ!
= f x t, δ3ð ÞWn+1 − gx t, δ4ð ÞVn+1

+ f 2kð Þ t, δ1ð ÞW2k
n

2kð Þ!

−
g 2kð Þ t, δ5ð ÞV2k−1

n Vn +Wnð Þ
2k − 1ð Þ!

≤ k1Wn+1 + k2Vn+1 + k3W
2k
n + k4V

2k−1
n Vn +Wnð Þ,

ð43Þ

where αn ≤ δ1 ≤ αn+1 ≤ δ3 ≤ x ≤ δ4 ≤ βn+1 ≤ δ2 ≤ βn, αn ≤ δ5
≤ δ2, 0 ≤ f xðt, xÞ ≤ k1, and 0≤−gxðt, xÞ ≤ k2 and it follows

from assumption A2 that f
ð2kÞ and gð2kÞ are bounded on Ω,

that is, 0 ≤ f ð2kÞðt, xÞ/ð2kÞ!≤k3, 0≤−gð2kÞðt, xÞ/ð2k − 1Þ!≤k4.
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Similarly, we have

cDqVn+1 tð Þ = 〠
2k−2

i=0

f ið Þ t, βnð Þ βn+1 − βnð Þi
i!

+ f 2k−1ð Þ t, αnð Þ βn+1 − βnð Þ2k−1
2k − 1ð Þ!

+ 〠
2k−1

i=0

g ið Þ t, αnð Þ αn+1 − αnð Þi
i!

− f t, xð Þ − g t, xð Þ

= f t, βn+1ð Þ − f 2k−1ð Þ t, σ1ð Þ βn+1 − βnð Þ2k−1
2k − 1ð Þ!

+ f 2k−1ð Þ t, αnð Þ βn+1 − βnð Þ2k−1
2k − 1ð Þ!

+ g t, αn+1ð Þ − g 2kð Þ t, σ2ð Þ αn+1 − αnð Þ2k
2kð Þ!

− f t, xð Þ − g t, xð Þ = f x t, σ3ð Þ βn+1 − xð Þ
− gx t, σ4ð Þ x − αn+1ð Þ

+ f 2kð Þ t, σ5ð Þ βn − βn+1ð Þ2k−1 σ1 − αnð Þ
2k − 1ð Þ!

−
g 2kð Þ t, σ2ð Þ αn+1 − αnð Þ2k

2kð Þ!
≤ f x t, σ3ð ÞVn+1 − gx t, σ4ð ÞWn+1

−
g 2kð Þ t, σ2ð Þ x − αnð Þ2k

2kð Þ!

+ f 2kð Þ t, σ5ð Þ βn − xð Þ2k−1 βn − xð Þ + x − αnð Þ½ �
2k − 1ð Þ!

= f x t, σ3ð ÞVn+1 − gx t, σ4ð ÞWn+1

+ f 2kð Þ t, σ5ð ÞV2k−1
n Vn +Wnð Þ

2k − 1ð Þ!

−
g 2kð Þ t, σ2ð ÞW2k

n

2kð Þ!
≤ k1Vn+1 + k2Wn+1 + k5V

2k−1
n Vn +Wnð Þ

+ k6W
2k
n ,

ð44Þ

where

αn ≤ σ2 ≤ αn+1 ≤ σ4 ≤ x ≤ σ3 ≤ βn+1 ≤ σ1 ≤ βn,
αn ≤ σ5 ≤ σ1,

0 ≤ f 2kð Þ t, xð Þ
2k − 1ð Þ ≤ k5,

0 ≤ −
g 2kð Þ t, xð Þ

2kð Þ! ≤ k6:

ð45Þ

For the following inequalities

cDqWn+1 tð Þ ≤ k1Wn+1 + k2Vn+1

+ k3W
2k
n + k4V

2k−1
n Vn +Wnð Þ

��� ���, Wn+1 t0ð Þ = 0,
cDqVn+1 tð Þ ≤ k1Vn+1 + k2Wn+1

+ k5V
2k−1
n Vn +Wnð Þ + k6W

2k
n

��� ���, Vn+1 t0ð Þ = 0,

ð46Þ

we can get

cDqΦ ≤ λΦ +Ψ, Φ t0ð Þ =Ψ0, ð47Þ

where

Φ =
Wn+1

Vn+1

 !
,

λ =
k1 k2

k2 k1

 !
,

Ψ =
Ψ1

Ψ2

 !
,

Ψ0 =
0
0

 !
,

ð48Þ

in which

Ψ1 = k3W
2k
n + k4V

2k−1
n Vn +Wnð Þ

��� ���,
Ψ2 = k5V

2k−1
n Vn +Wnð Þ + k6W

2k
n

��� ���: ð49Þ

Formulas (4) and (5) and Lemma 9 imply

Φ tð Þ ≤
ðt
t0

t − sð Þq−1Eq,q λ t − sð Þqð ÞdsΨ ≤MΨ, ð50Þ

where

M =

T − t0ð Þq
q

Eq,q k1 T − t0ð Þqð Þ T − t0ð Þq
q

Eq,q k2 T − t0ð Þqð Þ

T − t0ð Þq
q

Eq,q k2 T − t0ð Þqð Þ T − t0ð Þq
q

Eq,q k1 T − t0ð Þqð Þ

0
BBB@

1
CCCA

=
M1 M2

M2 M1

 !
:

