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We consider singular nonlinear Hadamard fractional boundary value problems. Using properties of Green’s function and a fixed
point theorem, we show that the problem has positive solutions which blow up. Finally, some examples are provided to explain the
applications of the results.

1. Introduction

Fractional-order differential equations appear extensively in
a variety of applications in science and engineering; see, for
instance, [1–13] and the references therein.

In [14], Hadamard introduced a new definition of frac-
tional derivatives which differs from the Riemann-Liouville
and Caputo fractional derivatives in the sense that its kernel
integral contains the logarithmic function of an arbitrary
exponent. Hadamard fractional derivatives are viewed as a
generalization of the operator δ = xðd/dxÞ: For further details,
properties, and generalizations of this type of derivative, we
refer the reader to [5, 15–21] and the references therein.

The study of existence, uniqueness, and global asymp-
totic behavior of a continuous solution of fractional differen-
tial equations involving Hadamard fractional derivatives has
been investigated by several researchers; see, for example,
[22–32].

In [23], Ahmad and Ntouyas studied the following prob-
lem:

HDαu rð Þ − g r, u rð Þð Þ = 0, r ∈ 1, eð Þ,

u 1ð Þ = 0, u eð Þ = 1
Γ βð Þ

ðe
1
ln e

s

� �β−1 u sð Þ
s

ds, β > 0,

8><
>:

ð1Þ

where HDα is the Hadamard fractional derivative order
α ∈ ð1, 2� and g : ½1, e� ×ℝ⟶ℝ is a continuous function
satisfying

g r, xð Þ − g r, yð Þj j ≤ L x − yj j, for each r ∈ 1, e½ � and x, y ∈ℝ,
ð2Þ

where L > 0 denotes a convenient Lipschitz constant.
The authors used the classical Banach fixed point theo-

rem to obtain the existence and uniqueness of a solution for
the abovementioned problem.

In [24], the authors studied the existence of solutions for
a fractional boundary value problem involving Hadamard-
type fractional differential inclusions and integral boundary
conditions. Their approach was based on standard fixed
point theorems for multivalued maps. In [25], the authors
used some classical ideas of fixed point theory to investigate
the existence and uniqueness of solutions of a boundary value
problem comprising nonlinear Hadamard fractional differ-
ential equations and nonlocal nonconserved boundary con-
ditions in terms of the Hadamard integral. In [15], the
authors studied a Cauchy problem for a differential equation
with a left Caputo-Hadamard fractional derivative. By using
Banach’s fixed point theorem, they proved the existence
and uniqueness of the solution in the space of continuously
differentiable functions.
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The primary objective of this paper is to address the exis-
tence and qualitative properties of a solution for the follow-
ing problem:

HDαu rð Þ − λf r, u rð Þð Þ = 0, r ∈ 1, eð Þ,
u > 0, in 1, eð Þ,
lim
r→1+

ln rð Þð Þ2−αu rð Þ = a > 0, u eð Þ = b > 0,

8>>><
>>>:

ð3Þ

where HDα is the Hadamard fractional derivative of order
α ∈ ð1, 2�, λ ≥ 0, and f satisfies

(H1) f : ð1, eÞ × ½0,∞Þ⟶ ½0,∞ÞÞ is continuous, such
that for each each fixed r ∈ ð1, eÞ, s⟶ f ðr, sÞ is nondecreas-
ing on ½0,∞Þ.

(H2) For all c > 0,
Ð e
1 ðln rÞð1 − ln rÞα−1 f ðr, cðln rÞα−2Þdr

<∞:
The following are some examples of functions that satisfy

hypotheses (H1) and (H2).

(i) f ðr, sÞ = ffiffi
s

p , which is not a Lipschitz function on
½0,∞Þ

(ii) f ðr, sÞ = ðln rÞγð2−αÞð1 − ln rÞ−βsγ, where 0 < β < α
and γ ≥ 0: It is to be noted that f ðr, sÞ is singular at
r = 1

(iii) f ðr, sÞ = pðrÞsγ, where p is any nonnegative continu-
ous function on ½1, e� and γ ∈ ½0, 2/ð2 − αÞÞ:

Before stating our main result, we explain some
notations.

