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In this article, we introduce a relaxed self-adaptive projection algorithm for solving the multiple-sets split equality problem. Firstly,
we transfer the original problem to the constrained multiple-sets split equality problem and a fixed point equation system is
established. Then, we show the equivalence of the constrained multiple-sets split equality problem and the fixed point equation
system. Secondly, we present a relaxed self-adaptive projection algorithm for the fixed point equation system. The advantage of
the self-adaptive step size is that it could be obtained directly from the iterative procedure. Furthermore, we prove the
convergence of the proposed algorithm. Finally, several numerical results are shown to confirm the feasibility and efficiency of
the proposed algorithm.

1. Introduction

Let H1,H2, andH3 be real Hilbert spaces. For i = 1, 2,⋯, t,
j = 1, 2,⋯, r, Ci and Qj are nonempty closed convex subsets
of Hilbert spaces H1 and H2, respectively, and assume that
A : H1 ⟶H3, B : H2 ⟶H3 are two bounded linear opera-
tors. The multiple-sets split equality problem (MSSEP) is to
find x and y satisfying the property

x ∈ C =
\t
i=1

Ci, y ∈Q =
\r
j=1

Qj such thatAx = By: ð1Þ

When B = I, MSSEP (1) reduces to the multiple-sets split
feasibility problem

find a point x ∈ C =
\t
i=1

Ci, Ax ∈Q =
\r
j=1

Qj, ð2Þ

which is applied to intensity-modulated radiation ther-
apy [1–11], signal processing [12–21], and image recon-
struction [22–38]. Censor et al. [39] proposed the

proximity function pðxÞ to measure the distance of a point
to all sets

p xð Þ = 1
2〠

t

i=1
li x − PCi

xð Þ�� ��2 + 1
2〠

r

j=1
λj Ax − PQj

Axð Þ
��� ���2, ð3Þ

where li > 0 for all i, and λ j > 0 for all j with ∑t
i=1 li +

∑r
j=1 λj = 1 . To solve (2), they considered the following

constrained MSSEP:

find a point x ∈Ω such that x solves 2ð Þ, ð4Þ

and then presented the projection method

xk+1 = PΩ xk − s∇p xð Þð Þ, ð5Þ

where s > 0 and Ω is an auxiliary simple nonempty closed
convex set with Ω ∩ S ≠∅, and S denotes the solution set
of (2). The convergence of the projection method was
obtained under some mild conditions.
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When t = r = 1, MSSEP (1) reduces to the split equality
problem which was introduced by Moudafi [40] as follows:

find two points x ∈ C, y ∈Q such thatAx = By, ð6Þ

which is applied to the game theory [41] and optimal con-
trol and approximation theory [42]. The following alter-
nating CQ algorithm (ACQ) was introduced by Moudafi
[40] as follows:

xk+1 = PC xk − γkA
∗ Axk − Bykð Þð Þ,

yk+1 = PQ yk + βkB
∗ Axk+1 − Bykð Þð Þ,

(
ð7Þ

where γk, βk ∈ ðε, min fð1/λAÞ, ð1/λBÞg − εÞ for small
enough ε > 0, A∗ and B∗ denote the adjoint of A and B,
respectively. λA and λB are the spectral radiuses of A∗A
and B∗B, respectively. Since the computation of PC and
PQ onto a closed convex subset might be hard to be
implemented, Fukushima [43] suggested a way to compute
the projection onto a level set of a convex function by
considering a sequence of projections onto half-spaces
containing the original level set. Then, Moudafi [44] intro-
duced the following relaxed alternating CQ algorithm
(RACQ):

xk+1 = PCk
xk − γkA

∗ Axk − Bykð Þð Þ,
yk+1 = PQk

yk + βkB
∗ Axk+1 − Bykð Þð Þ,

(
ð8Þ

where Ck and Qk are two sequences of closed convex sets.
Recently, Dang et al. [45] gave the following relaxed two-

point projection method to solve MSSEP (1):

xk+1 = PΩ1
xk − γ 〠

t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ
 ! !

,

yk+1 = PΩ2
yk − γ 〠

r

j=1
βj yk − PQj,k

ykð Þ
� �

− BT Axk+1 − Bykð Þ
 ! !

,

8>>>>><
>>>>>:

ð9Þ

where γ ∈ ð0, min ff1/21/2, 1/ð4kAk2Þð1/4kAk2Þ, 1/ð4kBk2ÞgÞ
,Ci,k, i = 1, 2,⋯, r andQj,k, j = 1, 2,⋯, t are two sequences of
closed convex sets corresponding to Ci and Qj, respec-
tively. Ω1 ⊂H1 and Ω2 ⊂H2 are auxiliary simple sets. αi
> 0 for all i, and βj > 0 for all j with ∑t

i=1αi +∑r
j=1βj = 1.

