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In this article, exact solutions of two (3+1)-dimensional nonlinear differential equations are derived by using the complex
method. We change the (3+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and generalized shallow water
(gSW) equation into the complex differential equations by applying traveling wave transform and show that
meromorphic solutions of these complex differential equations belong to class W, and then, we get exact solutions of
these two (3+1)-dimensional equations.

1. Introduction and Main Results

Nonlinear differential equations (NLDEs) play an impor-
tant role in the research of nonlinear science, which has
attracted a lot of attentions of the researchers [1–8].
The investigation of NLDEs is helpful for well under-
standing of nonlinear physical phenomena [9–16].
Numerous methods have been developed for seeking
traveling wave exact solutions to NLDEs, such as sine-
Gordon expansion method [17], Kudryashov method
[18], modified simple equation method [19], Jacobi ellip-
tic function expansion [20], exp(−ψ(z))-expansion
method [21, 22], modified extended tanh method [23,
24], generalized (G'/G) expansion method [25], and
improved F-expansion method [26].

In recent years, Yuan et al. [27] introduced an effi-
cient method named complex method to get exact solu-
tions for NLDEs. The complex method is developed by
complex analysis and complex differential equations.
More details about the complex method can be found
in [28–34]. In this work, we will utilize the complex
method to achieve exact solutions of the following two
(3+1)-dimensional NLDEs.

The (3+1)-dimensional BKP equation [35] is given by

uxxxy + θ uxuy
� �

x
+ ux + uy + us
� �

t
− uxx + ussð Þ = 0, ð1Þ

where θ is a constant.
The (3+1)-dimensional gSW equation [36] is given by

uxxxy + 3uxxuy + 3uxuxy − uyt − uxs = 0: ð2Þ

Class W consists of elliptic function or their degenera-
tion. Substituting traveling wave transform

u x, y, s, tð Þ =U zð Þ, z = n1x + n2y + n3s + n4t, ð3Þ

into Eq. (1), and then integrating it we get

n31n2U ′′′ + θn21n2 U ′
� �2

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �

U ′ + r = 0,

ð4Þ

where r is the integration constant.
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Theorem 1. If θn1n2 ≠ 0, then meromorphic solutionsw of Eq.
(4) belong to class W and Eq. (4) has the following solutions
where ciði = 1, 2, 3, 4Þ are the integral constants.

(i) The rational function solutions

Ur zð Þ = 6n1
θ

1
z − z0

+ n4 n1 + n2 + n3ð Þ − n21 − n23
2θn21n2

z − z0ð Þ + c1,

ð5Þ

where r = −ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/4θn21n2, z0 ∈ℂ.

(ii) The simply periodic solutions

U1s zð Þ = −
3n1μ
θ

coth μ z − z0ð Þ
2

−
3n1μ
2θ

ln coth μ/2ð Þ z − z0ð Þ − 1
coth μ/2ð Þ z − z0ð Þ + 1

� �

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �2 − 2μ2n31n2

2θn21n2
z − z0ð Þ + c2,

U2s zð Þ = −
3n1μ
θ

tanh μ z − z0ð Þ
2

−
3n1μ
2θ

ln tanh μ/2ð Þ z − z0ð Þ − 1
tanh μ/2ð Þ z − z0ð Þ + 1

� �

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �2 − 2μ2n31n2

2θn21n2
z − z0ð Þ + c3,

ð6Þ

where r = μ4n61n
2
2 − ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/4θn21n2, z0

∈ℂ.

(iii) The elliptic function solutions

Ud zð Þ = −
6n1
θ

ζ zð Þ − ζ z0ð Þ½ � − 3n1
θ

℘′ zð Þ +G
℘ zð Þ −H

+ n4 n1 + n2 + n3ð Þ − n21 − n23
2θn21n2

z − z0ð Þ + c4,
ð7Þ

where G2 = 4H3 − g2H − g3, g2 = 4n21n2rθ +
ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/12n61n22, H and g3 are arbitrary.

Substituting traveling wave transform

u x, y, s, tð Þ = V zð Þ, z =m1x +m2y +m3s +m4t, ð8Þ

into Eq. (2), and then integrating it we get

m3
1m2V ′′′ + 3m2

1m2 V ′
� �2

− m1m3 +m2m4ð ÞV ′ + λ = 0,

ð9Þ

where λ is the integration constant.

