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We use the properties of superquadratic functions to produce various improvements and popularizations on time scales of the
Hardy form inequalities and their converses. Also, we include various examples and interpretations of the disparities in the
literature that exist. In particular, our findings can be seen as refinements of some recent results closely linked to the time-scale
inequalities of the classical Hardy, Pólya-Knopp, and Hardy-Hilbert. Some continuous inequalities are derived from the main
results as special cases. The essential results will be proved by making use of some algebraic inequalities such as the Minkowski
inequality, the refined Jensen inequality, and the Bernoulli inequality on time scales.

1. Introduction

In [1], Hardy claimed this fundamental inequality and
proved it:
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where 1 < q <∞, g ≥ 0, and ðq/ðq − 1ÞÞq are sharp. They have
emerged in the literature since the discovery of (1) numerous
papers concerned with new arguments, generalizations, and
extensions. One of the most common generalizations for
(1) is the disparity of Pólya-Knopp’s inequality (see [2]),
which is
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In [3], Kaijser et al. signalized that both (1) and (2) are
special states of the Hardy-Knopp’s inequality:
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where Θ ∈ Cðð0,∞Þ,ℝÞ is a convex function.
In [4], Cizmeija et al. proved that if ζ : ð0, αÞ⟶ℝ ≥ 0,

Θ is a convex on ðβ, γÞ where −∞≤ β ≤ γ ≤∞, g : ð0, αÞ
⟶ℝ with gðθÞ ∈ ðβ, γÞ, ∀θ ∈ ð0, αÞ as an integrable func-
tion and υ is defined by

υ ηð Þ≔ η
ðα
η

ζ θð Þ
θ2

dθ, for η ∈ 0, αð Þ, ð4Þ
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then the integral inequality
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is valid.
In [5], Kaijser et al. applied the inequality of Jensen for

convex functions and the theorem of Fubini to establish an
invitingly popularization (1). Particularly, it was proved that
if ζ : ð0, αÞ⟶ℝ ≥ 0 and l : ð0, αÞ × ð0, αÞ⟶ℝ ≥ 0, 0 < α
≤∞ such that

L θð Þ≔
ðθ
0
l θ, ηð Þdη > 0, θ ∈ 0, αð Þ, ð6Þ

and Θ ∈ CðI,ℝÞ, I ⊆ℝ is a convex function, g : ð0, αÞ⟶ℝ
such that gðθÞ ∈ I, ∀θ ∈ ð0, αÞ be integrable function, and υ is
defined by

υ ηð Þ≔ η
ðα
η

ξ θð Þ l θ, ηð Þ
L θð Þ

dθ
θ

<∞, η ∈ 0, αð Þ, ð7Þ

then the integral inequality
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θ
, ð8Þ

is valid, where Alg is defined by

Alg θð Þ≔ 1
L θð Þ

ðθ
0
l θ, ηð Þg ηð Þdη, θ ∈ 0, αð Þ: ð9Þ

As a popularization of (8), Krulic et al. [6] have demon-
strated that if ðΩ1,∑1, μ1Þ and ðΩ2,∑2, μ2Þ are two measure
spaces with positive σ finite measures ζ : Ω1 ⟶ℝ ≥ 0 and
l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such that

L θð Þ≔
ð
Ω2

l θ, ηð Þdμ2 ηð Þ > 0, θ ∈Ω1, ð10Þ

and Θ is a convex function on an interval I ⊆ℝ, g : Ω2 ⟶
ℝ ≥ > 0 with gðΩ2Þ ⊆ I be measurable function and υ is
defined by

υ ηð Þ≔
ð
Ω1

ξ θð Þ l θ, ηð Þ
L θð Þ

� �q/p
dμ1 θð Þ

 !q/p

<∞, η ∈Ω2,
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then the integral inequality
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is valid, where 0 < p ≤ q <∞ and Alg : Ω1 ⟶ℝ are
defined by

Alg θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þg ηð Þdμ2 ηð Þ, θ ∈Ω1: ð13Þ

Observe that inequality (12) is a generalization of
Hardy inequality (1). Namely, let Ω1 =Ω2 =ℝ+ = ð0,∞Þ,
dμ1ðθÞ = dθ, dμ2ðηÞ = dη and uðθÞ = 1/θ, and if 1 < p = q
<∞ and Θ : ½0,∞Þ⟶ℝ are defined by ΘðθÞ = θp, then
(1) is followed directly from (12), which can be rewritten
with gðηp/ðp−1ÞÞη1/ðp−1Þ instead of gðηÞ and

l θ, ηð Þ≔ 1
θ
χ0<η≤θ<∞ θ, ηð Þ: ð14Þ

In the same setting, except with gðηÞη1/p instead of g
ðηÞ and with

l θ, ηð Þ≔ θ

η

� �1/q
θ + ηð Þ−1, ð15Þ

relation (12) becomes the Hardy-Hilbert integral inequality
(see [7]).
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In [8], Abramovich et al. considered a superquadratic
function Θ instead of a convex function Θ and obtained
the following refinement of inequality (12) in the particu-
lar case p = q, as
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ð17Þ

In [9], Aleksandra et al. proved that, if λ ≤ 1, ðΩ1, Σ1,
μ1Þ and ðΩ2, Σ2, μ2Þ are two measure spaces with positive
σ-finite measures, ζ : Ω1 ⟶ℝ ≥ 0, l : Ω1 ×Ω2 ⟶ℝ ≥ 0
such that L : Ω1 ⟶ℝ is defined as in (10), Θ ∈ CðI,ℝÞ,
I ⊆ℝ is a convex function, g : Ω2 ⟶ℝ ≥ 0 such that
gðΩ2Þ ⊆ I be measurable function and is defined by

υ ηð Þ≔
ð
Ω1

ζ θð Þ l θ, ηð Þ
L θð Þ

� �λ

dμ1 θð Þ
 !1/λ

<∞, η ∈Ω2,

ð18Þ
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then the integral inequality
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is valid, where Alg : Ω1 ⟶ℝ is defined by (13).
In the past few years, several researchers have suggested

the study of dynamic time-scale inequalities. In [10], the
authors showed a number of Hardy-type inequalities with a
general kernel on time scale. Namely, they have determined
that if ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2, μ2Þ are two time-scale mea-
sure spaces, l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such that

L θð Þ≔
ð
Ω2

l θ, ηð ÞΔη <∞, θ ∈Ω1, ð20Þ

and ζ : Ω1 ⟶ℝ+ ≥ 0 such that

υ ηð Þ≔
ð
Ω1

l θ, ηð Þζ θð Þ
L θð Þ Δθ <∞, η ∈Ω2, ð21Þ

then the integral inequality
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l θ, ηð Þg ηð ÞΔη
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Δθ ≤
ð
Ω2

υ ηð ÞΘ g ηð Þð ÞΔη,

ð22Þ

is available for all Δμ2-integrable g : Ω2 ⟶ℝ such that
gðΩ2Þ ⊂ I and Θ ∈ CðI,ℝÞ, I ⊂ℝ are a convex function.

Moreover, Donchev et al. [11] improved the inequality
(22) by replacing the function gðηÞ by an m-tuple of func-
tions gðηÞ = ðg1ðηÞ, g2ðηÞ,⋯, gmðηÞÞ such that g1ðηÞ, g2ðηÞ
,⋯, gmðηÞ are Δμ2-integrable on Ω2 in the following way.
If ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2, μ2Þ are two time-scale measure
spaces, U ⊂ℝm a convex set and l : Ω1 ×Ω2 ⟶ℝ+ such
that

L θð Þ≔
ð
Ω2

l θ, ηð ÞΔη <∞, θ ∈Ω1, ð23Þ

and ζ : Ω1 ⟶ℝ such that

υ ηð Þ≔
ð
Ω1

l θ, ηð Þζ θð Þ
L θð Þ Δθ <∞, η ∈Ω2, ð24Þ

then for every a convex function Θ, the integral inequality
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 !