Under some mild conditions, the weak convergence of
the algorithm (9) was obtained.

Noting that the determination of the stepsize γ of algo-
rithm (9) depends on the operator (matrix) norms ∥A∥ and
∥B∥. This implies that if we implement the relaxed two-
point projection method (9), one first need to calculate oper-
ator norms of A and B, which is in general not an easy work
in practice. To overcome this weakness, Lopez et al. [46] and
Zhao and Yang [47] introduced self-adaptive methods of
which the advantage of the methods is that the stepsizes do
not need prior knowledge of the operator norms. Motivated
by them, we introduce a relaxed self-adaptive projection

algorithm for solving the multiple-sets split equality problem.
First, we transfer the origin problem to the constrained
multiple-sets split equality problem and establish the fixed
point equation system. We show the equivalence of the con-
strained multiple-sets split equality problem and the fixed
point equation system. Second, based on the fixed point
equation system, we present a relaxed self-adaptive projec-
tion algorithm for solving the constrained multiple-sets split
equality problem, and the convergence of the proposed algo-
rithm is obtained. Finally, several numerical results are
shown to confirm the feasibility and efficiency of the pro-
posed algorithm.

The remainder of this paper is organized as follows. Sec-
tion 2 shows some preliminaries and notations used for sub-
sequent analysis. In Section 3, we transfer the origin problem
to the constrained multiple-sets split equality problem and
establish the fixed point equation system and propose a
relaxed self-adaptive projection algorithm for solving the
constrained multiple-sets split equality problem. The conver-
gence of the proposed algorithm is obtained. In Section 4,
several numerical results are shown to confirm the effective-
ness of our algorithm.

2. Preliminaries

Throughout this paper, we use ⟶ and ⇀ to denote the
strong convergence and weak convergence, respectively. We
write ωwðxkÞ = fx : ∃xkj ⇀ xg to indicate the weak ω-limit

set of fxkg. For any x ∈H, there exists a unique nearest point
in C, denoted by PCx, such that

∥x − PCx∥ ≤ ∥x − y∥,∀y ∈ C: ð10Þ

It is well known that PC is nonexpansive and firmly non-
expansive. Moreover, PC has the following well-known prop-
erties (see for example [48]).

Lemma 1. Let C ⊂H be nonempty, closed and convex. Then
for all x, y ∈H and z ∈ C,

(i) hx − PCx, z − PCxi ≤ 0

(ii) ∥PCx − PCy∥
2 ≤ hPCx − PCy, x − yi ;

(iii) ∥PCx − z∥2 ≤ ∥x − z∥2−∥PCx − x∥2:

Definition 2. Letf : H ⟶ Rbe convex. The subdifferential of f
at xis defined as

∂f xð Þ = ξ ∈H ∣ f yð Þ ≥ f xð Þ + ξ, y − xh i,∀y ∈Hf g: ð11Þ

An element of ∂f ðxÞ is said to be a subgradient.

Lemma 3. Suppose f : H ⟶ R is a convex function, then it is
subdifferentiable everywhere and its subdifferentials are uni-
formly bounded set of H:
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3. Algorithm and Its Convergence

In this section, we focus on a relaxed self-adaptive projection
algorithm and obtain the convergence of the proposed algo-
rithm. Following the idea of Censor et al. [39], we give two
additional closed convex sets Ω1 ⊂H1 and Ω2 ⊂H2 and con-
sider the constrained multiple-sets split equality problem

find x ∈Ω1, y ∈Ω2 such that x, yð Þ solves 1ð Þ, ð12Þ

where the sets Ci and Qj can be expressed by

Ci = x ∈H1 ∣ ci xð Þ ≤ 0f g,
Qj = y ∈H2 ∣ qj ykð Þ ≤ 0

n o
,

ð13Þ

ci : H1 ⟶ R and qj : H2 ⟶ R are convex functions for
all i = 1, 2,⋯, t and j = 1, 2,⋯, r, and Γ denotes the solution
set of (32). Define

Ci,k = x ∈H1 ∣ ci xkð Þ + ξi,k, x − xk
� �

≤ 0
� �

, ð14Þ

where ξi,k ∈ ∂ciðxkÞ and

Qj,k = y ∈H2 ∣ qj ykð Þ + ηj,k, y − yk
D E

≤ 0
n o

, ð15Þ

where ηj,k ∈ ∂qjðykÞ. It is easily seen that Ci ⊂ Ci,k and Qj ⊂
Qj,k for all k. Notice that Ci,k andQj,k are half-spaces and thus
the corresponding projections have closed-form expressions.
Hence, we focus on the following multiple-sets split equality
problem (CMSSEP):

find x ∈Ω1, y ∈Ω2 to solve x

∈ C =
\t
i=1

Ci,k, y ∈Q =
\r
j=1

Qj,ksuch thatAx = By:

ð16Þ

Now, we define the proximity function pkðx, yÞ:

pk x, yð Þ = 1
2〠

t

i=1
αi x − PCi,k

xð Þ
��� ���2 + 1

2〠
r

j=1
βj y − PQj,k

yð Þ
��� ���2

+ 1
2 Ax − Byk k2,

ð17Þ

where αi > 0 for all i, and βj > 0 for all j with ∑t
i=1 αi +∑r

j=1
βj = 1.

