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-e purpose of this article is to study the uniqueness of meromorphic functions on annuli. Under a certain condition about
deficiencies, we prove some new uniqueness theorems of meromorphic functions on the annulus A � z: (1/R0)< |z|<R0 ,
where 1<R0 ≤ +∞.

1. Introduction and Main Results

In this article, we assume that the readers are familiar with
the classical notations and definitions of Nevanlinna theory
(refer to [1, 2]). -e main purpose of this article is to study
the uniqueness of meromorphic functions on annuli. For the
necessary concepts and notations of the Nevanlinna theory
of meromorphic functions on annuli, such as T0(r, f),

m0(r, f), andN0(r, f), refer to the excellent summariza-
tions [3–11].

Let a be a value in the extended complex plane C, and let
f andg be two meromorphic functions on the annulus
A � z: (1/R0)< |z|<R0 , where 1<R0 ≤ +∞. -en, we say
that f and g share a IM (ignoring multiplicities) when f − a

and g − a have the same zeros, and furthermore, we say that
f and g share a CM (counting multiplicities) when f − a

and g − a have the same zeros with the same multiplicities.
As mentioned in [3, 4], the reduced counting function
N0(r, 1/(f − a)) is defined by


1

1/r

n1(t, (1/(f − a)))

t
dt + 

r

1

n2(t, (1/(f − a)))

t
dt, (1)

where n1(t, 1/(f − a)) and n2(t, 1/(f − a)) are the functions
counting (counting only once) the zeros of f − a in
z: t< |z|≤ 1{ } and z: 1< |z|≤ t{ }, respectively. Similarly, we
denote by N

E

0 (r, a) (N
D

0 (r, a)) the reduced counting
function of common zeros (different zeros) of f − a and g −

a on A, where N
D

0 (r, a) � N0(r, 1/(f − a)) + N0(r, 1/
(g − a)) − 2N

E

0 (r, a). It is obvious that f and g share a IM on
A if N

D

0 (r, a) � 0. Following the definitions in [2], we say
that f and g share a “IM” if N

D

0 (r, a) � o(T0(r, f)) +

o(T0(r, g)), and we say that f and g share a “CM” if
N0(r, 1/(f − a)) + N0(r, 1/(g − a)) − 2N

C

0 (r, a) � o(T0(r,

f)) + o(T0(r, g)), in which N
C

0 (r, a) denotes the reduced
counting function of common zeros with the same multi-
plicities of f − a and g − a.

For a nonconstant meromorphic function f on the an-
nulus A, it is named as a transcendental meromorphic
function on A provided that

lim sup
r⟶∞

T0(r, f)

log r
�∞, 1< r<R0 � +∞,

or lim sup
r⟶R0

T0(r, f)

− log R0 − r( 
�∞, 1< r<R0 < +∞,

(2)

respectively. In fact, the transcendental meromorphic
functions are also known as admissible meromorphic
functions. If f is a transcendental meromorphic function on
A, then we have S(r, f) � o(T0(r, f)) for all 1< r<R0
except for a set Δr such that Δr

rλ− 1dr< +∞ or a set Δr
′ such

that Δr
′dr/((R0 − r)λ+1)< +∞, respectively.

-ere existed many famous results about the uniqueness
theory of meromorphic functions sharing values. In 1926,
Nevanlinna [12] proved the celebrated five-value theorem.
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Theorem 1. Let f and g be two nonconstant meromorphic
functions in C, and let ai(i � 1, 2, 3, 4, 5) be five distinct
values in C. If f and g share the values ai IM for i � 1, 2, 3, 4, 5
in C, then f ≡ g.

Since that time, a series of results emerged in large
numbers, which discussed and generalized the five-value
theorem (-eroem 1). For the main results about the
generalizations of -eroem 1 in simply connected regions,
we can refer to [7, 13–16]. For instance, Zheng [15, 16] and
Fang [13] obtained the generalization of the five-value
theorem in an angular domain and in the unit disc, re-
spectively. For the generalizations on multiply-connected
regions, we can refer to [5, 17, 18].

Recently, Cao et al. [17, 18] proved the following five-
value theorem on annuli (the case of R0 � +∞ was derived
from [5] by Kondratyuk and Laine).

Theorem 2. Let f and g be two transcendental meromorphic
functions on the annulus A � z: (1/R0)< |z|<R0 , where
1<R0 ≤ +∞. Let ai (i � 1, 2, 3, 4, 5) be five distinct values in
C. If f and g share the values ai IM for i � 1, 2, 3, 4, 5 on A,
then f ≡ g.