Δθ ≤
ð
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υ ηð ÞΘ g ηð Þð ÞΔη,

ð25Þ

is available for all Δμ2-integrable functions g : Ω2 ⟶ℝm

such that gðΩ2Þ ⊂U ⊂ℝm:
In [12], the authors have specified the time scale version

of (17). That is, they proved it if ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2,
μ2Þ are two time-scale measure spaces with positive σ-finite
measures, ζ : Ω1 ⟶ R ≥ 0 and l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such
that lðθ, :Þ is a Δμ2-integrable function for θ ∈Ω2, and L
: Ω1 ⟶ℝ is defined as

L θð Þ≔
ð
Ω2

l θ, ηð ÞΔμ2 ηð Þ > 0, θ ∈Ω1, ð26Þ

υ ηð Þ≔
ð
Ω1

ζ θð Þ l θ, ηð Þ
L θð Þ Δμ1 θð Þ <∞, η ∈Ω2: ð27Þ

If Θ : ½α,∞Þ⟶ℝ ≥ 0, ðα ≥ 0Þ and a superquadratic
function, then

ð
Ω1

ζ θð ÞΘ Alg θð Þð ÞΔμ1 θð Þ +
ð
Ω1

ð
Ω2

ζ θð Þ l θ, ηð Þ
L θð Þ Θ

� g ηð Þ − Alg θð Þj jð ÞΔμ1 θð ÞΔμ2 ηð Þ
≤
ð
Ω2

υ ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ,
ð28Þ

is available for all Δμ2-integrable function g : Ω2 ⟶ℝ ≥ 0,
and Alg is defined by

Algð Þ θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þg ηð ÞΔμ2 ηð Þ, θ ∈Ω1: ð29Þ

In [13], Saker et al. obtained the following refined Jen-
sen’s inequality for superquadratic

Θ

Ð
Ω2
l θ, ηð Þg ηð ÞΔμ2 ηð ÞÐ
Ω2
l θ, ηð ÞΔμ2 ηð Þ

 !

≤
ð
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l θ, ηð ÞÐ
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l θ, ηð ÞΔμ2 ηð Þ Θ g ηð Þð Þ½

−Θ g ηð Þ − Alg θð Þj jð Þ�Δμ2 ηð Þ,

ð30Þ

and in the same paper, he employed the above result to derive
the following inequality of Hardy type:

ð
Ω1

ζ θð ÞΘλ Alg θð Þð ÞΔμ1 θð Þ + λ
ð
Ω1

ð
Ω2

ζ θð Þ

� l θ, ηð Þ
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 !λ

,

ð31Þ
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where

υ ηð Þ≔
ð
Ω1

ζ θð Þ l θ, ηð Þ
L θð Þ

� �λ

Δμ1 θð Þ
 !1/λ

<∞, μ ∈Ω2,

ð32Þ

λ ≥ 1, ζ : Ω1 ⟶ℝ ≥ 0, and l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such
that lðθ, :Þ is a Δμ2-integrable function for θ ∈Ω2 and L
: Ω1 ⟶ℝ is defined by (26), Θ : ½0,∞Þ⟶ℝ ≥ 0 is a
superquadratic function, and Alg is defined by (29).

Another development of Hardy-type inequality (28) has
been made by Bibi [14] and Fabelurin [15] as follows. If
ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2, μ2Þ are two time-scale measure
spaces, ζ : Ω1 ⟶ℝ ≥ 0 and l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such that
lðθ, :Þ are a Δμ2-integrable function for θ ∈Ω2, L : Ω1 ⟶ℝ
is defined by (26) and Θ ∈ CðKm,ℝÞ is a superquadratic
function, then

ð
Ω1

ξ θð ÞΘ Algð Þ θð Þð ÞΔμ1 θð Þ +
ð
Ω1

ð
Ω2

ξ θð Þ

� l θ, ηð Þ
L θð Þ Θ g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ

≤
ð
Ω2

υ ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ,

ð33Þ

is available for all Δμ2-integrable functions g : Ω2 ⟶ℝm

such that gðΩ2Þ ⊂ Km, where Alg : Ω1 ⟶ℝ is defined by

Algð Þ θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þg ηð ÞΔμ2 ηð Þ, θ ∈Ω1: ð34Þ

For developing of dynamic inequalities on time scale cal-
culus, we refer the reader to the articles [16–26].

Motivated by the above results, our major aim in this
paper is to deduce few nouveau general Hardy-type inequal-
ities for multivariate superquadratic functions that involve
more general kernels on arbitrary time scales.

The paper is governed as follows: We remember some
basic notions, definitions, and results of multivariate super-
quadratic functions on time scales in Preliminaries. In
Inequalities with General Kernel, we obtain the extensions
to the general kernel of Hardy-type inequality. In Inequalities
with Specific Time Scales, we extend the latest results from
Inequalities with General Kernel to several specific time
scales. In Inequalities with Specific Time Scales, we discuss
several particular cases of Hardy-type inequality by choosing
such special kernels. In Inequalities with Specific Kernels, we
derive enhanced forms of certain well-knownHardy-Hilbert-
type inequalities.

2. Preliminaries

In this section, we will present some fundamental concepts
and effects to integrals of time scales and for multivariate
superquadratic functions which will be useful to deduce our

major results. Let ℝm be the Euclidean space, θ≔ ðθ1, θ2,
⋯, θmÞ ∈ℝm, η≔ ðη1, η2,⋯, ηmÞ ∈ℝm, and gðtÞ≔ ðg1ðtÞ,
g2ðtÞ,⋯, gmðtÞÞ be the function defined on θ ⊂ℝm.
Throughout this supplement, we utilize the following
notations:

θ:η≔ θ1η1, θ2η2,⋯, θmηmð Þ,
θj j≔ θ1j j, θ2j j,⋯, θmj jð Þ and

θ, ηh i≔ 〠
m

i=1
θiηi:

ð35Þ

Also, θ ≤ ηðθ < ηÞ means that θi ≤ ηiðθi < ηiÞ, ∀1 ≤ i ≤m,
and 0≔ ð0, 0,⋯, 0Þ is the null vector. The subsets Km and
K+

m in ℝm are defined by

Km ≔ 0,∞½ Þm ≔ θ ∈ℝm : 0 ≤ θf g,
K+

m ≔ 0,∞½ Þm ≔ θ ∈ℝm : 0 < θf g:
ð36Þ

Now, we arraign the definition and few essential proper-
ties of superquadratic functions that premised in [27].

Definition 1. A function Θ : Km ⟶ℝ is named a superqua-
dratic function if ∀θ ∈ Km, ∃cðθÞ ∈ℝm such that

Θ ηð Þ −Θ θð Þ −Θ η − θj jð Þ ≥ c θð Þ, η − θh i, ∀η ∈ Km: ð37Þ

If −Θ is a superquadratic, then Θ is a subquadratic, and
the reverse inequality of (37) is available.

In the following, we recall a couple of beneficial examples
of a superquadratic function.

Example 1. By [2], Example 1, the power function
Θ : ½0,∞Þ⟶ℝ, defined by ΘðθÞ≔ θp, is called a super-
quadratic if p ≥ 2 and a subquadratic if 1 < p ≤ 2 (it is also
readily seen that if 0 < p ≤ 1 then θp is a subquadratic
function). Since the sum of superquadratic functions is
also superquadratic, then

Θ θð Þ≔ 〠
m

i=1
θpi , ð38Þ

is a superquadratic on Km for each p ≥ 2.

Example 2 ([2], Examples 4, 5, and 6,). By utilizing the same
argument as in Example 1, the functions Θ1,Θ2,Θ3 : Km
⟶ℝ defined as
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Θ1 θð Þ≔ 〠
m

i=1
θi cosh θi − sinh θið Þ,

Θ2 θð Þ≔ ln 1 + 〠
m

i=1
θi

 !
− 〠

m

i=1
θi,

Θ3 θð Þ≔
〠
m

i=1,i≠j
θ2i ln θi, if θi > 0, θ j = 0,

0, if θ = 0,

8><
>:

ð39Þ

are superquadratic.

The following lemma shows that nonnegative superqua-
dratic functions are indeed convex functions.