Using the proximity function pkðx, yÞ, we can obtain the
following technical lemmas.

Lemma 4. Assume that (16) is consistent (i.e.,(16) has a solu-
tion) and denotes its solution set by Γ. If ðx,yÞ ∈ Γ, then it
solves the fixed point equation system

x = PΩ1
x − λ 〠

t

i=1
αi x − PCi,k

xð Þ
� �

+ AT Ax − Byð Þ
 ! !

,

y = PΩ2
y − β 〠

r

j=1
βj y − PQj,k

yð Þ
� �

− BT Ax − Byð Þ
 ! !

:

8>>>>><
>>>>>:

ð18Þ

Proof. To solve the problem (16), we consider the minimiza-
tion problem

min pk x, yð Þ ∣ x ∈Ω1, y ∈Ω2f g: ð19Þ

(19) leads to the following unconstrained optimization
problem:

min
x∈Ω1,y∈Ω2

δΩ1
xð Þ + δΩ2

yð Þ + pk x, yð Þ� �
, ð20Þ

where δΩi
is a indicator function of Ωi for i = 1, 2 defined by

δΩi
xð Þ =

0, x ∈Ωi,
+∞, otherwise:

(
ð21Þ

Note that ∂δΩ1
ðxÞ =NΩ1

ðxÞ and ∂δΩ2
ðyÞ =NΩ2

ðyÞ,
where NΩ1

and NΩ2
are the normal cone of the convex sets

Ω1 and Ω1, respectively. From the optimality conditions of
(20), it yields

0 ∈ 〠
t

i=1
αi x − PCi,k

xð Þ
� �

+ AT Ax − Byð Þ + ∂δΩ1
xð Þ,

0 ∈ 〠
r

j=1
βj y − PQj,k

yð Þ
� �

− BT Ax − Byð Þ + ∂δΩ2
yð Þ,

8>>>>><
>>>>>:

ð22Þ

which means that, for λ > 0, β > 0,

x − λ 〠
t

i=1
αi x − PCi,k

xð Þ
� �

+ AT Ax − Byð Þ
 !

= x + λ∂δΩ1
xð Þ,

y − β 〠
r

j=1
βj y − PQj,k

yð Þ
� �

− BT Ax − Byð Þ
 !

= y + β∂δΩ2
yð Þ,

ð23Þ

that is,

x = I + λNΩ1

	 
−1 x − λ 〠
t

i=1
αi x − PCi,k

xð Þ
� �

+ AT Ax − Byð Þ
 ! !

,

y = I + βNΩ2

	 
−1 y − β 〠
r

j=1
βj y − PQj,k

yð Þ
� �

− BT Ax − Byð Þ
 ! !

:

ð24Þ
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Since ðI + λNΩ1
Þ−1 = PΩ1

and ðI + βNΩ2
Þ−1 = PΩ2

, we
obtain

x = PΩ1
x − λ 〠

t

i=1
αi x − PCi,k

xð Þ
� �

+ AT Ax − Byð Þ
 ! !

,

y = PΩ2
y − β 〠

r

j=1
βj y − PQj,k

yð Þ
� �

− BT Ax − Byð Þ
 ! !

:

8>>>>><
>>>>>:

ð25Þ

Thus, the desired result can be obtained.
The following lemma reveals that ESEP (16) is equivalent

to the fixed point equation system (18).

Lemma 5. Assume that the problem (16) is consistent. ðx∗, y∗Þ
∈ Γ solves ESEP (2) if and only if ðx∗, y∗Þ solves the fixed point
equation system (18).

Proof. From Lemma 4, we reveal that ðx∗, y∗Þ can solve (16);
it also can solve (18). Next, we will prove that ðx∗, y∗Þ can
solve (18), it also can solve (16). Obviously, one has x∗

∈Ω1, and y∗ ∈Ω2. It follows from the proposition of pro-
jection that

x∗ − λ 〠
t

i=1
αi x∗ − PCi,k

x∗ð Þ
� �

+ AT Ax∗ − By∗ð Þ
 !