Theorem 2. Ifm1m2 ≠ 0, then meromorphic solutionsw of Eq.
(9) belong to the class W and Eq. (9) has the following solu-
tions where ciði = 1, 2, 3, 4Þ are the integral constants.

(i) The rational function solutions

Vr zð Þ = 2m1

z − z0
+ m1m3 +m2m4

6m2
1m2

z − z0ð Þ + c1, ð10Þ

where λ = ðm1m3 +m2m4Þ2/12m2
1m2, z0 ∈ℂ.

(ii) The simply periodic solutions

V1s zð Þ = −4m1μ coth μ z − z0ð Þ
2

− 4m1μ ln coth μ/2ð Þ z − z0ð Þ − 1
coth μ/2ð Þ z − z0ð Þ + 1

� �

+ 2m3
1m2μ

2 +m1m3 +m2m4

6m2
1m2

z − z0ð Þ + c2,

V2s zð Þ = −4m1μ tanh μ z − z0ð Þ
2

− 4m1μ ln tanh μ/2ð Þ z − z0ð Þ − 1
tanh μ/2ð Þ z − z0ð Þ + 1

� �

+ 2m3
1m2μ

2 +m1m3 +m2m4

6m2
1m2

z − z0ð Þ + c3,

ð11Þ

where λ = ðm1m3 +m2m4Þ2 −m6
1m

2
2μ

4/12m2
1m2, z0 ∈ℂ..

(iii) The elliptic function solutions

Vd zð Þ = −2m1 ζ zð Þ − ζ z0ð Þ½ � −m1
℘′ zð Þ + E
℘ zð Þ − F

+ m1m3 +m2m4

6m2
1m2

z − z0ð Þ + c4,
ð12Þ

where E2 = 4F3 − g2F − g3, g2 = ðm1m3 +m2m4Þ2 − 12λm2
1

m2/12m6
1m

2
2, F and g3 is arbitrary.

2. Preliminaries

Set m ∈ℕ≔ f1, 2, 3,⋯g, ri ∈ f0, 1, 2,⋯g, i = 0, 1,⋯,m, r
= ðr0, r1,⋯, rmÞ, and

Kr U½ � zð Þ≔
Ym
i=0

U ið Þ zð Þ
h iri

: ð13Þ

The degree of Kr½U � is defined as dðrÞ≔∑m
i=0 ri. The dif-

ferential polynomial is given by

P U ,U ′,⋯,U mð Þ
� �

≔〠
r∈J

arKr U½ �, ð14Þ
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where J is a finite index set, then deg PðU ,U ′,⋯,UðmÞÞ≔
maxr∈JfdðrÞg is the degree of PðU ,U ′,⋯,U ðmÞÞ.

Considering the following equation:

P U ,U ′,⋯,U mð Þ
� �

= aUn + d, ð15Þ

where n ∈ℕ, and a ≠ 0, d are constants.
Assume that meromorphic solutions w of Eq. (13) have at

least one pole and let p, q ∈ N. Substitute the Laurent series

U zð Þ = 〠
∞

k=−q
βkz

k, β−q ≠ 0, q > 0, ð16Þ

into Eq. (15) to determine p distinct Laurent principal parts

〠
−1

k=−q
βkz

k, ð17Þ

then, Eq. (15) is said to satisfy weak <p, q > condition.
It is know that Weierstrass elliptic function ℘ðzÞ≔ ℘ðz,

g2, g3Þ has double periods and satisfies:

℘′ zð Þ
� �2

= 4℘ zð Þ3 − g2℘ zð Þ − g3: ð18Þ

Weierstrass zeta function ζðzÞ is a meromorphic function
which satisfies

℘ zð Þ = −ζ′ zð Þ: ð19Þ

These twoWeierstrass functions have the following addi-
tion formulas:

℘ z − z0ð Þ = −℘ zð Þ + 1
4

℘′ zð Þ+℘′ z0ð Þ
℘ zð Þ−℘ z0ð Þ

" #2
−℘ z0ð Þ,

ζ z − z0ð Þ = ζ zð Þ − ζ z0ð Þ + 1
2

℘′ zð Þ+℘′ z0ð Þ
℘ zð Þ−℘ z0ð Þ

" #
:

ð20Þ

Eremenko et al. [37] had investigated the following m
-order Briot-Bouquet equation (BBEq)

P U ,U mð Þ
� �

= 〠
n

j=0
Pj Uð Þ U mð Þ

� �j
= 0, ð21Þ

in which m ∈ N, and Pj(U) are constant coefficient
polynomials.