Lemma 2. Suppose that Θ is a superquadratic with cðθÞ
≔ ðc1ðθÞ, c2ðθÞ,⋯, cnðθÞÞ as in Definition 1. Then

(i) Θð0Þ ≤ 0 and cið0Þ ≤ 0∀1 ≤ i ≤m

(ii) If Θð0Þ≔ 0 and ∇Θð0Þ≔ 0, then ciðθÞ≔ ∂igðθÞ,
whenever ∂igðθÞ exists for some index 1 ≤ i ≤m at θ
∈ Km

(iii) If Θ ≥ 0, then Θ is convex and Θð0Þ≔ 0 and ∇Θð0Þ
≔ 0.

In the following, we recall the inequality of Minkowski
and the inequality of Jensen for superquadratic functions
on time scales which are utilized in the proof of the essential
results. The following definitions and theorems are referred
from [28, 29]. Let T i, 1 ≤ i ≤m be time scales, and

Λm ≔ T 1 × T 2 ×⋯ × Tm

≔ t = t1, t2,⋯, tmð Þ: ti ∈ T i, 1 ≤ i ≤mf g, ð40Þ

is called an m-dimensional time scale. Consider E to be Δ
-measurable subplot of Λm and g : E⟶ℝ a Δ-measurable
function; then, the corresponding Δ-integral named
Lebesgue Δ-integral is denoted by

ð
E
g t1, t2,⋯, tmð ÞΔ1t1 ⋯ Δmtm,ð

E
g tð ÞΔt,

ð
E
gdμΔor

ð
E
g tð ÞdμΔ tð Þ,

ð41Þ

where μΔ is a σ-additive Lebesgue Δ-measure on Λm. Also, if
gðtÞ≔ ðg1ðtÞ, g2ðtÞ,⋯, gmðtÞÞ is an m-tuple of functions
such that g1, g2,⋯, gm are Lebesgue Δ-integrable on E, thenÐ
EgdμΔ denotes the m-tuple:

ð
E
g1dμΔ,⋯,

ð
E
gmdμΔ

� �
, ð42Þ

i.e., Δ-integral acts on each component of g.

Lemma 3. Assume ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2, μ2Þ are two
time-scale measure spaces, and suppose that u ≥ 0, υ ≥ 0 and
g ≥ 0 on Ω1,Ω2 and Ω1 ×Ω2, respectively. If q ≥ 1, then

ð
Ω1

ð
Ω2

g θ, ηð Þυ ηð Þdμ2 ηð Þ
 !q

u θð Þdμ1 θð Þ
 !1/q

≤
ð
Ω2

ð
Ω1

gq θ, ηð Þu θð Þdμ1 θð Þ
 !

υ ηð Þdμ2 ηð Þ,
ð43Þ

is available provided all integrals in (43) exist. If 0 < q < 1
and

ð
Ω1

ð
Ω2

gυdμ2

 !q

udμ1 > 0, 
ð
Ω2

gυdμ2 > 0, ð44Þ

is available, then (43) is reversed. For q < 0, in addition
with (44), if

ð
Ω1

gqudμ1 > 0, ð45Þ

is available, then the sign of (43) is reversed.

Theorem 4 ([14], Theorem 3.1). Assume ðΩ1, Σ1, μ1Þ and
ðΩ2, Σ2, μ2Þ are two finite-dimensional time-scale measure
spaces. Let Θ ∈ CðKm,ℝÞ ≥ 0 be continuous and superqua-
dratic, l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such that lðθ, :Þ is Δμ2-integra-
ble for θ ∈Ω2. Then, the inequality

Θ

Ð
Ω2
l θ, ηð Þg ηð ÞΔμ2 ηð ÞÐ
Ω2
l θ, ηð ÞΔμ2 ηð Þ

 !
≤

Ð
Ω2
l θ, ηð Þ Θ g ηð Þð Þ −Θ g ηð Þ − 1/

Ð
Ω2
l θ, ηð ÞΔμ2 ηð ÞÐΩ2

l θ, ηð Þg ηð ÞΔμ2 ηð Þ
��� ���� �� �

Δμ2 ηð ÞÐ
Ω2
l θ, ηð ÞΔμ2 ηð Þ , ð46Þ
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holds for all functions g such that gðEÞ ⊂ Km. IfΘ is a subqua-
dratic, then (46) is reversed.

3. Inequalities with General Kernel

In this section, we get the Hardy inequality for several
variables via multivariate superquadratic functions. Before
presenting the results, we labeled the following hypothesis.

(A1) ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2, μ2Þ are two time-scale
measure spaces with positive σ-finite measures

(A2) l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such that

L θð Þ≔
ð
Ω2

l θ, ηð ÞΔμ2 ηð Þ <∞, θ ∈Ω1: ð47Þ

(A3) ξ : Ω1 ⟶ℝ is Δμ1-integrable, and the function ω
is defined by

ω ηð Þ≔
ð
Ω1

ξ θð Þ l θ, ηð Þ
L θð Þ

� �λ

Δμ1 θð Þ
 !1/λ

<∞, η ∈Ω2,

ð48Þ

where λ ≥ 1.

Theorem 5. Assume (A1)–(A3) are satisfied. If Θ ∈ CðKm,
ℝÞ ≥ 0 and is superquadratic, then

ð
Ω1

ξ θð ÞΘλ Algð Þ θð Þð ÞΔμ1 θð Þ + λ
ð
Ω1

ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ

�Θλ−1 Akgð Þ θð Þð ÞΘ g ηð Þ − A1g θð Þj jð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

,

ð49Þ

is available for g : Ω2 ⟶ℝm that is a nonnegative Δμ2
-integrable function such that gðΩ2Þ ⊂ Km and Alg : Ω1
⟶ℝ defined by

Algð Þ θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þg ηð ÞΔμ2 ηð Þ, θ ∈Ω1: ð50Þ

If Θ is subquadratic and 0 < λ < 1, then (49) is reversed.

Proof. We begin with an explicit identity

Θ Algð Þ θð Þð Þ≔Θ
1

L θð Þ
ð
Ω2

l θ, ηð Þg ηð ÞΔμ2 ηð Þ
 !

: ð51Þ

By applying the refined Jensen inequality (46) on (51), we
find

Θ Algð Þ θð Þð Þ + 1
L θð Þ

ð
Ω2

l θ, ηð ÞΘ g ηð Þ − Alg θð Þj jð ÞΔμ2 ηð Þ

≤
1

L θð Þ
ð
Ω2

l θ, ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ:

ð52Þ

Then, since λ ≥ 1 and Θ ≥ 0, we get

Θ Algð Þ θð Þð Þ + 1
L θð Þ

ð
Ω2

l θ, ηð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ
 !λ

≤
1

L θð Þ
ð
Ω2

l θ, ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

:

ð53Þ

Furthermost, by utilizing the famous inequality of
Bernoulli, it ensues that the L. H. S. of (53) became

Θ Algð Þ θð Þð Þ + 1
L θð Þ

ð
Ω2

l θ, ηð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ
 !λ

≤Θλ Algð Þ θð Þð Þ + λ
Θλ−1 Algð Þ θð Þð Þ

L θð Þ
ð
Ω2

l θ, ηð ÞΘ

� g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ,
ð54Þ

that is, we get

Θλ Algð Þ θð Þð Þ + λ
Θλ−1 Algð Þ θð Þð Þ

L θð Þ
ð
Ω2

l θ, ηð ÞΘ

� g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ

≤
1

L θð Þ
ð
Ω2

l θ, ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

:

ð55Þ

Multiplying (55) by ξðθÞ and integrating it over Ω1 with
respect to Δμ1ðθÞ, we have
ð
Ω1

ξ θð ÞΘλ Algð Þ θð Þð ÞΔμ1 θð Þ + λ
ð
Ω1

ξ θð Þ

� 1
L θð Þ

ð
Ω1

l θ, ηð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ
 !