− x∗, u − x∗
* +

≤ 0, u ∈ Γ,

y∗ − β 〠
r

j=1
βj y∗ − PQj,k

y∗ð Þ
� �

− BT Ax∗ − By∗ð Þ
 !

− y∗, v − y∗
* +

≤ 0, v ∈ Γ:

8>>>>><
>>>>>:

ð26Þ

which means

−λ 〠
t

i=1
αi x∗ − PCi,k

x∗ð Þ
� �

+ AT Ax∗ − By∗ð Þ
 !

, u − x∗
* +

≤ 0, u ∈ Γ,

−β 〠
r

j=1
βj y∗ − PQj,k

y∗ð Þ
� �

− BT Ax∗ − By∗ð Þ
 !

, v − y∗
* +

≤ 0, v ∈ Γ:

8>>>>><
>>>>>:

ð27Þ

Hence, from Lemma 3, we add two inequalities to
obtain

〠
t

i=1
αi x∗ − PCi,k

x∗ð Þ
��� ���2 + 〠

r

j=1
βj y∗ − PQj,k

y∗ð Þ
��� ���2

+ Ax∗ − By∗, Bv − Au + Ax∗ − By∗h i ≤ 0:
ð28Þ

Furthermore, from Au = Bv, we deduce

∥x∗ − PCi,k
x∗ð Þ∥ = 0, for i = 1, 2,⋯, t,

y∗ − PQj,k
y∗ð Þ

��� ���2 = 0, for j = 1, 2,⋯, r,

Ax∗ − By∗k k2 = 0:

ð29Þ

Thus, ðx∗, y∗Þ solves ESEP (16). This completes the
proof.

Based on (18), we can introduce a relaxed self-adaptive
projection algorithm to solve (16), with σk ∈ ð0, 1Þ.

Alggorithm 6. Let x0 ∈H1, y0 ∈H2 be arbitrary. We calculate
the ðk + 1Þth iterate via the following formula

uk = PΩ1
xk − λk 〠

t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ
 ! !

,

xk+1 = γkxk + 1 − γkð Þuk,

vk = PΩ2
yk − λk 〠

r

j=1
βj yk − PQj,k

ykð Þ
� �

− BT Axk − Bykð Þ
 ! !

,

yk+1 = γkyk + 1 − γkð Þvk,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð30Þ

where the stepsize λk is chosen by

with σk ∈ (1, 0).

Next, we will focus on the convergence analysis of
Algorithm 6.

Theorem 7. Assume lim
k→∞

γk = 0, ∑∞
k=1 γk =∞ and σk ∈ ½M1,

M2� ⊂ ð0, 1Þ, then the sequence ðxk, ykÞ generated by Algo-
rithm 6 converges to a solution of (1).

Proof. Taking ðx∗, y∗Þ ∈ Γ, one has

Ax∗ = By∗: ð32Þ

From (30) and the fact that the projection is nonexpan-
sive, we have

λk = 2σk
∑t

i=1 αi∥xk − PCi,k
xkð Þ∥2 +∑r

j=1 βj∥yk − PQj,k
ykð Þ∥2+∥Axk − Byk∥

2

∥∑t
i=1 αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ∥2+∥∑r
j=1 βj yk − PQj,k

ykð Þ
� �

− BT Axk − Bykð Þ∥2
= 4σk

pk xk,ykð Þ
∥∇pk xk, ykð Þ∥2 , ð31Þ
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uk − x∗k k2 = PΩ1
xk − λk 〠

t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ
 ! !

− x∗
�����

�����
2

≤ xk − λk 〠
t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ
 !

− x∗
�����

�����
2

= xk − x∗∥2 + λkð Þ2∥〠
t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ
�����

�����
2

− 2λk 〠
t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ, xk − x∗
* +

:

ð33Þ

Since

−2λk 〠
t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ, xk − x∗
* +

= −2λk 〠
t

i=1
αi xk − PCi,k

xkð Þ
� �

, xk − x∗
* +

− 2λk AT Axk − Bykð Þ, xk − x∗
� �

= −2λk 〠
t

i=1
αi xk − PCi,k

xkð Þ, xk − x∗
D E

− 2λk Axk − Byk, Axk − Ax∗h i

≤ −2λk 〠
t

i=1
αi∥xk − PCi,k

xkð Þ∥2 − λk∥Axk − Byk∥
2

− λk∥Axk − Ax∗∥2 + λk∥Byk − Ax∗∥2,
ð34Þ

together with (33), we deduce

∥uk − x∗∥2 ≤ ∥xk − λk 〠
t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ
 !

− x∗∥2

= ∥xk − x∗∥2 + λkð Þ2∥〠
t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ∥2

− 2λk 〠
t

i=1
αi∥xk − PCi,k

xkð Þ∥2 − λk∥Axk − Byk∥
2

− λk∥Axk − Ax∗∥2 + λk∥Byk − Ax∗∥2:

ð35Þ

Similarly, we have

∥vk − y∗∥2 = ∥PΩ2
yk − λk 〠

r

j=1
βj yk − PQj,k

ykð Þ
� �

− BT Axk − Bykð Þ
 ! !