1.1. Notations

(i) B+ðð1, eÞÞ≔ fgjg : ð1, eÞ⟶ 0,∞Þis ameasurable
functiong: If α ∈ ð1, 2�, then

(ii) Cα,lnð½1, e�Þ≔ fg : ðln rÞ2−αgðrÞ ∈ Cð½1, e�Þg
(iii) Gαðr, sÞ is Green’s function of the operator u⟶

−HDαu on ð1, eÞ with lim
r→1+

ðln ðrÞÞ2−αuðrÞ = 0 and u

ðeÞ = 0:

(iv) u0ðrÞ≔ aððln rÞα−2 − ðln rÞα−1Þ + bðln rÞα−1 is the
unique solution of the problem

HDαu rð Þ = 0, r ∈ 1, eð Þ,
u > 0, in 1, eð Þ,
lim
r→1+

ln rð Þð Þ2−αu rð Þ = a > 0, u eð Þ = b > 0

8>>><
>>>:

ð4Þ

(v) Assuming ðH1Þ and ðH2Þ, we define

λ0 ≔ inf
r∈ 1,eð Þ

u0 rð ÞÐ e
1 Gα r, sð Þ f s, u0 sð Þð Þ/sð Þds ð5Þ

It will be proven that λ0 > 0:

The main result of this paper can be stated as follows.

Theorem 1. Let α ∈ ð1, 2� and assume that hypotheses (H2)
and (H2) are satisfied. Then, for λ ∈ ½0, λ0Þ, problem (3) has
a solution uλ ∈ Cα,lnð½1, e�Þ satisfying for all r ∈ ð1, e�,

1 −
λ

λ0

� �
min a, bð Þ ln rð Þα−2 ≤ uλ rð Þ ≤max a, bð Þ ln rð Þα−2:

ð6Þ

Remark 2.

(i) For α ∈ ð1, 2Þ, we have lim
r→1+

uλðrÞ =∞:

(ii) If λ = 0, then u0 satisfies (6).

The remainder of this paper is organized as follows. In
Section 2, some relevant properties of Hadamard fractional
calculus are presented. Additionally, we construct Green’s
function and establish certain interesting inequalities. Theo-
rem 1 is proven in Section 3. To illustrate our existence
results, some examples are provided at the end of Section 3.

2. Preliminaries

We recall some relevant properties concerning Hadamard
fractional derivative. For more details, the reader can see Sec-
tion 2.7 of [19].

Definition 3. The Hadamard fractional integral of order γ > 0
of the function h is defined as

HI γh
� �

rð Þ≔ 1
Γ γð Þ

ðr
1

ln r
s

� �γ−1 h sð Þ
s

ds, 1 ≤ r ≤ e: ð7Þ

For γ = 0, we define HI 0h = h:

Definition 4. Let γ > 0 and ½γ� its integer part. The Hadamard
fractional derivative of order γ of the function h is defined as

HDγh
� �

rð Þ≔ δn
1

Γ n − γð Þ
ðr
1

ln r
s

� �n−γ−1 h sð Þ
s

ds, 1 ≤ r ≤ e,

ð8Þ

where n = ½γ� + 1 and δ = rðd/drÞ.

Example 5. (Property 2.24 of [19]).

If γ, σ > 0, then

HI γ ln sð Þσ−1
� �

rð Þ = Γ σð Þ
Γ σ + γð Þ ln rð Þσ+γ−1,

HDγ ln sð Þσ−1
� �

rð Þ = Γ σð Þ
Γ σ − γð Þ ln rð Þσ−γ−1:

ð9Þ
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In particular, if σ = 1 and γ ∈ ð0, 1Þ, then HDγ1ðrÞ = ð1/
Γð1 − γÞÞðln rÞ−γ:

Lemma 6. (see [5]).
Let β > γ > 0 and h ∈ Cðð1, eÞÞ ∩ L1ðð1, eÞÞ. Then,

(i) HDγðHI βhÞ = HI β−γh and HDγðHI γhÞ = h

(ii) The equality ðHDγhÞðrÞ = 0 is valid on ð1, eÞ if, and
only if,

h rð Þ =〠
m

j=1
cj ln rð Þγ−j, ð10Þ

where cj ∈ℝ,j = 1,⋯,m, andm is the smallest integer
greater than or equal to γ:

(iii) If HDγh ∈ Cðð1, eÞÞ ∩ L1ðð1, eÞÞ, then

HI γ HDγh
� �

rð Þ = h rð Þ +〠
m

j=1
cj ln rð Þγ−j, ð11Þ

where cj ∈ℝ,j = 1,⋯,m, andm is the smallest integer
greater than or equal to γ:

Lemma 7. Let α ∈ ð1, 2� and h ∈ Cð½1, e�Þ:

The unique solution of the problem

HDαu rð Þ + h rð Þ = 0, 1 < r < e,
lim
r→1+

ln rð Þð Þ2−αu rð Þ = 0, u eð Þ = 0,

8<
: ð12Þ

is given by

u rð Þ =
ðe
1
Gα r, sð Þ h sð Þ

s
ds, ð13Þ

where

Proof. By Lemma 6, the solution of problem (12) can be writ-
ten as

u rð Þ = c1 ln rð Þα−1 + c2 ln rð Þα−2 − 1
Γ αð Þ

ðr
1

ln r
s

� �α−1 h sð Þ
s

ds:

ð15Þ

Since lim
r→1+

ðln ðrÞÞ2−αuðrÞ = 0 and uðeÞ = 0, we obtain

c2 = 0 and

c1 =
1

Γ αð Þ
ðe
1

ln e
s

� �α−1 h sð Þ
s

ds: ð16Þ

Therefore,

u rð Þ =
ðe
1

ln rð Þα−1
Γ αð Þ ln e

s

� �α−1 h sð Þ
s

ds

−
ðr
1

1
Γ αð Þ ln r

s

� �α−1 h sð Þ
s

ds

=
ðe
1
Gα r, sð Þ h sð Þ

s
ds,

ð17Þ

where Gαðr, sÞ is given by (14).

Gα r, sð Þ = 1
Γ αð Þ

ln r − ln r ln sð Þα−1 − ln r
s

� �� �α−1
, 1 ≤ s ≤ r ≤ e,

ln r − ln r ln sð Þα−1, 1 ≤ r ≤ s ≤ e:

8<
: ð14Þ

In Figure 1, we give the representation of the Green func-
tion G3/2ðt, sÞ with the contours and the projections on some
coordinate planes. In particular, one can see that G3/2ðt, sÞ is
nonnegative.

Lemma 8. Let 1 < α ≤ 2: Then,

(i) Gαðr, sÞ ∈ Cð½1, e� × ½1, e�Þ
(ii) On ð1, eÞ × ð1, eÞ, one has

α − 1ð ÞHα r, sð Þ ≤ Γ αð ÞGα r, sð Þ ≤Hα r, sð Þ, ð18Þ

where Hαðr, sÞ≔ ðln r − ln r ln sÞα−2 min ðln r, ln sÞ
ð1 −max ðln r, ln sÞÞ:
In particular, Gαðr, sÞ ≥ 0

(iii) On ð1, eÞ × ð1, eÞ, one has

α − 1ð Þ ln s − ln s ln rð Þ ln r − ln r ln sð Þα−1 ≤ Γ αð ÞGα r, sð Þ,

Γ αð ÞGα r, sð Þ ≤ ln s − ln s ln sð Þ ln r − ln r ln sð Þα−2

8>><
>>:

ð19Þ
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Figure 1: Continued.

4 Journal of Function Spaces



(iv) For each r, ξ, s ∈ ð1, eÞ, the following holds:

Gα r, ξð ÞGα ξ, sð Þ
Gα r, sð Þ ≤

1
α − 1ð ÞΓ αð Þ ln ξð Þα−1 1 − ln ξð Þα−1: ð20Þ

Proof. It is easy to check that (i) holds.

To prove (ii), for r, s ∈ ð1, eÞ, we have

Gα r, sð Þ = 1
Γ αð Þ ln r − ln r ln sð Þα−1 − ln r − ln sð Þ+� �α−1� �

,

= 1
Γ αð Þ ln r − ln r ln sð Þα−1 1 − ln r − ln sð Þ+

ln r − ln r ln s

� �α−1 !
,

ð21Þ

where ðln r − ln sÞ+ = max ðln r − ln s, 0Þ:
Therefore, inequalities in (18) follow from the fact that

α − 1ð Þ 1 − ξð Þ ≤ 1 − ξα−1 ≤ 1 − ξ, for ξ ∈ 0, 1½ �: ð22Þ

By using (18) and the fact that ðln rÞðln sÞ ≤min ðln r,
ln sÞ ≤ ln s and ð1 − ln rÞð1 − ln sÞ ≤ ð1 −max ðln r, ln sÞÞ ≤
ð1 − ln sÞ, we obtain (19).