Δμ1 θð Þ

≤
ð
Ω1

ξ θð Þ 1
L θð Þ

ð
Ω1

l θ, ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

Δμ1 θð Þ:

ð56Þ

Applying the inequality of Minkowski on the R. H. S. of
(56), we get
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ð
Ω1

ξ θð ÞΘ 1
L θð Þ

ð
Ω2
l θ, ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ

� �λ

Δμ1 θð Þ

≤
ð
Ω2

Θ g ηð Þð Þ
ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ

� �λ

Δμ1 θð Þ
 !1/λ

Δμ2 ηð Þ
0
@

1
A

λ

:

ð57Þ

Finally, substituting (57) into (56) and utilizing the defi-
nition (48) of the weight function ω, we get

ð
Ω1

ξ θð ÞΘλ Algð Þ θð Þð ÞΔμ1 θð Þ + λ
ð
Ω1

ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ Θλ−1

� Algð Þ θð Þð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔμ1 θð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

,

ð58Þ

which is (49). If Θ is subquadratic and 0 < λ < 1, the corre-
sponding results can be obtained similarly.

Remark 6. If λ = 1 andm = 1 in Theorem 5, then (49) reduces
to (28) premised in Introduction.

Remark 7. For the Lebesgue scale measures Δμ1ðθÞ = Δθ, Δ
μ2ðηÞ and m = 1, Theorem 5 coincides with Theorem 2.1.1
in [30].

Remark 8. As a special case of Theorem 5 when T =ℝ and
m = 1, we have the inequality (19).

Corollary 9. Given that ξ and ðAlgÞðθÞ are as in Theorem 5
and ω ≥ 0, then, since Θ ≥ 0 and superquadratic, the second
term on the L. H. S. of (49) is nonnegative and the integral
inequality

ð
Ω1

ξ θð ÞΘλ Algð Þ θð Þð ÞΔμ1 θð Þ ≤
ð
Ω2
ω ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ

� �λ

,

ð59Þ

is valid.

Remark 10. By taking λ = 1 in Corollary 9, inequality (59)
reduces to (25).

Remark 11. For the Lebesgue scale measures Δμ1ðθÞ = Δθ, Δ
μ2ðηÞ = Δη and m = 1, Corollary 9 coincides with Corollary
2.1.2 in [30].

Remark 12. Rewrite (49) with λ = qp−1 ≥ 1 such that 0 < p ≤
q <∞ or −∞ < p ≤ q < 0; then
ð
Ω1

ξ θð ÞΘq/p Algð Þ θð Þð ÞΔμ1 θð Þ + q
p

ð
Ω1

ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ Θq/p−1

� Algð Þ θð Þð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔμ1 θð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !q/p

:

ð60Þ

Remark 13. Form = 1, inequality (60) coincides with inequal-
ity (3.13) in ([28], Remark 3.5).

Remark 14. In Remark 12, since Θ ≥ 0, then the second term
on the L. H. S. of (60) is nonnegative. Hence, (60) reduces to

ð
Ω1

ξ θð ÞΘq/p Algð Þ θð Þð ÞΔμ1 θð Þ

≤
ð
Ω2

ω ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !q/p

,
ð61Þ

which is a refinement of the Hardy-type inequality in ([27],
Remark 2.1.4) and [6].

In the following, we labeled some specific superquadratic
functions starting with power functions.

Theorem 15. Assume (A1)–(A3) are satisfied. If gi : Ω2 ⟶
ℝð1 ≤ i ≤mÞ are Δμ2-integrable functions such that giðΩ2Þ
⊂ ½0,∞Þ, then the inequality

ð
Ω1

ξ θð Þ 〠
m

i=1
Algið Þp θð Þ

 !r

Δμ1 θð Þ + λ
ð
Ω1

ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ

� 〠
m

i=1
Akgið Þp θð Þ

 !λ−1

〠
m

i=1
gi ηð Þ − Algið Þ θð Þp�� �� !

� Δμ1 θð ÞΔμ2 ηð Þ ≤
ð
Ω2

ω ηð Þ 〠
m

i=1
gi ηð Þð Þp

 !
Δμ2 ηð Þ

 !λ

,

ð62Þ

is valid, where p ≥ 2 and

Algið Þ θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þgi ηð ÞΔμ2 ηð Þ, θ ∈Ω1: ð63Þ

If 0 < λ < 1 and 1 < p ≤ 2, then (62) is reversed.

Proof. We get the result from Theorem 5 by putting

Θ θð Þ≔ 〠
m

i=1
θpi , ð64Þ

in (49).
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Remark 16. For m = 1, Theorem 15 reduces to Corollary 3.1
in [13]. In particular, for p = 1 and λ = 1, Theorem 15 reduces
to Remark 3.11 in [13].

Remark 17. For the Lebesgue scale measures Δμ1ðθÞ = Δθ, Δ
μ2ðηÞ = Δη and m = 1. Theorem 15 coincides with Corollary
2.1.5 in [30].

Theorem 18. Assume (A1)–(A3) are satisfied. If gi : Ω2 ⟶
ℝð1 ≤ i ≤mÞ are Δμ2-integrable functions such that giðΩ2Þ
⊂ ½0,∞Þ, then the inequality

ð
Ω1

ξ θð Þ 〠
m

i=1
exp Aigið Þ θð Þ − Aigið Þ θð Þ − 1ð Þ

 !λ

Δμ1 θð Þ + I

≤
ð
Ω2

ω ηð Þ 〠
m

i=1
gi ηð Þ − log gi ηð Þ − 1ð Þ

 !
Δμ2 ηð Þ

 !λ

,

ð65Þ

is valid, where

I ≔ λ
ð
Ω1

ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ

 
〠
m

i=1
exp log gi ηð Þjð

− Algið Þ θð Þj − log gi ηð Þ − Algið Þ θð Þj j − 1Þ
!

× 〠
m

i=1
exp Algið Þ θð Þ − Algið Þ θð Þ − 1ð Þ

 !λ−1

Δμ1 θð ÞΔμ2 ηð Þ,

ð66Þ

and

Algið Þ θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þ log gi ηð ÞΔμ2 ηð Þ, θ ∈Ω1: ð67Þ

If 0 < λ < 1, then (65) is reversed.

Proof. We get the result from Theorem 5 by putting

Θ θð Þ≔ 〠
m

i=1
exp θið Þ − θi − 1ð Þ, ð68Þ

in (49) and with log gðηÞ instead of gðηÞ.

Remark 19. By taking m = 1 in Theorem 18, inequality (65)
reduces to inequality 3.16 in [28], Corollary 3.2.

Remark 20. For m = 1 and λ = 1, the relation (65) that is
regarded as a generalization and a refinement of the
Pólya-Knopp’s inequality which coincided with Remark
3.12 in [13].

Theorem 21. Assume (A1)–(A3) are satisfied. If gi : Ω2 ⟶
ℝð1 ≤ i ≤mÞ are Δμ2-integrable functions such that giðΩ2Þ
⊂ ½0,∞Þ, then the inequality

ð
Ω1

〠
m

i=1
Aigið Þ θð Þ cosh Aigið Þ θð Þ − sinh Aigið Þ θð Þ½ �λ

� ξ θð ÞΔμ1 θð Þ + λ
ð
Ω1

ð
Ω2
ξ θð Þ l θ, ηð Þ

L θð Þ

� 〠
m

i=1
Aigið Þ θð Þ cosh Aigið Þ θð Þ − sinh Aigið Þ θð Þ½ �

 !λ−1

× 〠
m

i=1
gi ηð Þ − Aigið Þ θð Þj j cosh gi ηð Þ − Aigið Þ θð Þj jð Þ½

− sinh gi ηð Þ − Aigið Þ θð Þj jð Þ�Δμ1 θð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð Þ〠
m

i=1
gi ηð Þ − cosh gi ηð Þð Þ − sinh gi ηð Þð Þ½ �Δμ2 ηð Þð Þ

 !λ

,

ð69Þ

is valid, where Algi is defined as in (63). If 0 < λ < 1, then (69)
is reversed.

Proof. We get the result from Theorem 5 by putting

Θ θð Þ≔ 〠
m

i=1
θi cosh θi − sinh θið Þ, ð70Þ

in (49).

Remark 22. For λ = 1, Theorem 21 reduces to Theorem 2.5 in
[14]. In particular, form = 1 and λ = 1, Theorem 21 coincides
with Corollary 2.6 in [14].

Theorem 23. Assume (A1)–(A3) are satisfied.
Ifgi : Ω2 ⟶ℝð1 ≤ i ≤mÞ are Δμ2-integrable functions such
that giðΩ2Þ ⊂ ½0,∞Þ, then the inequality.