Lemma 1 [38–40]. Let m, n, p, s ∈ N, degP(U,U(m))<n. If the
m-order BBEq

P U ,U mð Þ
� �

= aUn + c ð22Þ

satisfies weak <p, q > condition; then, meromorphic solutions

w belong to class W. Assume that some values of parameters
such solutions w exist; then, other meromorphic solutions
should form 1 parameter family Uðz − z0Þ, z0 ∈ C. In addi-
tion, each elliptic solution U with a pole at z = 0 is.

U zð Þ = 〠
s−1

i=1
〠
q

j=2

−1ð Þ jβ−ij

j − 1ð Þ!
dj−2

dzj−2
1
4

℘′ zð Þ +Di

℘ zð Þ − Bi

" #2
−℘ zð Þ

 !

+ 〠
s−1

i=1

β−i1
2

℘′ zð Þ +Di

℘ zð Þ − Bi
+ 〠

q

j=2

−1ð Þ jβ−sj

j − 1ð Þ!
dj−2

dzj−2
℘ zð Þ + β0,

ð23Þ

where β−ij are determined by (16), D2
i = 4B3

i − g2Bi − g3 and
∑s

i=1 β−i1 = 0.
Each rational function solution is

R zð Þ = 〠
s

i=1
〠
q

j=1

βij

z − zið Þj
+ β0, ð24Þ

which contains sð≤pÞ distinct poles of multiplicity q.
Each simply periodic solution is a rational function RðηÞ of

η = eαzðα ∈ℂÞ, that is

R ηð Þ = 〠
s

i=1
〠
q

j=1

βij

η − ηið Þj
+ β0, ð25Þ

which contains sð≤pÞ distinct poles of multiplicity q.

3. Proofs of Main Results

Proof of Theorem 1. Let u =U ′, then Eq. (4) becomes

n31n2u′′ + θn21n2u
2 + n4 n1 + n2 + n3ð Þ − n21 − n23
� �

u + r = 0:
ð26Þ

Substituting (16) into Eq. (4), we have p = 1, q = 2, β−2
= 6n1/θ, β−1 = 0, β0 = n4ðn1 + n2 + n3Þ − n21 − n23/2θn21n2, β1
= 0, β2 = 4n21n2rθ + ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/40θn51n22,
β3 = 0, and β4 is an arbitrary constant. Thus, Eq. (26) is a
second-order BBEq as well as satisfies weak h1, 2i condition.
Therefore, by Lemma 1, we know that the meromorphic
solutions of Eq. (26) belong to class W.

From (23) of Lemma 1, we have the form of elliptic solutions
of Eq. (26)

ud0 zð Þ = β−2℘ zð Þ + β10 ð27Þ

with pole at z = 0.
Put ud0ðzÞ into Eq. (26) to yield

ud0 zð Þ = 6n1
θ

℘ zð Þ + n4 n1 + n2 + n3ð Þ − n21 − n23
2θn21n2

, ð28Þ
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where g2 = 4n21n2rθ + ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/12n61n22
and g3 is arbitrary.

Therefore, the elliptic solutions of Eq. (26) with arbitrary
pole are

ud zð Þ = 6n1
θ

℘ z − z0ð Þ + n4 n1 + n2 + n3ð Þ − n21 − n23
2θn21n2

, ð29Þ

where z0 ∈ C.
Therefore, the solutions of Eq. (4) are

Ud zð Þ =
ð
ud zð Þdz =

ð 6n1
θ

℘ z − z0ð Þ + n4 n1 + n2 + n3ð Þ − n21 − n23
2θn21n2

� �
dz

= 6n1
θ

ζ z − z0ð Þ + n4 n1 + n2 + n3ð Þ − n21 − n23
2θn21n2

z − z0ð Þ + c4

= −
6n1
θ

ζ zð Þ − ζ z0ð Þ½ � − 3n1
θ

℘′ zð Þ +G
℘ zð Þ −H

+ n4 n1 + n2 + n3ð Þ − n21 − n23
2θn21n2

z − z0ð Þ + c4,

ð30Þ

where G2 = 4H3 − g2H − g3, g2 = 4n21n2rθ +
ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/12n61n22, c4 is the integral con-
stant, and H and g3 are arbitrary.