− y∗∥2

≤ ∥yk − λk 〠
r

j=1
βj yk − PQj,k

ykð Þ
� �

− BT Axk − Bykð Þ
 !

− y∗∥2

≤ ∥yk − y∗∥2 + λkð Þ2∥〠
r

j=1
βj yk − PQj,k

ykð Þ
� �

− BT Axk − Bykð ÞÞ∥2

− 2λk 〠
t

i=1
βj∥yk − PQj,k

ykð Þ∥2 − λk∥Byk − By∗∥2

− λk∥Axk − Byk∥
2 + λk∥Axk − By∗∥2:

ð36Þ

From (35) and (36), it follows

∥uk − x∗∥2 + ∥vk − y∗∥2 ≤ ∥xk − x∗∥2 + ∥yk − y∗∥2

− λk 2 〠
t

i=1
αi∥xk − PCi,k

xkð Þ∥2 + 〠
t

i=1
βj∥yk

  

− PQj,k
ykð Þ∥2+∥Axk − Byk∥

2
!

− λk ∥〠
t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ∥2
 

+ ∥〠
r

j=1
βj yk − PQj,k

ykð Þ
� �

− BT Axk − Bykð Þ∥2
!!

,

ð37Þ

which together with (31) means

∥uk − x∗∥2 + ∥vk − y∗∥2 ≤ ∥xk − x∗∥2 + ∥yk − y∗∥2: ð38Þ

Furthermore, it follows from (31) and (38) that

∥xk+1 − x∗∥2 + ∥yk+1 − y∗∥2 = ∥γkxk + 1 − γkð Þuk
− x∗∥2 + ∥γkyk + 1 − γkð Þvk − y∗∥2

≤ γk∥xk − x∗∥2 + 1 − γkð Þ∥uk − x∗∥2

+ γk∥yk − y∗∥2 + 1 − λkð Þ∥vk − y∗∥2

≤ γk ∥xk − x∗∥2 + ∥yk − y∗∥2
	 


+ 1 − γkð Þ ∥uk − x∗∥2 + ∥vk − y∗∥2
	 


≤ ∥xk − x∗∥2 + ∥yk − y∗∥2,

ð39Þ

By induction, one has

∥xk+1 − x∗∥2 + ∥yk+1 − y∗∥2 ≤ ∥x0 − x∗∥2 + ∥y0 − y∗∥2: ð40Þ

Hence, fxng and fyng are bounded. Following (31), (36),
and (39), we have

∥xk+1 − x∗∥2 + ∥yk+1 − y∗∥2 ≤ γk ∥xk − x∗∥2 + ∥yk − y∗∥2
	 


+ 1 − γkð Þ ∥uk − x∗∥2 + ∥vk − y∗∥2
	 


≤ ∥xk − x∗∥2

+ ∥yk − y∗∥2 − 1 − γkð Þλk 2 〠
t

i=1
αi∥xk − PCi,k

xkð Þ∥2
  

+ 〠
t

i=1
βj∥yk − PQj,k

ykð Þ∥2 + ∥Axk − Byk∥
2
!

− λk ∥〠
t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ∥2
 

+ ∥〠
r

j=1
βj yk − PQj,k

ykð Þ
� �

− BT Axk − Bykð Þ∥2
!!

:

ð41Þ
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Without loss of generality, we can assume that there is
σ > 0 such that 4ð1 − γkÞσkð1 − σkÞ > σ for all k. Setting
sk = ∥xk − x∗∥2 + ∥yk − y∗∥2, together with (41), we have
the following inequality

σ
pk xk,ykð Þð Þ2

∥∇pk xk, ykð Þ∥2 + sk+1 − sk ≤ 0: ð42Þ

Since sk is eventually decreasing, we obtain sk as con-
vergent. From (42), we have lim

k→∞
pkðxk, ykÞ = 0: Further-

more,

lim
k→∞

∥xk − PCi,k
xkð Þ∥2 = 0, f ori = 1, 2,⋯, t, ð43Þ

lim
k→∞

∥yk − PQj,k
ykð Þ∥2 = 0, f orj = 1, 2,⋯, r, ð44Þ

lim
k→∞

∥Axk − Byk∥
2 = 0: ð45Þ

Furthermore,

∥xk+1 − xk∥ = ∥γkxk + 1 − γkð Þuk − xk∥ = 1 − γkð Þ∥uk − xk∥

≤ 1 − γkð Þλk 〠
t

i=1
αi∥xk − PCi,k

xkð Þ∥+∥AT Axk − Bykð Þ∥
 !