Next, we aim at proving (iv): Let r, ξ, s ∈ ð1, eÞ and put

ρ r, sð Þ≔min ln r, ln sð Þ 1 −max ln r, ln sð Þð Þ: ð23Þ

1
0
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0.2

0.3z

0.4

0.5

0.6

1.2 1.4 1.6 1.8
s

2 2.2 2.4 2.6 2.8

(c) Projection on sz

Figure 1: Gαðt, sÞ for α = 3/2.

From (18), we have

Gα r, ξð ÞGα ξ, sð Þ
Gα r, sð Þ ≤

ln ξð Þα−2 1 − ln ξð Þα−2
α − 1ð ÞΓ αð Þ

ρ r, ξð Þρ ξ, sð Þ
ρ r, sð Þ : ð24Þ

By symmetry, one can verify that

ρ r, ξð Þρ ξ, sð Þ
ρ r, sð Þ ≤ ln ξð Þ 1 − ln ξð Þ: ð25Þ

Hence, the required results follow from (24) and (25).

3. Proof of Theorem 1

We aim at proving Theorem 1. First, we need to establish
some preliminary results. For 1 < α ≤ 2, we denote by

(i) J α,ln ≔ fg ∈B+ðð1, eÞÞ : Ð e1 ð1 − ln ξÞα−1ðln ξÞα−1g
ðξÞdξ <∞g

(ii) For g ∈B+ðð1, eÞÞ,

Ag ≔ sup
r,s∈ 1,eð Þ

ðe
1

Gα r, ξð ÞGα ξ, sð Þ
Gα r, sð Þ

g ξð Þ
ξ

dξ ð26Þ

(iii) For g ∈B+ðð1, eÞÞ,

W g rð Þ≔
ðe
1
Gα r, sð Þg sð Þ

s
ds, for r ∈ 1, e½ � ð27Þ
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(iv) For a, b > 0, we recall that u0ðrÞ≔ aððln rÞα−2 −
ðln rÞα−1Þ + bðln rÞα−1 is the unique solution of prob-
lem (4).

Note that for r ∈ ð1, e�,

min a, bð Þ ln rð Þα−2 ≤ u0 rð Þ ≤max a, bð Þ ln rð Þα−2: ð28Þ

We recall that Cα,lnð½1, e�Þ≔ fg : ð1, e�⟶ℝ, ðln ξÞ2−α
g ∈ Cð½1, e�Þg.

Proposition 9. Let α ∈ ð1, 2Þ and g ∈B+ðð1, eÞÞ, then

(i) W g ∈ Cα,lnð½1, e�Þ⇔
Ð e
1 ð1 − ln sÞα−1ðln sÞgðsÞds <∞

(ii) Let g be such that the function s⟶ ð1 − ln sÞα−1ðln
sÞgðsÞ ∈ Cðð1, eÞÞ ∩ L1ðð1, eÞÞ, then W g ∈ Cα,lnð½1, e�Þ
and it is the unique solution of the problem

HDαu rð Þ = −g rð Þ, 1 < r < e,
lim
r→1+

ln rð Þð Þ2−αu rð Þ = 0, u eð Þ = 0:

8<
: ð29Þ

Proof.

(i) The property follows from Lemma 8 (ii).

(ii) From (i), W g ∈ Cα,lnð½1, e�Þ and by using again
Lemma 8 (ii), we have

W gj j rð Þ ≤ 1
Γ αð Þ ln rð Þα−2

ðe
1
ln sð Þ 1 − ln sð Þα−1 g sð Þj j

s
ds, ð30Þ

which implies by Example 5 (i) that HI 2−αðW jgjÞ is
bounded on ð1, eÞ:

Therefore, we have

HI 2−α W gð Þ rð Þ = 1
Γ 2 − αð Þ

ðr
1

ln r
s

� �1−α W g sð Þ
s

ds

= 1
Γ 2 − αð Þ

ðr
1

ln r
s

� �1−α 1
s

�
ðe
1
Gα s, ξð Þg ξð Þ

ξ
dξ

� �
ds

=
ðe
1
K r, ξð Þ g ξð Þ

ξ
dξ,

ð31Þ

where

K r, ξð Þ = 1
Γ 2 − αð Þ

ðr
1

ln r
s

� �1−α Gα s, ξð Þ
s

ds: ð32Þ

We claim that

K r, ξð Þ = 1 − ln ξð Þα−1 ln r − ln r − ln ξð Þ+, ð33Þ

where ðln r − ln ξÞ+ = max ðln r − ln ξ, 0Þ:
Indeed, from (32) and (14), we have

K r, ξð Þ = 1
Γ αð ÞΓ 2 − αð Þ

ðr
1
1 − ln ξð Þα−1 ln r

s

� �1−α ln sð Þα−1
s

ds

−
ðr
1

ln r
s

� �1−α
ln s − ln ξð Þ+� �α−1 1

s
ds

#
:

ð34Þ

Now using the fact that

ðξ
ζ

ξ − κð Þ1−α κ − ζð Þ1−αdκ = Γ αð ÞΓ 2 − αð Þ ξ − ζð Þ, ð35Þ

we deduce that

ðr
1
ln sð Þα−1 ln r

s

� �1−α 1
s
ds = Γ αð ÞΓ 2 − αð Þ ln r: ð36Þ

On the other hand,

(i) if 1 ≤ ξ ≤ r, then by using (35), we get

ðr
1

ln s − ln ξð Þ+� �α−1 ln r
s

� �1−α 1
s
ds

=
ðr
ξ

ln s − ln ξð Þα−1 ln r − ln sð Þ1−α 1
s
ds

= Γ αð ÞΓ 2 − αð Þ ln r − ln ξð Þ

ð37Þ

(ii) if 1 ≤ r ≤ ξ, then obviously

ðr
1

ln s − ln ξð Þ+� �α−1 ln r
s

� �1−α 1
s
ds = 0 ð38Þ

Hence,

ðr
1

ln s − ln ξð Þ+� �α−1 ln r
s

� �1−α 1
s
ds

= Γ αð ÞΓ 2 − αð Þ ln r − ln ξð Þ+:
ð39Þ

So, (33) follows from (34), (36), and (39).
Next, we claim that

HDα W gð Þ rð Þ≔ δ2 HI 2−α W gð Þ
� �

rð Þ = −g rð Þ, for r ∈ 1, eð Þ:
ð40Þ
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Indeed, from (33), we have

HI 2−α W gð Þ rð Þ =
ðe
1
K r, sð Þg sð Þ

s
ds =

ðe
1

�
ln rð Þ 1 − ln sð Þα−1

− ln r − ln sð Þ+� g sð Þ
s

ds

= ln rð Þ
ðr
1

1 − ln sð Þα−1 − 1
� �g sð Þ

s
ds

+ ln rð Þ
ðe
r
1 − ln sð Þα−1 g sð Þ

s
ds

+
ðr
1
ln sð Þ g sð Þ

s
ds≔ J1 rð Þ + J2 rð Þ + J3 rð Þ:

ð41Þ

From the hypothesis, the function s⟶ ð1 − ln sÞα−1ðg
ðsÞ/sÞ is continuous and integrable near e while the function
s⟶ ðln sÞðgðsÞ/sÞ becomes continuous and integrable near
1. So J2ðrÞ and J3ðrÞ are differentiable on ð1, eÞ:

On the other hand by observing that

1 − 1 − ln sð Þα−1 =O ln sð Þnear1, ð42Þ

we deduce that J1ðrÞ is differentiable on ð1, eÞ:
Therefore,

δ HI 2−α W gð Þ
� �

rð Þ =
ðr
1

1 − ln sð Þα−1 − 1
� �g sð Þ

s
ds

+
ðe
r
1 − ln sð Þα−1 g sð Þ

s
ds:

ð43Þ

Applying for the second time the δ-derivative, we obtain

HDα W gð Þ rð Þ = δ2 HI 2−α W gð Þ
� �

rð Þ = −g rð Þ: ð44Þ

By Lemma 8 (ii) and (iii), for each s ∈ ½1, e�, we have

lim
r→1+

ln rð Þ2−αGα r, sð Þ� �
= 0,

 0 ≤ ln rð Þ2−αGα r, sð Þ� �
≤

1
Γ αð Þ ln sð Þ 1 − ln sð Þα−1:

ð45Þ

This implies by the dominated convergence theorem that

lim
r→1+

ln rð Þ2−αW g rð Þ = 0: ð46Þ

Similarly, we have ðW gÞðeÞ = 0.
Finally, the uniqueness follows from Lemma 6 (ii).