ð
Ω1

ξ θð Þ ln 1 + 〠
m

i=1
Aigið Þ θð Þ

 !
− 〠

m

i=1
Aigið Þ θð Þ

 !λ

Δμ1 θð Þ

+ λ
ð
Ω1

ð
Ω1

ξ θð Þ l θ, ηð Þ
L θð Þ

 
ln 1 + 〠

m

i=1
Aigið Þ θð Þ

 !

− 〠
m

i=1
Aigið Þ θð Þ

!λ−1

× ln 1 + 〠
m

i=1
gi ηð ÞAigi θð Þj j

 ! 

− 〠
m

i=1
gi ηð ÞAigi θð Þj j

!λ

Δμ1 θð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð Þ ln 1 + 〠
m

i=1
gi ηð Þ

 !
− 〠

m

i=1
gi ηð Þ

 !
Δμ2 ηð Þ

 !λ

,

ð71Þ

is valid, where Algi is defined as in (63). If 0 < λ < 1, then (71)
is reversed.

8 Journal of Function Spaces



Proof. We get the result from Theorem 5 by putting

Θ θð Þ≔ 〠
m

i=1
θ2i ln θi, ð72Þ

in (49) with the assumption 0 ln 0 = 0.

Remark 24. For λ = 1, Theorem 23 reduces to Theorem 2.7 in
[14]. In particular, form = 1 and λ = 1, Theorem 23 coincides
with Corollary 2.8 in [14].

Theorem 25. Assume (A1)–(A3) are satisfied. If gi : Ω2 ⟶
ℝð1 ≤ i ≤mÞ are Δμ2-integrable functions such that giðΩ2Þ
⊂ ½0,∞Þ, then the inequality

ð
Ω1

ξ θð Þ ln 1 + 〠
m

i=1
Aigið Þ θð Þ

 !
− 〠

m

i=1
Aigið Þ θð Þ

 !λ

Δμ1 θð Þ

+ λ
ð
Ω1

ð
Ω1

ξ θð Þ l θ, ηð Þ
L θð Þ

 
ln 1 + 〠

m

i=1
Aigið Þ θð Þ

 !

− 〠
m

i=1
Aigið Þ θð Þ

!λ−1

×
 
ln 1 + 〠

m

i=1
gi ηð ÞAigi θð Þj j

 !

− 〠
m

i=1
gi ηð ÞAigi θð Þj j

!λ

Δμ1 θð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð Þ ln 1 + 〠
m

i=1
gi ηð Þ

 !
− 〠

m

i=1
gi ηð Þ

 !
Δμ2 ηð Þ

 !λ

,

ð73Þ

is valid, where Algi is defined as in (63). If 0 < λ < 1, then (73)
is reversed.

Proof. We get the result from Theorem 5 by taking

Θ θð Þ≔ ln 1 + 〠
m

i=1
θi

 !
− 〠

m

i=1
θi, ð74Þ

in (49).

Remark 26. For λ = 1, Theorem 25 reduces to Theorem 2.9 in
[14]. In particular, form = 1 and λ = 1, Theorem 25 coincides
with Corollary 2.10 in [14].

Now, to wrap up this section, we consider yet another
implementation of Theorem 5 rigged with finite measure
spaces.

Corollary 27. Let the supposition of Theorem 5 be satisfied
and denote

Ð
Ω1
Δμ1ðθÞ = jΩ1j and

Ð
Ω2
Δμ2ðθÞ = jΩ2j such that

jΩ1j, jΩ2j <∞: setting lðθ, ηÞ and ξðθÞ = 1. Then, LðθÞ = Ð
Ω2

Δμ2ðθÞ = jΩ2j and

ω ηð Þ≔
ð
Ω1

1
Ω2j j

� �λ

Δμ1 θð Þ
 !1/λ

= 1

Ω2j jλ
ð
Ω1

Δμ1 θð Þ
 !1/λ

= Ω1j j1/λ
Ω2j j :

ð75Þ

Hence, the following inequality

ð
Ω1

Θ
1
Ω2j j

ð
Ω2

g ηð ÞΔμ2 ηð Þ
 !λ

Δμ1 θð Þ

+ λ

Ω2j j
ð
Ω1

ð
Ω2

Θ
1
Ω2j j

ð
Ω2

g ηð ÞΔμ2 ηð Þ
 !λ−1

×Θ g ηð Þ − 1
Ω2j j

ð
Ω2

g ηð ÞΔμ2 ηð Þ
�����

�����
 !

Δμ1 θð ÞΔμ2 ηð Þ

≤
Ω1j j
Ω2j j

ð
Ω2

Θ g ηð Þð ÞΔμ2 ηð Þ
 !λ

,

ð76Þ

is valid. If Θ is subquadratic and 0 < λ < 1, then (76) is
reversed.

Remark 28. By taking m = 1 in Corollary 27, inequality (76)
reduces to inequality 3.19 in [28], Corollary 3.2.

Remark 29. For the Lebesgue scale measures Δμ1ðθÞ = Δθ, Δ
μ2ðηÞ = Δη and m = 1, Corollary 27 coincides with Corollary
2.1.6 in [30].

Remark 30. For T =ℝ,m = 1, and λ = 1, Corollary 27 reduces
to Corollary 3.3 in [8].

4. Inequalities with Specific Time Scales

In this section, by selecting few different time scales, we get
some consequential inequalities. More precisely, assume 0
≤ α < β ≤∞ are points in T and S1 ≔ fðθ, ηÞ ∈ T : 0 ≤ α < η
≤ θ < βg. Applying Theorem 5 to Ω2 =Ω2 = ½α, βÞT , Δμ1ðθÞ
= Δθ, and Δμ2ðηÞ = Δη, we get the following conclusion.

Theorem 31. Assume 0 ≤ α < β ≤∞ and l : ½α, βÞT × ½α, βÞT
⟶ℝ ≥ 0 such as LðθÞ≔ Ð θ

α
kðθ, ηÞΔη <∞, θ ∈ ½α, βÞT

Suppose that ξðθÞ: ½α, βÞT ⟶ℝ and

ω ηð Þ≔
ðβ
η

ξ θð Þ l θ, ηð Þ
L θð Þ

� �λ

Δθ

 !1/λ

<∞, η ∈ α, β½ ÞT , ð77Þ
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where λ ≥ 1. If Θ ∈ CðKm,ℝÞ ≥ 0 and is superquadratic, then

ðβ
α

ξ θð ÞΘλ Algð Þ θð Þð ÞΔθ + λ
ðβ
α

ðθ
α

ξ θð Þ l θ, ηð Þ
L θð Þ Θλ−1

� Algð Þ θð Þð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔθΔη

≤
ðβ
α

ω ηð ÞΘ g ηð Þð ÞΔη
� �λ

,

ð78Þ

is available for all nonnegative integrable functions g
: ½α, βÞT ⟶ℝm and for Alg : ½α, βÞT ⟶ℝ defined as

Algð Þ θð Þ≔ 1
L θð Þ

ðθ
α

l θ, ηð Þg ηð ÞΔη, θ ∈ α, β½ ÞT : ð79Þ

If 0 < λ < 1 and Θ are subquadratic, then (78) is reversed.

Remark 32. By taking m = 1 and replacing ξðθÞ, ωðηÞ, and
lðθ, ηÞ, respectively, ξðθÞ/ðθ − αÞ, ωðηÞ/ðη − αÞ, and lχS1

ðθ, ηÞ
where χS1

denotes the characteristic function over S1 in The-
orem 31, inequality (78) reduces to inequality 4.1 in [28],
Theorem 4.1.

On the other hand, for 0 ≤ α < β ≤∞, consider the set

S2 ≔ θ, ηð Þ ∈ T : β < θ ≤ η <∞f g: ð80Þ

Then, putting Ω1 =Ω2 = ½β,∞ÞT where T is a time scale,
Δμ1ðθÞ = Δθ and Δμ2ðηÞ = Δη. We obtain a dual form of
Theorem 31 as follows.