By (24), we infer that the indeterminant rational solu-
tions of Eq.(26) are

R1 zð Þ = β11
z2

+ β12
z

+ β20 ð31Þ

with pole at z = 0.
Substitute R1ðzÞ into Eq. (26) to yield

R1 zð Þ = 6n1
θ

1
z2

+ n4 n1 + n2 + n3ð Þ − n21 − n23
2θn21n2

, ð32Þ

where r = −ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/4θn21n2.
So the rational solutions of Eq. (26) with arbitrary pole

are

ur zð Þ = 6n1
θ

1
z − z0ð Þ2 + n4 n1 + n2 + n3ð Þ − n21 − n23

2θn21n2
: ð33Þ

Therefore, the solutions of Eq. (4) are

Ur zð Þ =
ð
ur zð Þdz =

ð 6n1
θ

1
z − z0ð Þ2 + n4 n1 + n2 + n3ð Þ − n21 − n23

2θn21n2

 !
dz

= −
6n1
θ

1
z − z0

+ n4 n1 + n2 + n3ð Þ − n21 − n23
2θn21n2

z − z0ð Þ + c1,

ð34Þ

where c1 is the integral constant, r = −
ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/4θn21n2, z0 ∈ℂ.

Let η = eμz . To obtain simply periodic solutions, we insert
u = RðηÞ into Eq. (26) and get

n31n2μ
2 ηR′ + η2R′′
� �

+ θn21n2R
2 + n4 n1 + n2 + n3ð Þð

− n21 − n23ÞR + r = 0:
ð35Þ

Substituting R2ðzÞ into the Eq.(35), we obtain that

R21 zð Þ = 6n1
θ

μ2

η − 1ð Þ2 + 6n1
θ

μ2

η − 1ð Þ

+ μ2n31n2 + n4 n1 + n2 + n3ð Þ − n21 − n23
� �2

2θn21n2
,

ð36Þ

R22 zð Þ = 6n1
θ

μ2

η + 1ð Þ2 −
6n1
θ

μ2

η + 1ð Þ

+ μ2n31n2 + n4 n1 + n2 + n3ð Þ − n21 − n23
� �2

2θn21n2
,

ð37Þ

where r = μ4n61n
2
2 − ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/4θn21n2.

Substituting η = eμz into Eq. (36) and Eq. (37) yields sim-
ply periodic solutions to Eq. (26) with pole at z = 0

u1s0 zð Þ = 6n1
θ

μ2

eμz − 1ð Þ2 + 6n1
θ

μ2

eμz − 1ð Þ

+ μ2n31n2 + n4 n1 + n2 + n3ð Þ − n21 − n23
� �2

2θn21n2
= 6n1

θ
μ2

eμz

eμz − 1ð Þ2

+ μ2n31n2 + n4 n1 + n2 + n3ð Þ − n21 − n23
� �2

2θn21n2
= 3n1

2θ μ2 coth2 μz2

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �2 − 2μ2n31n2

2θn21n2
,

u2s0 zð Þ = 6n1
θ

μ2

eμz + 1ð Þ2 −
6n1
θ

μ2

eμz + 1ð Þ

+ μ2n31n2 + n4 n1 + n2 + n3ð Þ − n21 − n23
� �2

2θn21n2
= −

6n1
θ

μ2
eμz

eμz + 1ð Þ2

+ μ2n31n2 + n4 n1 + n2 + n3ð Þ − n21 − n23
� �2

2θn21n2
= 3n1

2θ μ2 tanh2 μz2

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �2 − 2μ2n31n2

2θn21n2
,

ð38Þ
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where r = μ4n61n
2
2 − ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/4θn21n2.

So simply periodic solutions of Eq. (4) with arbitrary pole
are

u1s zð Þ = 3n1
2θ μ2 coth2 μ z − z0ð Þ

2

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �2 − 2μ2n31n2

2θn21n2
,

ð39Þ

and

u2s zð Þ = 3n1
2θ μ2 tanh2 μ z − z0ð Þ

2

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �2 − 2μ2n31n2

2θn21n2
,

ð40Þ

where r = μ4n61n
2
2 − ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/4θn21n2.