ð51Þ
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Hence, we have

Wn+1 tð Þ ≤M1 k3W
2k
n + k4V

2k−1
n Vn +Wnð Þ

��� ���
+M2 k5V

2k−1
n Vn +Wnð Þ + k6W

2k
n

��� ���
≤M1 k3 Wnk k2k + k4 Vnk k2k−1 Vnk k + Wnk kð Þ

� �
+M2 k5 Vnk k2k−1 Vnk k + Wnk kð Þ + k6 Wnk k2k

� �
= c1 Wnk k2k + c2 Vnk k2k−1 Vnk k + Wnk kð Þ,

ð52Þ

where c1 =M1k3 +M2k6, c2 =M1k4 +M2k5. Similarly, we get

Vn+1 tð Þ ≤ c3 Wnk k2k + c4 Vnk k2k−1 Vnk k + Wnk kð Þ: ð53Þ

Employing the Binomial Theorem

a + bð Þ2k = C0
2ka

2k + C1
2ka

2k−1b+⋯+Cr
2ka

2k−rbr+⋯+C2k
2kb

2k

≥ a2k + b2k + a2k−1b,
ð54Þ

and the inequalities (52) and (53), we obtain

Wn+1 + Vn+1 tð Þ ≤ c1 + c3ð Þ Wnk k2k
+ c2 + c4ð Þ Vnk k2k−1 Vnk k + Wnk kð Þ

= c5 Wnk k2k + c6 Vnk k2k + c6 Vnk k2k−1 Wnk k
≤ c7 Wnk k + Vnk kð Þ2k,

ð55Þ

that is,

x tð Þ − αn+1 tð Þk k + βn+1 tð Þ − x tð Þk k ≤ c7 x tð Þ − αn tð Þk k + βn+1 tð Þ − x tð Þk k½ �2k,
ð56Þ

where c1 + c3 = c5, c2 + c4 = c6, c7 = max fc5, c6g.
The following theorem is relative to the coupled lower

and upper solutions of type II in Definition 1 whenm is odd.

Theorem 11. Consider the following assumptions:
D1 α0, β0 are coupled lower and upper solutions of type II

of (1) with α0 ≤ β0 on J.
D2f , g ∈ C2k+1½Ω, R� such that f ðt, xÞ and gðt, xÞ are

hyperconvex and hyperconcave in x of order 2k, respectively.
D3f xðt, xÞ satisfies

f x t, xð Þ ≤ − max f 2k+1ð Þ t, xð Þ
h i β0 − α0ð Þ2k

2k − 1ð Þ! ≤ 0 onΩ: ð57Þ

Then, there exist monotone sequences fαnðtÞg and
fβnðtÞg converging uniformly to the solution xðtÞ of (1) on
J and the convergence is of the order 2k.

Proof. It follows from assumption D2 that the inequalities
(26), (27), (28), and (29) hold. In order to construct the
sequences fαnðtÞg and fβnðtÞg, consider the following frac-
tional differential equations:

cDqαn tð Þ = F t, αn−1, βn−1 ; βn, αnð Þ

≜ 〠
2k−1

i=0

f ið Þ t, βn−1ð Þ βn − βn−1ð Þi
i!

+ f 2kð Þ t, αn−1ð Þ βn − βn−1ð Þ2k
2kð Þ!

+ 〠
2k−1

i=0

g ið Þ t, αn−1ð Þ αn − αn−1ð Þi
i!

+ g 2kð Þ t, βn−1ð Þ αn − αn−1ð Þ2k
2kð Þ! , αn t0ð Þ = x0,

cDqβn tð Þ =G t, αn−1, βn−1 ; αn, βnð Þ

≜ 〠
2k−1

i=0

f ið Þ t, αn−1ð Þ αn − αn−1ð Þi
i!

+ f 2kð Þ t, βn−1ð Þ αn − αn−1ð Þ2k
2kð Þ!

+ 〠
2k−1

i=0

g ið Þ t, βn−1ð Þ βn − βn−1ð Þi
i!

+ g 2kð Þ t, αn−1ð Þ βn − βn−1ð Þ2k
2kð Þ! , βn t0ð Þ = x0:

ð58Þ

Similar to the proof of Theorem 10, the conclusion can be
obtained. We omit the details.
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