Theorem 33. Suppose that 0 ≤ β <∞~ξðθÞ : ½β,∞ÞT ⟶ℝ
≥ 0 and ~l : ½β,∞ÞT × ½β,∞ÞT × ½β,∞ÞT ⟶ℝ ≥ 0 such that

~L θð Þ≔
ð∞
θ

~l θ, ηð ÞΔη <∞, θ ∈ β,∞½ ÞT ,

~ω ηð Þ≔
ðη
β

~ξ θð Þ
~l θ, ηð Þ
L θð Þ

 !λ

Δθ

0
@

1
A

1/λ

<∞, η ∈ β,∞½ ÞT ,

ð81Þ

where λ ≥ 1. If Θ ∈ CðKmℝÞ ≥ 0 and superquadratic, then

ð∞
β

~ξ θð ÞΘλ Algð Þ θð Þð ÞΔθ + λ
ð∞
β

ð∞
θ

~ξ θð Þ
~l θ, ηð Þ
L θð Þ Θλ−1

� ~Alg
� �

θð Þ
� �

Θ g ηð Þ − Algð Þ θð Þj jð ÞΔθΔη

≤
ð∞
β

~ω ηð ÞΘ g ηð Þð ÞΔη
 !

,

ð82Þ

is available for all nonnegative Δη -integrable functions
g : ½β,∞ÞT ⟶ℝm and for the operator ~Alg : ½β,∞ÞT ⟶
ℝ defined by

~Alg
� �

θð Þ≔ 1
~L θð Þ

ð∞
θ

~l θ, ηð Þg ηð ÞΔη, θ ∈ β,∞½ ÞT : ð83Þ

If Θ is subquadratic and 0 < λ < 1, then (82) is reversed.

Remark 34. By taking m = 1 and replacing ~ξðθÞ, ~ωðηÞ, and
~lðθ, ηÞ, respectively, by ~ξðθÞ/ðθ − αÞ, ~ωðηÞ/ðη − αÞ, and
~lχS2

ðθ, ηÞ where χS2 denotes the characteristic function over

S2 in Theorem 33; inequality (82) reduces to inequality 4.7
in [28], Theorem 4.2.

5. Inequalities with Specific Kernels

In this section, we find some consequential inequalities of the
Hardy type by selecting specific kernels and weight functions.

Corollary 35. Suppose that the assumptions of Theorem 31
are satisfied only with

l θ, ηð Þ≔ 0, if α ≤ η ≤ σ θð Þ ≤ β: ð84Þ

Define

L θð Þ≔
ðσ θð Þ

α

l θ, ηð ÞΔη > 0, θ ∈ α, β½ ÞT : ð85Þ

If Θ ∈ CðKm,ℝÞ ≥ 0 and is superquadratic, then (78) is
available for all nonnegative Δη-integrable functions g
: ½α, βÞT ⟶ℝm defined as

Algð Þ θð Þ≔ 1
L θð Þ

ðσ
α

l θ, ηð Þg ηð ÞΔη, θ ∈ α, β½ ÞT : ð86Þ

If Θ is subquadratic and 0 < λ < 1, then (78) is reversed.

Corollary 36. Assume that the assumptions of Theorem 31 is
satisfied only with

l θ, ηð Þ≔ 0, if α ≤ σ θð Þ ≤ η ≤ β: ð87Þ

Define

L θð Þ≔
ðβ
σ θð Þ

l θ, ηð ÞΔη > 0, θ ∈ α, β½ ÞT : ð88Þ

If Θ ∈ CðKm,ℝÞ ≥ 0 and is superquadratic, then (78) is
available for all nonnegative integrable functions g : ½α, βÞT
⟶ℝm

Algð Þ θð Þ≔ 1
L θð Þ

ðβ
σ θð Þ

l θ, ηð Þg ηð ÞΔη, θ ∈ α, β½ ÞT : ð89Þ

If Θ is subquadratic and 0 < λ < 1, then (78) is reversed.
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Corollary 37. Assume that the assumptions of Theorem 31 is
satisfied only with l : ½α, βÞT × ½α, βÞT ⟶ℝ defined as

l θ, ηð Þ≔
1, if 0 ≤ α ≤ η < σ θð Þ ≤ β,
0, otherwise,

(
ð90Þ

and ξðθÞ: ½α, βÞT ⟶ℝ; then LðθÞ≔ Ð σðθÞ
α

lðθ, ηÞΔη = σðθÞ
− α, θ ∈ ½α, βÞT , and AlgðθÞ in this case is the classical Hardy
and denoted by

Hgð Þ θð Þ≔ 1
σ θð Þ − α

ðσ θð Þ

α

g ηð ÞΔη, θ ∈ α, β½ ÞT : ð91Þ

If we let

ω ηð Þ≔
ðβ
η

ξ θð Þ 1
σ θð Þ − α

� �λ

Δθ

 !
<∞, η ∈ α, β½ ÞT ,

ð92Þ

where λ ≥ 1, then (78) became

ðβ
α

ξ θð ÞΘλ 1
σ θð Þ − α

ðσ θð Þ

α

g ηð ÞΔη
� �

Δθ

+ λ
ðβ
α

ðβ
η

Θλ−1 1
σ θð Þ − α

ðσ θð Þ

α

g ηð ÞΔη
� �

Θ

� g ηð Þ − 1
σ θð Þ − α

ðσ θð Þ

α

g ηð ÞΔη
����

����
� �

ξ θð Þ
σ θð Þ − α

ΔθΔη

≤
ðβ
α

ω ηð ÞΘ g ηð Þð ÞΔη
� �

:

ð93Þ

If Θ is subquadratic and 0 < λ < 1, then (93) is reversed.

Remark 38. For m = 1 and replacing ξðθÞ, ωðηÞ by ξðθÞ/ðθ
− αÞ and ωðηÞ/ðη − αÞ in (93), Corollary 37 coincides with
Example 4.1 in [13].

Remark 39. By taking T =ℝ, α = 0, and replacing ξðθÞ, ωðηÞ
by ξðθÞ/θ andωðηÞ/η in (93), we have

ðβ
0
ξ θð ÞΘλ θ−1

ðθ
0
g ηð Þdη

� �
dθ
θ

+ λ
ðβ
0

ðβ
η

Θλ−1 1
θ

ðθ
0
g ηð Þdη

� �
Θ

� g ηð Þ − 1
θ

ðθ
0
g ηð Þdη

����
����

� �
ξ θð Þ
θ2

dθdη

≤
ðβ
0
ω ηð ÞΘ g ηð Þð Þ dη

η

� �λ

,

ð94Þ

where

ω ηð Þ≔ η
ðβ
η

ξ θð Þ 1
θ

� �λ dθ
θ

 !1/λ

, η ∈ 0, β½ Þ: ð95Þ

If Θ is subquadratic and 0 < λ < 1, then (94) is reversed,
which is a refinement of 4.6 in [28], Remark 4.2.

Corollary 40. In Corollary 37, if α = 0 and ξðθÞ = 1/θ, then
(93) reduces to

ðβ
0
Θλ 1

σ θð Þ
ðθ
0
g ηð Þdη

� �
dθ
θ

+ λ
ðβ
0

ðβ
η

Θλ−1 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

� �
Θ

� g ηð Þ − 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

����
����

� �
1

θσ θð ÞΔθΔη

≤
ðβ
0
ω ηð ÞΘ g ηð Þð ÞΔη

� �λ

,

ð96Þ

where

ω ηð Þ≔
ðβ
η

1
σ θð Þ
� �λ Δθ

θ

 !1/λ

<∞, η ∈ α, β½ ÞT : ð97Þ

Furthermore, if β =∞, then (96) becomes

ð∞
0
Θλ 1

σ θð Þ
ðσ θð Þ

0
g ηð ÞΔη

� �
Δθ

θ

+ λ
ð∞
0

ð∞
η

Θλ−1 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

� �
Θ

� g ηð Þ − 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

����
����

� �
1

θσ θð ÞΔθΔη

≤
ð∞
0
ω ηð ÞΘ g ηð Þð ÞΔη

� �λ

,

ð98Þ

where

ω ηð Þ≔
ð∞
η

1
σ θð Þ
� �λ Δθ

θ

 !1/λ

<∞, η ∈ α,∞½ ÞT : ð99Þ

Remark 41. For λ = 1, inequality (96) reduces to
ðβ
0
Θ

1
σ θð Þ

ðθ
0
g ηð ÞΔη

� �
Δθ

θ
+
ðβ
0

ðβ
η

Θ

� g ηð Þ − 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

����
����

� � 1
θσ θð ÞΔθΔη

≤
ðβ
0
ω ηð ÞΘ g ηð Þð ÞΔη,

ð100Þ
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where

ω ηð Þ≔
ðβ
η

Δθ

θσ θð Þ
� �

= 1
η
−
1
β

� �
, η ∈ α, β½ ÞT , ð101Þ

while inequality (98) reduces to

ð∞
0
Θ

1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

� �
Δθ

θ
+
ð∞
0

ð∞
η

Θ

� g ηð Þ − 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

����
����

� � 1
θσ θð ÞΔθΔη

≤
ð∞
0
Θ g ηð Þð ÞΔη

η
:

ð102Þ

Example 3. Considering Theorem 33 with l : ½β,∞ÞT ×
½β,∞ÞT ⟶ℝ defined by

l θ, ηð Þ≔
1/ησ ηð Þif η ≥ θ

0, otherwise,

(
ð103Þ

and ξðθÞ: ½β,∞ÞT ⟶ℝ ≥ 0, then

L θð Þ≔
ð∞
θ

l θ, ηð ÞΔη =
ð∞
θ

1
ησ ηð Þ = −

ð∞
θ

1
η

� �Δ

Δη

= 1
θ
, θ ∈ β,∞½ ÞT :

ð104Þ

The operator AlgðθÞ is defined as

Algð Þ θð Þ≔ θ
ð∞
θ

1
ησ ηð Þg ηð ÞΔη, θ ∈ β,∞½ ÞT , ð105Þ

and if we let

ω ηð Þ≔
ðβ
η

θ−1
θ

ησ ηð Þ
� �λ

Δθ

 !1/λ

<∞, η ∈ β,∞½ ÞT , ð106Þ

where λ ≥ 1, then (82) became

ð∞
0
Θλ θ

ð∞
θ

1
ησ ηð Þg ηð ÞΔη

� �
Δθ

θ

+ λ
ð∞
β

ð∞
θ

Θλ−1 θ
ð∞
θ

1
ησ ηð Þg ηð ÞΔη

� �
Θ

� g ηð Þ − θ
ð∞
0

1
ησ ηð Þg ηð ÞΔη

����
����

� � 1
ησ ηð ÞΔθΔη

≤
ð∞
β

ω ηð ÞΘ g ηð Þð ÞΔη
 !λ

:

ð107Þ

If Θ is subquadratic and 0 < λ < 1, then (107) is reversed.

Remark 42. For λ = 1, inequality (107) reduces to
ð∞
β

Θ θ
ð∞
β

1
ησ ηð Þg ηð ÞΔη

 !
Δθ

θ
+ λ
ð∞
β

ð∞
θ

Θ

� g ηð Þ − θ
ð∞
0

1
ησ ηð Þg ηð ÞΔη

����
����

� � 1
ησ ηð ÞΔθΔη

≤
ð∞
β

ω ηð ÞΘ g ηð Þð ÞΔη,

ð108Þ

where

ω ηð Þ≔ 1
ησ ηð Þ

ðβ
η

Δθ = 1
ησ ηð Þ β − ηð Þ: ð109Þ

6. Some Particular Cases

In this section, we obtain a popularization and a refinement
of the classical inequality of the Hardy-Hilbert type (16) for
numerous variables on time scales. It is clarified in the result
below.

Theorem 43. Assume that the assumptions of Theorem 31 are
satisfied only with Ω1 =Ω2 = ½0,∞ÞT , p > 1, λ > 0 and replace
Δμ1ðθÞ and Δμ2ðηÞ by the Lebesgue scale measure Δθ and Δη.

Furthermore, define

L1 θð Þ≔
ð∞
0

θ/ηð Þ−1/p
θ + η

Δη and L2 ηð Þ

≔
ð∞
0

θ/η1− 1/pð Þ

θ + η

 !λ

Δθ

0
@

1
A

1/λ

:

ð110Þ

If λ ≥ 1 and p ≥ 2, then

ð∞
0

L1 θð Þð Þλ 1−pð Þ
ð∞
0

g ηð Þ
θ + η

Δη

� �λp

Δθ

+ λ
ð∞
0

ð∞
0
η−1/pL1

λ−1ð Þ 1−pð Þ θð Þ
ð∞
0

g ηð Þ
θ + η

Δη

� �p λ−1ð Þ

× g ηð Þη1/p − 1
L1 θð Þ

ð∞
0

g ηð Þ
θ + η

Δη

����
����
p θ

1
p−1

θ + η
ΔθΔη

≤
ð∞
0
L2 ηð Þg ηð ÞΔη

� �λ

,

ð111Þ

is available for all nonnegative integrable Δη-integrable func-
tions g : ½α, βÞT ⟶ℝm. If 0 < λ < 1, then (111) is reversed.

Proof. Utilizing ξðθÞ≔ ðL1ðθÞ/θÞλ and

l θ, ηð Þ≔
η
θ

� �−1/p
θ + η

, if θ ≠ 0, η ≠ 0, θ + η ≠ 0

0, otherwise,

8><
>: ð112Þ
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in Theorem 15, we obtain

L θð Þ≔
ð∞
0

η
θ

� �−1/p
θ + η

Δη = L1 θð Þ,

ω ηð Þ≔
ð∞
0
ξ θð Þ l θ, ηð Þ

L θð Þ
� �λ

Δθ

 !
≔

ð∞
0

L1 θð Þ
θ

� �λ l θ, ηð Þ
L θð Þ

� �λ

Δθ

 !1

λ

≔
ð∞
0

l θ, ηð Þ
θ

� �λ

Δθ

 !1

λ

≔ η−1
ð∞
0

η
θ

� �1−1/p
θ + η

 !λ

Δθ

0
@

1
A

1

λ

≔
1
η

ð∞
0

η
θ

� �1−1/p
θ + η

 !λ

Δθ

0
@

1
A

1

λ

L2 ηð Þ
η

,

ð113Þ

and the operator ðAlgÞðθÞ in this case is defined as

Algð Þ θð Þ≔ 1
L1 θð Þ

ð∞
0

η
θ

� �−1/p
θ + η

g ηð ÞΔη: ð114Þ

Utilizing ðAlgÞðθÞ in (62), we obtain

ð∞
0

L1 θð Þ
θ

� �λ 1
L1 θð Þ

ð∞
0

η
θ

� �−1/p
θ + η

g ηð ÞΔη
 !λp

Δθ

+ λ
ð∞
0

ð∞
0

L1 θð Þ
θ

� �λ η
θ

� �−1/p
θ + ηð ÞL1 θð Þ

 !
1

L1 θð Þ
ð∞
0

η
θ

� �−1/p
θ + η

g ηð ÞΔη
 !p λ−1ð Þ

× g ηð Þ − 1
L1 θð Þ

ð∞
0

η
θ

� �−1/p
θ + η

g ηð ÞΔη
�����

�����
p

ΔθΔη

≤
ð∞
0

K2 ηð Þ
η

gp ηð ÞΔη
� �λ

:

ð115Þ

Hence,

ð∞
0

L1 θð Þð Þλ 1−pð Þ
ð∞
0

g ηð Þη−1/p
θ + η

Δη

� �λp

Δθ

+ λ
ð∞
0

ð∞
0
L1

λ−1ð Þ 1−pð Þ θð Þ
ð∞
0

g ηð Þη−1
p

θ + η
Δη

 !p λ−1ð Þ

× g ηð Þ − 1
L1 θð Þ

1
θ

� �ð∞
0

g ηð Þη−p−1
θ + η

Δη

�����
�����
p

η−p
−1

θ + η

 !
θ−1
� �1−p−1

ΔθΔη

≤
ð∞
0

K2 ηð Þ
η

gp ηð ÞΔη
� �λ

:

ð116Þ

Finally, replacing gðηÞ by gðηÞη1/p in (116), we get (111).
The cases 0 < λ < 1 and 1 < p ≤ 2 are proved in the same way.