,

ð46Þ

which with (41), (45), and the assumption on γk means

lim
k→∞

∥xk+1 − xk∥
2 = 0: ð47Þ

Note that

∥xk+1 − uk∥ = ∥γkxk + 1 − γkð Þuk − uk∥ = γk∥xk − uk∥, ð48Þ

we have

lim
k→∞

∥xk+1 − uk∥
2 = 0: ð49Þ

(47) and (49) imply

lim
k→∞

∥xk − uk∥
2 = 0: ð50Þ

Similarly, we have

lim
k→∞

∥yk+1 − yk∥
2 = 0,

lim
k→∞

∥yk+1 − vk∥
2 = 0,

lim
k→∞

∥yk − vk∥
2 = 0:

ð51Þ

Thus, fxkg and fykg are asymptotically regular.
Notice that

〠
t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð ÞÞ∥2
�����

+ ∥〠
r

j=1
βj yk − PQj,k

ykð Þ
� �

− BT Axk − Bykð ÞÞ
����
2

≤2 〠
t

i=1
αi∥ xk, − , PCi,k

; xkð Þ
�

∥2 + ∥A∥2∥Axk − Byk∥
2

 

+ 〠
r

j=1
βj∥yk − PQj,k

ykð Þ∥2 + ∥B∥2∥Axk − Byk∥
2
!

≤2max 1,∥A∥2 + ∥B∥2
� �

〠
t

i=1
αi∥ xk, − , PCi,k

; xkð Þ
�

∥2
 

+ ∥Axk − Byk∥
2 + 〠

r

j=1
βj∥yk − PQj,k

ykð Þ∥2
!
,

ð52Þ

which implies that

λk ≥ σk
1

max 1,∥A∥2 + ∥B∥2
� � : ð53Þ

Moreover, it follows from (22) that

∥
xk+1 − xk

λk
∥ = 1 − γkð Þ 1

λk
∥uk − xk∥≤ 1 − γkð Þ

� 〠
t

i=1
αi∥xk − PCi,k

xkð Þ∥ + ∥AT Axk − Bykð Þ∥
 !

,

ð54Þ

which with (43), (45), and the assumption on γk yields

lim
k→∞

∥
xk+1 − xk

λk
∥ = 0: ð55Þ

Similarly, one has

lim
k→∞

∥
yk+1 − yk

λk
∥ = 0: ð56Þ

Let �x and �y be, respectively, weak cluster points of
the sequences fxkg and fykg, then there exist two subse-
quences of fxkg and fykg (again labeled fxkg and fykg
which converge weakly to �x and �y). Next, we will show
that ð�x, �yÞ ∈ Γ. It follows from (30) that
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xk+1 − xk
λk 1 − γkð Þ − λk 〠

t

i=1
αi xk − PCi,k

xkð Þ
� �

+ AT Axk − Bykð Þ
 !

∈NΩ1

xk+1 − γkxk
1 − γk

� �
,

yk+1 − yk
λk 1 − γkð Þ − λk 〠

r

j=1
βj yk − PQj,k

ykð Þ
� �

− BT Axk − Bykð Þ
 !

∈NΩ2

yk+1 − γkyk
1 − γk

� �
:

ð57Þ

From the graphs of the maximal monotone operators,
NC andNQ are weakly-strongly closed, and by passing to
the limit in the last inclusions, we obtain that �x ∈Ω1 and
�y ∈Ω2.

On the other hand, from Lemma 1 and the definition of
Ci,k, one has

ci xkð Þ ≤ ξi,k, xk − PCi,k
xkð Þ

D E
≤ ∥ξi,k∥∥xk − PCi,k

xkð Þ∥
≤M1∥xk − PCi,k

xkð Þ∥,
ð58Þ

whereM satisfies ∥ξi,k∥≤M1 for all k. The lower semicontinu-
ity of function ciðxÞ and (41) assert that

ci �xð Þ ≤ lim inf
k→∞

ci xkð Þ ≤ 0: ð59Þ

Thus, �x ∈ Ci for i = 1, 2,⋯, t. Likewise, we can obtain

qj xkð Þ ≤ ηj,k, yk − PQj,k
ykð Þ

D E
≤ ∥ηj,k∥∥yk − PQj,k

ykð Þ∥
≤M2∥yk − PQj,k

ykð Þ∥,
ð60Þ

where M2 satisfies ∥ηj,k∥≤M2 for all k. The lower semiconti-
nuity of function qjðxÞ and (42) lead to

qi �yð Þ ≤ lim inf
k→∞

qi ykð Þ ≤ 0: ð61Þ

Thus, �y ∈Qj for j = 1, 2,⋯, r. Moreover, the weak con-
vergence of Axk − Byk to A�x − B�y and the lower semicontinu-
ity of the squared norm imply

∥A�x − B�y∥≤lim inf
k→∞

∥Axk − Byk∥ = 0, ð62Þ

hence, ð�x, �yÞ ∈ Γ. This completes the proof.