Therefore, the solutions of Eq. (4) are

U1s zð Þ =
ð
u1s zð Þdz =

ð 3n1
2θ μ2 coth2 μ z − z0ð Þ

2

�

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �2 − 2μ2n31n2

2θn21n2
Þdz

= −
3n1μ
θ

coth μ z − z0ð Þ
2

−
3n1μ
2θ ln coth μ/2ð Þ z − z0ð Þ − 1

coth μ/2ð Þ z − z0ð Þ + 1

� �

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �2 − 2μ2n31n2

2θn21n2
z − z0ð Þ + c2,

ð41Þ

and

U2s zð Þ =
ð
u2s zð Þdz =

ð 3n1
2θ μ2 tanh2 μ z − z0ð Þ

2

�

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �2 − 2μ2n31n2

2θn21n2
Þdz

= −
3n1μ
θ

tanh μ z − z0ð Þ
2

−
3n1μ
2θ ln tanh μ/2ð Þ z − z0ð Þ − 1

tanh μ/2ð Þ z − z0ð Þ + 1

� �

+ n4 n1 + n2 + n3ð Þ − n21 − n23
� �2 − 2μ2n31n2

2θn21n2
z − z0ð Þ + c3,

ð42Þ

where c2 and c3 are the integral constants, r = μ4n61n
2
2 −

ðn4ðn1 + n2 + n3Þ − n21 − n23Þ2/4θn21n2, z0 ∈ℂ.

Proof of Theorem 2. Let v =V ′, then Eq. (9) becomes

m3
1m2v′′ + 3m2

1m2v
2 − m1m3 +m2m4ð Þv + λ = 0: ð43Þ

Substituting (16) into Eq.(9), we have p = 1, q = 2, β−2 =

−2m1, β−1 = 0, β0 =m1m3 +m2m4/6m2
1m2, β1 = 0, β2 = 12λ

m2
1m2 − ðm1m3 +m2m4Þ2/120m5

1m2, β3 = 0, and β4 is an
arbitrary constant. Thus, Eq. (43) is a second-order BBEq
as well as satisfies weak h1, 2i condition. Therefore, by
Lemma 1, we know that the meromorphic solutions of Eq.
(43) belong to class W.

From (23) of Lemma 1, we have the form of elliptic solu-
tions of Eq. (43)

vd0 zð Þ = β−2℘ zð Þ + β10 ð44Þ

with pole at z = 0.
Put vd0ðzÞ into Eq. (43) to yield

vd0 zð Þ = −2m1℘ zð Þ + m1m3 +m2m4
6m2

1m2
, ð45Þ

where g2 = ðm1m3 +m2m4Þ2 − 12λm2
1m2/12m6

1m
2
2 and g3 is

arbitrary.
Therefore, the elliptic solutions of Eq. (43) with arbitrary

pole are

vd zð Þ = −2m1℘ z − z0ð Þ + m1m3 +m2m4
6m2

1m2
, ð46Þ

where z0 ∈ C.
Therefore, the solutions of Eq. (9) are

Vd zð Þ =
ð
vd zð Þdz =

ð
−2m1℘ z − z0ð Þ + m1m3 +m2m4

6m2
1m2

� �
dz

= −2m1ζ z − z0ð Þ + m1m3 +m2m4
6m2

1m2
z − z0ð Þ + c4

= −2m1 ζ zð Þ − ζ z0ð Þ½ � −m1
℘′ zð Þ + E
℘ zð Þ − F

+ m1m3 +m2m4
6m2

1m2
z − z0ð Þ + c4,

ð47Þ

where E2 = 4F3 − g2F − g3, g2 = ðm1m3 +m2m4Þ2 − 12λm2
1

m2/12m6
1m

2
2, c4 is the integral constant, and F and g3 are

arbitrary.
By (24), we infer that the indeterminant rational solu-

tions of Eq. (43) are

R1 zð Þ = β11
z2

+ β12
z

+ β20 ð48Þ

with pole at z = 0.
Substitute R1ðzÞ into Eq. (43) to yield

R1 zð Þ = −
2m1
z2

+ m1m3 +m2m4
6m2

1m2
, ð49Þ

where λ = ðm1m3 +m2m4Þ2/12m2
1m2.