Remark 44. For m = 1, Theorem 43 reduces to Theorem 5.1
in [13]. In particular, for λ = 1, Theorem 43 is a refinement
of Theorem 5.5 in [10].

Remark 45. By taking T =ℝ, λ = 1, and p ≥ 2, in Theorem 43
and utilizing the known fact that

ð∞
0

η
θ

� �−1/p
θ + η

dη =
ð∞
0

η
θ

� �1−1/p
θ + η

dθ = π

sin π
p

� � , ð117Þ

then (111) becomes

ð∞
0

ð∞
0

g ηð Þ
θ + η

dη
� �p

dθ + π

sin πp−1ð Þ
� �p−1ð∞

0

ð∞
0
η−p

−1

� g ηð Þηp−1 − sin πp−1
� �
π

θp
−1
ð∞
0

g ηð Þ
θ + η

dη
����

����
p
θp−1−1

θ + η
dθdη

≤
π

sin πp−1ð Þ
� �pð∞

0
gp ηð Þdη,

ð118Þ

which is a refinement of (16). For m = 1, (118) has been
established in [3], Corollary 3.2.

In the following theorem, we introduce a generalized
form of (111) on time scales.

Theorem 46. Suppose that λ > 0, p > 1 and s, δ ∈ℝ. Further-
more, assume

ð∞
0

θδ η/θð Þ s−2/pð Þ+1

θ + ηð Þs
 !λ

Δθ

2
4

3
5
1/λ

and L1 θð Þ

≔
ð∞
0

ηθ−1
� �s−2/p

θ + ηð Þs Δη,

ð119Þ

where λ ≥ 1 and p ≥ 2; then

ð∞
0

L1 θð Þð Þλ 1−pð Þθλ δ−s+1ð Þ
ð∞
0

g ηð Þ
θ + ηð Þs Δη

� �pλ

+ λ
ð∞
0

ð∞
0
η2−sp L1

λ−1ð Þ 1−pð Þ θð Þ
ð∞
0

g ηð Þ
θ + ηð Þs Δη

� �p λ−1ð Þ

× g ηð Þη2−sp −
1

L1 θð Þ θ
2−s
p

ð∞
0

g ηð Þ
θ + ηð Þs Δη

����
����
p

� θ
pλ+ s−2ð Þ 1+pλ−pð Þ/p

θ + ηð Þs ΔθΔη ≤
ð∞
0
L2 ηð Þgp ηð ÞΔη

� �λ

,

ð120Þ

is available for all nonnegative integrable functions
g : ½α, βÞT ⟶ℝm. If 0 < λ < 1 and 1 < p ≤ 2, then (120) is
reversed.

Proof. Rewrite (62) in Theorem 15 with Ω1 =Ω2 = ½0,∞ÞT ,
Δμ1ðθÞ = Δθ, and Δμ2ðηÞ = Δη. Let us define ξðθÞ≔
ðL1ðθÞθδ−1Þ

λ
and
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l θ, ηð Þ≔
η
θ

� �s−2/p
θ + ηð Þs , if θ ≠ 0, η ≠ 0, θ + η ≠ 0

0, otherwise:

8><
>: ð121Þ

We have

L θð Þ≔
ð∞
0

η
θ

� �s−2/p
θ + ηð Þs Δη = L1 θð Þ,

ω ηð Þ≔
ð∞
0
ξ θð Þ l θ, ηð Þ

L θð Þ Δθ

� �λ−1
≔

ð∞
0

L1 θð Þθδ
θ

l θ, ηð Þ
L1 θð Þ Δθ

 !λ−1

≔
ð∞
0

L1 θð Þθδ
θ

l θ, ηð Þ
L1 θð Þ Δθ

 !λ−1

≔
1
η

ð∞
0

θδ η
θ

� �s−2
P

θ θ + ηð Þs g ηð ÞΔθ
 !λ−1

≔
1
η

ð∞
0

θδ
η
θ

� �s−2
P +1

θ + ηð Þs
 !λ

Δθ

0
@

1
A

λ−1

≔
L2 ηð Þ
η

,

ð122Þ

and the operator ðAlgÞðθÞ in this case is defined as

Algð Þ θð Þ≔ 1
L1 θð Þ

ð∞
θ

η
θ

� �s−2/p
θ + ηð Þs g ηð ÞΔη: ð123Þ

Now, substituting L, ω and ðAlgÞðθÞ in (62), we get

ð∞
0

L1 θð Þθδ−1
� �λ 1

L1 θð Þs
ð∞
0

η
θ

� �s−2/p
θ + ηð Þs g ηð ÞΔθ

 !pλ

Δθ

+ λ
ð∞
0

ð∞
0

L1 θð Þθδ−1
� �λ η

θ

� �s−2/p
θ + ηð ÞsL1 θð Þ

 !
1

L1 θð Þ
ð∞
0

η
θ

� �s−2/p
θ + ηð Þs g ηð ÞΔθ

 !p λ−1ð Þ

× g ηð Þ − 1
L1 θð Þ

ð∞
0

η
θ

� �s−2/p
θ + ηð Þs g ηð ÞΔη

�����
�����
p

ΔθΔη

≤
ð∞
0

L2 ηð Þ
η

gp ηð ÞΔη
� �λ

:

ð124Þ

Hence,

ð∞
0

L1 θð Þð Þλ 1−pð Þθδλ
1
θ

� �λ s−1ð Þ ð∞
0

g ηð Þs−2/p
θ + ηð Þs Δη

 !pλ

+ λ
ð∞
0

ð∞
0
L1

λ−1ð Þ 1−pð Þ θð Þ
ð∞
0

g ηð Þs−2/p
θ + ηð Þs Δη

 !p λ−1ð Þ

× g ηð Þ − 1
L1 θð Þ θ

s−2
p

ð∞
0

ηð Þs−2/pg ηð Þ
θ + ηð Þs Δη

�����
�����
p

ηð Þs−2p

θ + ηð Þs
 !

� 1
θ

� �
θpλ+ s−2ð Þ 1+pλ−pð Þ/p

θ + ηð Þs ΔθΔη ≤
ð∞
0
L2 ηð Þgp ηð ÞΔη

� �λ

:

ð125Þ

Finally, considering (125) with gðηÞηð2−s/pÞ instead of
gðηÞ, we obtain (120). The cases 0 < λ < 1 and 1 < p ≤ 2 are
proved in the same way.

Remark 47. For m = 1, Theorem 46 coincides with Theorem
5.2 in [13].

Remark 48. Clearly, for p > 1, δ = 0, and s = 1, Theorem 46
reduces to Theorem 43.

7. Conclusion and Future Work

The study of dynamic inequalities on time scales has a lot of
scope. This research article is devoted to some general
Hardy-type dynamic inequalities and their converses on time
scales. Inequalities are considered in rather general forms
and contain several special integral inequalities. In particular,
our findings can be seen as refinements of some recent results
closely linked to the time-scale inequalities of the classical
Hardy, Pólya-Knopp, and Hardy-Hilbert. We use some alge-
braic inequalities such as the Minkowski inequality, the
refined Jensen inequality and the Bernoulli inequality on
time scales to prove the essential results in this paper. The
performance of the superquadratic method for functions is
reliable and effective to obtain new dynamic inequalities on
time scales. This method has more advantages: it is direct
and concise. Thus, the proposed method can be extended to
some forms for Hardy’s and related dynamic inequalities in
mathematical and physical sciences. Our computed out-
comes can be very useful as a starting point to get some con-
tinuous inequalities, especially from the obtained dynamic
inequalities. In the future, we will get some discrete inequal-
ities from the main results. Also, we will suppose that gðtÞ
≔ ðg1ðtÞ,⋯, gðtÞÞ is an m-tuple of functions and t = ðt1, t2
,⋯, tnÞ is n-tuple of variables to get the general forms of
Hardy’s and related inequalities on time scales. Similarly, in
the future, we can present such inequalities by using
Riemann-Liouville-type fractional integrals and fractional
derivatives on time scales. It will also be very interesting to
present such inequalities on quantum calculus.
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