Remark 10. The property of the above proposition remains
true for α = 2:

Lemma 11. Let 1 < α ≤ 2 and g ∈ J α,ln, then

(i) Ag <∞

(ii) For all r ∈ ½1, e�,
ðe
1
Gα r, sð Þu0 sð Þg sð Þ

s
ds ≤Agu0 rð Þ ð47Þ

(iii) The family

Λg =
1

u0 rð Þ
ðe
1
Gα r, sð Þu0 sð Þ h sð Þ

s
ds, hj j ≤ g

	 

ð48Þ

is relatively compact in Cð½1, e�Þ:

Proof.

(i) As consequence of Lemma 8 (iv) and definition of
J α,ln, we obtain Ag <∞:

(ii) Observe that for each r, s ∈ ð1, eÞ, we have

lim
ξ→1

Gα s, ξð Þ
Gα r, ξð Þ = ln sð Þα−2 − ln sð Þα−1

ln rð Þα−2 − ln rð Þα−1 ð49Þ

Using this fact, Fatou’s lemma, and (26), we deduce that

ðe
1
Gα r, sð Þ ln sð Þα−2 − ln sð Þα−1

ln rð Þα−2 − ln rð Þα−1
 !

g sð Þ
s

ds

≤ lim inf
ξ→1

ðe
1

Gα r, ξð ÞGα ξ, sð Þ
Gα r, sð Þ

g sð Þ
s

ds ≤Ag:

ð50Þ

That is,

ðe
1
Gα r, sð Þ ln sð Þα−2 − ln sð Þα−1� � g sð Þ

s
ds

≤Ag ln rð Þα−2 − ln rð Þα−1� �
, for r ∈ 1, e½ �:

ð51Þ

Similarly, since lim
ξ→e

ðGαðs, ξÞ/Gαðr, ξÞÞ = ðln sÞα−1/
ðln rÞα−1, we obtain
ðe
1
Gα r, sð Þ ln sð Þα−1 g sð Þ

s
ds ≤Ag ln rð Þα−1, for r ∈ 1, e½ �:

ð52Þ

Hence, (47) follows by combining (51) and (52).

(iii) It follows from (ii) and (i) that the family Λg is uni-
formly bounded

By (19) and (28), for ðr, sÞ ∈ ½1, e� × ½1, e�, we have

Gα r, sð Þ
u0 rð Þ u0 sð Þg sð Þ

s

����
���� ≤ 1

Γ αð Þ
max a, bð Þ
min a, bð Þ ln s − ln s ln sð Þα−1g sð Þ:

ð53Þ
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Since the function ðr, sÞ⟶Gαðr, sÞ/u0ðrÞ ∈ Cð½1, e� ×
½1, e�Þ and g ∈ J α,ln,we deduce by (53) thatΛg is equicontin-
uous in ½1, e� and becomes relatively compact in Cð½1, e�Þ by
Ascoli’s theorem:

Proof of Theorem 1. We let

g0 rð Þ≔ 1
u0 rð Þ f r, u0 rð Þð Þ, for r ∈ 1, eð Þ: ð54Þ

By hypotheses (H1) and (H2) and (28), we have g0 ∈
J α,ln:

Define

λ rð Þ≔ u0 rð ÞÐ e
1 Gα r, sð Þ f s, u0 sð Þð Þ/sð Þds , λ0 ≔ inf

r∈ 1,eð Þ
λ rð Þ: ð55Þ

Using (54) and (47), we obtain

ðe
1
Gα r, sð Þ f s, u0 sð Þð Þ

s
ds =

ðe
1
Gα r, sð Þu0 sð Þg0 sð Þ

s
ds ≤Ag0

u0 rð Þ:

ð56Þ

Therefore, λ0 ≥ 1/Ag0
> 0:

Let 0 < λ ≤ λ0 and

S = v ∈ C 1, e½ �ð Þ: 1 − λ

λ0

� �
≤ v ≤ 1

	 