4. Numerical Examples

We are in a position to show numerical examples to demon-
strate the performance and convergence of Algorithm 6. The
whole programs are written in MATLAB 7.0. All the numer-
ical results are carried out on a personal Lenovo computer
with Intel®Core™ i7-7500U CPU 2.70GHz and RAM

4.00GB. We denote the vector with all elements 1 by e in
what follows.

Example 8. Let

A =
3 −1 2
2 1 0
3 0 3

0
BB@

1
CCA, B =

4 −4 2 1
3 −1 4 3
5 1 0 4

0
BB@

1
CCA ð63Þ

C1 = fx ∈ R3 ∣ x1 + 5x22 + 4x3 ≤ 0g, C2 = fx ∈ R3 ∣ 3x1 +
10x3 ≤ 0g,Q1 = fy ∈ R4 ∣ 2y1 − 3y2 − 2y3 +4y4 ≤ 0g, andQ2 =
fy ∈ R4 ∣ 2y21 − y2 + 4y3 − 3y4 ≤ 0g. Find x ∈ C = C1 ∩ C2, y ∈
Q =Q1 ∩Q2 such that Ax = By.

Example 9. Let

A =

0:2620 0:0268 0:2589

0:5697 0:5004 0:0458

0:3595 0:8270 0:2464

0
BBB@

1
CCCA,

B =

0:6607 0:0130 0:0335 0:9213

0:3294 0:7180 0:4060 0:9840

0:6594 0:3911 0:7163 0:9834

0
BBB@

1
CCCA

ð64Þ

C1 = fx ∈ R3 ∣ x41 + x22 − 2x23 − 1 ≤ 0g, C2 = fx ∈ R3 ∣ 2x21
+ x32 − 3x23 − 1 ≤ 0g,Q1 = fy ∈ R4 ∣ 2y31 − y22 + 2y33 + 6y4 − 2 ≤
0g, andQ2 = fy ∈ R4 ∣ 2y21 + 3y23 + 2y24 − 2 ≤ 0g. Find x ∈ C =
C1 ∩ C2, y ∈Q =Q1 ∩Q2 such that Ax = By:

Example 10. Let A = ðaijÞJ×N and B = ðbijÞJ×M . C1 = fx1 ∈ RN

∣∥x1∥≤2g, C2 = fx2 ∈ RN ∣−e ≤ x2 ≤ 3eg:Q1 = fy1 ∈ RM∣−2e ≤
y1 ≤ 6eg, and Q2 = fy2 ∈ RM ∣∥y2∥≤4g, where faijg, fbijg ∈
ð0, 1Þ are all generated randomly; J , N and M are pos-
itive integers. Find x ∈ C = C1 ∩ C2, y ∈Q =Q1 ∩Q2 such
that Ax = By:

In this example, we consider J = 10,N = 10, andM = 20 ;
J = 20,N = 30, andM = 40 ; and J = 40,N = 50, andM = 60
and three initial values:

(i) Case 1 x = onesðN , 1Þ, y = onesðM, 1Þ ;
(ii) Case 2 x = 10 ∗ onesðN , 1Þ, y = 10 ∗ onesðM, 1Þ ;
(iii) Case 3 x = −10 ∗ onesðN , 1Þ, y = −10 ∗ onesðM, 1Þ:
We take Ω1 = C1,n, Ω2 =Q1,n when the algorithm iterates

to step n, γk = 1/20k, σk = ð1/4Þ + ð1/2kÞ, α1 = α2 = β1 = β2 =
1/4 in Algorithm 6. In the following tables and figures, we
denote Algorithm 6 and the algorithm in reference [45] by
QSPA and RTPPM, respectively. And we set }n}, }s} and }

x∗, } and }y∗} to express the number of iteration, CPU time
in seconds, and the final solution, respectively. Init. denote
the initial points, and pkðx, yÞ ≤ ε = 10−4 is used as the stop
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criterion. The numerical results can be seen from Tables 1–3
and Figures 1–4. For Figures 3 and 4, take J = 20,N = 30,
andM = 40 in Example 10.

From Tables 1–3, we can see that the iterative number
and CPU time of Algorithm 6 is less algorithm RTPPM.
Figures 1–4 indicate that Algorithm 6 is more stable than
RTPPM.

Furthermore, for testing the stationary property of itera-
tive number, we carry 500 experiments for the initial point
which are presented randomly, such as

x1 = rand 3, 1ð Þ, y1 = rand 4, 1ð Þ, ð65Þ

in Example 9, the results can be found in Figure 1.