5Journal of Function Spaces



So the rational solutions of Eq. (43) with arbitrary pole
are

vr zð Þ = −
2m1
z − z0ð Þ2 + m1m3 +m2m4

6m2
1m2

: ð50Þ

Therefore, the solutions of Eq. (9) are

Vr zð Þ =
ð
vr zð Þdz =

ð
−

2m1
z − z0ð Þ2 + m1m3 +m2m4

6m2
1m2

 !
dz

= 2m1
z − z0

+ m1m3 +m2m4
6m2

1m2
z − z0ð Þ + c1,

ð51Þ

where c1 is the integral constant, λ = ðm1m3 +m2m4Þ2/12
m2

1m2, z0 ∈ℂ.
Let η = eμz . To obtain simply periodic solutions, we insert

v = RðηÞ into Eq. (43) and get

m3
1m2μ

2 ηR′ + η2R′′
� �

+ 3m2
1m2R

2 − m1m3 +m2m4ð ÞR + λ = 0:

ð52Þ

Substituting R2ðzÞ into the Eq. (35), we obtain that

R21 zð Þ = −
2m1μ

2

η − 1ð Þ2 −
2m1μ

2

η − 1ð Þ + m1m3 +m2m4 −m3
1m2μ

2

6m2
1m2

,

ð53Þ

R22 zð Þ = −
2m1μ

2

η + 1ð Þ2 + 2m1μ
2

η + 1ð Þ + m1m3 +m2m4 −m3
1m2μ

2

6m2
1m2

,

ð54Þ
where λ = ðm1m3 +m2m4Þ2 −m6

1m
2
2μ

4/12m2
1m2.

Substituting η = eμz into Eq. (53) and Eq. (54) yields sim-
ply periodic solutions to Eq. (43) with pole at z = 0

v1s0 zð Þ = −
2m1μ

2

eμz − 1ð Þ2 −
2m1μ

2

eμz − 1ð Þ + m1m3 +m2m4 −m3
1m2μ

2

6m2
1m2

= −
2m1μ

2eμz

eμz − 1ð Þ2 + m1m3 +m2m4 −m3
1m2μ

2

6m2
1m2

= −2m1μ
2 coth2 μz2 + 2m3

1m2μ
2 +m1m3 +m2m4
6m2

1m2
,

v2s0 zð Þ = −
2m1μ

2

eμz + 1ð Þ2 + 2m1μ
2

eμz + 1ð Þ + m1m3 +m2m4 −m3
1m2μ

2

6m2
1m2

= 2m1μ
2eμz

eμz + 1ð Þ2 + m1m3 +m2m4 −m3
1m2μ

2

6m2
1m2

= −2m1μ
2 tanh2 μz2 + 2m3

1m2μ
2 +m1m3 +m2m4
6m2

1m2
,

ð55Þ

where λ = ðm1m3 +m2m4Þ2 −m6
1m

2
2μ

4/12m2
1m2.

So simply periodic solutions of Eq. (9) with arbitrary pole
are

v1s zð Þ = −2m1μ
2 coth2 μ z − z0ð Þ

2 + 2m3
1m2μ

2 +m1m3 +m2m4
6m2

1m2
,

ð56Þ

and

v2s zð Þ = −2m1μ
2 tanh2 μ z − z0ð Þ

2 + 2m3
1m2μ

2 +m1m3 +m2m4
6m2

1m2
,

ð57Þ

where λ = ðm1m3 +m2m4Þ2 −m6
1m

2
2μ

4/12m2
1m2.

Therefore, the solutions of Eq. (9) are

V1s zð Þ =
ð
v1s zð Þdz =

ð
−2m1μ

2 coth2 μ z − z0ð Þ
2

�

+ 2m3
1m2μ

2 +m1m3 +m2m4
6m2

1m2
Þdz

= −4m1μ coth μ z − z0ð Þ
2

− 4m1μ ln coth μ/2ð Þ z − z0ð Þ − 1
coth μ/2ð Þ z − z0ð Þ + 1

� �

+ 2m3
1m2μ

2 +m1m3 +m2m4
6m2

1m2
z − z0ð Þ + c2,

ð58Þ

and

V2s zð Þ =
ð
v2s zð Þdz =

ð
−2m1μ

2 tanh2 μ z − z0ð Þ
2

�

+ 2m3
1m2μ

2 +m1m3 +m2m4
6m2

1m2
Þdz

= −4m1μ tanh μ z − z0ð Þ
2

− 4m1μ ln tanh μ/2ð Þ z − z0ð Þ − 1
tanh μ/2ð Þ z − z0ð Þ + 1

� �

+ 2m3
1m2μ

2 +m1m3 +m2m4
6m2

1m2
z − z0ð Þ + c3,

ð59Þ

where c2 and c3 are the integral constants, λ =
ðm1m3 +m2m4Þ2 −m6

1m
2
2μ

4/12m2
1m2, z0 ∈ℂ.
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