: ð57Þ

For v ∈ S, define T by

Tv rð Þ = 1 − λ

u0 rð Þ
ðe
1
Gα r, sð Þ f s, v sð Þu0 sð Þð Þ

s
ds: ð58Þ

By using ðH1Þ,ðH2Þ, and Lemma 11 (iii), we prove that
TðSÞ is relatively compact in Cð½1, e�Þ:

From (58), ðH1Þ, and (55), we deduce that TðSÞ ⊆ S:
Next, by simple arguments, one can prove that T is a

compact operator.
Therefore, it has a fixed point vλ ∈ S satisfying

vλ rð Þ = 1 − λ

u0 rð Þ
ðe
1
Gα r, sð Þ f s, vλ sð Þu0 sð Þð Þ

s
ds: ð59Þ

Let uλðrÞ = vλðrÞu0ðrÞ: Then, uλ ∈ Cα,lnð½1, e�Þ and sat-
isfies

uλ rð Þ = u0 rð Þ − λ
ðe
1
Gα r, sð Þ f s, uλ sð Þð Þ

s
ds: ð60Þ

Since vλ ∈ S, it follows from (28) that

1 − λ

λ0

� �
min a, bð Þ ln rð Þα−2 ≤ uλ rð Þ ≤max a, bð Þ ln rð Þα−2:

ð61Þ

By using ðH1Þ, (61), and ðH2Þ, we deduce that the function
s⟶ ðln sÞð1 − ln sÞα−1 f ðs, uλðsÞÞ ∈ Cðð1, eÞÞ ∩ L1ðð1, eÞÞ:

Hence, from (60), Proposition 9 (ii), and (4), we conclude
that uλ is a solution of problem (3).

Example 12. Let 0 < β < 1. Then, for some λ0 > 0 and each
λ ∈ ½0, λ0Þ, problem

HD4/3u rð Þ − λ ln rð Þð Þ−βu3/2 = 0, r ∈ 1, eð Þ,
u > 0, in 1, eð Þ,
lim
r→1+

ln rð Þð Þ2/3u rð Þ = a > 0, u eð Þ = b > 0,

8>>><
>>>:

ð62Þ

has a solution uλ in C4/3,lnð½1, e�Þ satisfying

1 − λ

λ0

� �
min a, bð Þ ln rð Þ−2/3 ≤ uλ rð Þ ≤max a, bð Þ ln rð Þ−2/3:

ð63Þ

Observe that the nonlinearity considered in this exam-
ple is singular at r = 1:

Example 13. Let 1 < α < 2,γ ∈ ½0, 2/ð2 − αÞÞ and p ∈ C+ð½1, e�Þ.

Then, there exists a constant λ0 > 0 such that for λ ∈ ½0,
λ0Þ, problem

HDαu rð Þ − λp rð Þuγ = 0, r ∈ 1, eð Þ,
u > 0, in 1, eð Þ,
lim
r→1+

ln rð Þð Þ2−αu rð Þ = a > 0, u eð Þ = b > 0,

8>>><
>>>:

ð64Þ

admit a solution uλ in Cα,lnð½1, e�Þ satisfying

1 − λ

λ0

� �
min a, bð Þ ln rð Þα−2 ≤ uλ rð Þ ≤max a, bð Þ ln rð Þα−2:

ð65Þ

In particular, for = 3/2,γ = 2, and a = b = 1, we have from
(4) and (55),

λ rð Þ≔ ln rð Þ−1/2Ð e
1 G3/2 r, sð Þ ln sð Þ−1 p sð Þ/sð Þds : ð66Þ

Therefore, by choosing some continuous functions pi
ði = 1, 2, 3, 4Þ in (66), we obtain the following graph for
λiðrÞ≔ λðrÞ with p = pi and a numerical value of the con-
stant λ0 ≔ inf

r∈ð1,eÞ
λiðrÞ: In Figure 2, we collect the graph of

functions λi, and in Table 1, we summarize the numerical
value of λ0.

Example 14. Let 1 < α < 2 and β ∈ ½0, 2/ð2 − αÞÞ: Then, The-
orem 1 can be applied forf ðr, sÞ≔ ððln rÞα−2 + sÞβ, where
ðr, sÞ ∈ ð1, eÞ × ½0,∞Þ:
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4. Conclusion

In this paper, we have considered singular nonlinear Hada-
mard fractional boundary value problems. By using estimates
on Green’s function and the Schauder fixed point theorem,
we have proven the existence of a positive solution which
blows up.
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