Table 3: The numerical results of Example 10.

QSPR with λn QSPR with 0.5 λn RTPPM with λn
J N M n s n s n s

Case 1

10 10 20 30 0:003122 48 0.004302 808 0:050933
20 30 40 37 0.005304 94 0.011647 1994 0.258627

40 50 60 91 0.013088 188 0.028659 4014 1.286561

Case 2

10 10 20 56 0.011269 125 0.031055 3236 0.201379

20 30 40 107 0.038957 171 0.039266 1762 0.233102

40 50 60 295 0.041663 351 0.100628 5084 1.673274

Case 3

10 10 20 67 0.008644 98 0.016412 812 0.051558

20 30 40 118 0.015576 178 0.028107 1953 0.270206

40 50 60 233 0.058625 302 0.108850 4176 1.360695

Table 1: The numerical results of Example 8.

Init. QSPR RTPPM

x1 = 0, 0, 0ð ÞT n = 14, s = 0:000671 n = 7684, s = 0:198442

y1 = 1, 0,−1, 1ð ÞT
x∗ = 0:0196,−0:0222,−0:0055ð ÞT x∗ = 0:0342,−0:0734,−0:0153ð ÞT

y∗ = 0:0345,0:0119,0:0071,−0:0357ð ÞT y∗ = 0:0509,0:0012,−0:0023,−0:0495ð ÞT

x1 = 0, 1, 1ð ÞT n = 15, s = 0:000636 n = 49, s = 0:001585

y1 = 0, 0, 0, 0ð ÞT
x∗ = −0:0750,0:0232,0:0181ð ÞT x∗ = −0:2420,−0:0354,0:0589ð ÞT

y∗ = −0:0279,0:0205,0:0014,−0:0109ð ÞT y∗ = −0:0721,0:0426,−0:0254,−0:0566ð ÞT

x1 = 1, 1, 1ð ÞT n = 258, s = 0:008365 n = 34587, s = 0:816461

y1 = 1, 1,−1,−1ð ÞT
x∗ = −0:1554,−0:0125,−0:0255ð ÞT x∗ = 0:0836,−0:1013,−0:0566ð ÞT

y∗ = −0:0951,0:0345,0:0180,−0:0257ð ÞT y∗ = 0:0496,−0:0180,0:0025,−0:0371ð ÞT

Table 2: The numerical results of Example 9.

Init. QSPR RTPPM

x1 = 1, 1, 1ð ÞT n = 16, s = 0:001268 n = 478, s = 0:029797

y1 = 1, 1, 1, 1ð ÞT
x∗ = 0:1710,0:1525,0:1824ð ÞT x∗ = 1:2294,0:7761,0:9712ð ÞT

y∗ = 0:1110,0:1218,0:1283,0:0100ð ÞT y∗ = 0:6171,0:7022,0:6533,0:1692ð ÞT

x1 = 10 1, 1, 1ð ÞT n = 37, s = 0:001877 n = 1687, s = 0:079442

y1 = 10 1, 1, 1, 1ð ÞT
x∗ = 0:2973,0:3380,0:7617ð ÞT x∗ = 1:5257,0:4196,1:5156ð ÞT

y∗ = 0:6560,0:3316,0:2638,−0:1878ð ÞT y∗ = 0:9622,0:8416,0:2119,0:1513ð ÞT

x1 = 100 1, 1, 1ð ÞT n = 63, s = 0:003101 n = 2651, s = 0:110352

y1 = 100 1, 1, 1, 1ð ÞT
x∗ = 0:5363,−0:1663,2:0146ð ÞT x∗ = 1:5276,0:3916,1:5165ð ÞT

y∗ = 0:9380,0:0704,−0:1862,0:0354ð ÞT y∗ = 0:9713,0:8464,0:1785,0:1454ð ÞT

8 Journal of Function Spaces



On the other initial point, such as

x1 = rand 3, 1ð Þ ∗ 10, y1 = rand 4, 1ð Þ ∗ 10, ð66Þ

in Example 9, the results can be found in Figure 2.

Similarly, we carry 500 experiments for the initial point
which are presented randomly, such as

x1 = rand N , 1ð Þ, y1 = rand M, 1ð Þ, ð67Þ

in Example 10, the results can be found in Figure 3.
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Figure 1: The iteration number of QSPA and RTPPM.
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Figure 2: The iteration number of QSPA and RTPPM.
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Figure 3: The iteration number of QSPA and RTPPM.
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On the other initial point, such as

x1 = rand N , 1ð Þ ∗ 10, y1 = rand M, 1ð Þ ∗ 10, ð68Þ

in Example 10, the results can be found in Figure 4.
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