From the very point of sharing small functions, we
studied above theorems in [19] and provided the following
uniqueness theorem of meromorphic functions sharing four
small functions on annuli.

Theorem 3. Let f and g be two transcendental meromorphic
functions on the annulus A � z: (1/R0)< |z|<R0 , where
1<R0 ≤ +∞. Let ai ≡ ai(z)(i � 1, 2, 3, 4) be four distinct
small functions with respect to f and g on A. If f and g share
ai(i � 1, 2, 3, 4) IM and



4

i�1

N0 r, ai( ≠ S(r, f), (3)

then f ≡ g, where N0(r, ai) is the reduced counting function
which counts the multiple common zeros of f − ai and g − ai

on A.

In this article, we mainly investigate whether -eroem 2
holds if f and g dissatisfy the condition of sharing values.
From the very point of deficiencies, we deal with this
question and propose the following uniqueness theorem
without conditions of sharing values. -is theorem gener-
alizes -eroem 2.

Theorem 4. Let f and g be two transcendental meromorphic
functions on the annulus A � z: (1/R0)< |z|<R0 , where
1<R0 ≤ +∞, and let ai(i � 1, 2, 3, 4, 5) be five distinct
complex numbers in C. 'en, we have f ≡ g provided that



5

i�1
δD
0 ai( >

14
3

, (4)

where the deficiencies δD
0 (ai) are defined as

1 − lim sup
r⟶∞

N
D

0 r, ai( 

T0(r, f) + T0(r, g)
, (5)

when R0 � +∞, or

1 − lim sup
r⟶R0

N
D

0 r, ai( 

T0(r, f) + T0(r, g)
, (6)

when R0 < +∞, respectively.

In special, if f and g share ai(i � 1, 2, 3, 4, 5) “IM,” then it
is obvious that 

5
i�1δ

D
0 (ai) � 5, which satisfies the condition



5

i�1
δD
0 ai( >

14
3

, (7)

of -eroem 4. In view of the discussion above, we deduce a
corollary as follows. -is corollary partly improves -eroem
2 in the sense that IM is replaced with “IM.”

Corollary 1. Let f and g be two transcendental meromorphic
functions on the annulus A � z: (1/R0)< |z|<R0 , where
1<R0 ≤ +∞, and let ai(i � 1, 2, 3, 4, 5) be five distinct
complex numbers in C. If f and g share ai(i � 1, 2, 3, 4, 5)

“IM,” then f ≡ g.

2. Some Lemmas

In this section, we will give some necessary lemmas, where
the third lemma is motivated by the ideas of [20–22].

Lemma 1 (see [4], -eroem 1). Let f be a nonconstant
meromorphic function on the annulus A � z: (1/R0)<

|z|<R0}, where R0 ≤ +∞, and let λ≥ 0. 'en,

(i) If R0 � +∞, then m0(r, f′/f) � O(log(rT0(r, f)))

for R ∈ (1,∞) except for a set Δr such that
Δr

rλ− 1dr < +∞.
(ii) If R0 < +∞, then m0(r, f′/f) � O(log(T0(r,

f)/R0 − r)) for r ∈ (1, R0) except for a set Δr
′ such that

Δr
′dr/((R0 − r)λ+1)< +∞.

Lemma 2 (see [18], -eorem 2.3). Let f be a nonconstant
meromorphic function on the annulus A � z: (1/R0)< |z|<

R0}, where 1<R0 ≤ +∞. Let a1, a2, . . . , aq be q distinct
complex numbers in the extended complex plane C. 'en,

(q − 2)T0(r, f)< 

q

j�1
N0 r,

1
f − aj

  + S(r, f). (8)

Inspired by the ideas of [20–22], we propose the fol-
lowing lemma and give the proof.

Lemma 3. Let f and g be two transcendental meromorphic
functions on A � z: (1/R0)< |z|<R0 , where 1<R0 ≤ +∞,

and let ai(i � 1, 2, 3, 4, 5) be five distinct complex numbers in
C∪ ∞{ }. If f ≡ g, then
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N
E

0 r, ai( ≤ 
5

j�1,j≠i
N

D

0 r, aj  + S(r, f) + S(r, g), (9)

where N
E

0(r, ai) (N
D

0 (r, ai)) is the reduced counting function
of the common (different) zeros of f − ai and g − ai on A

(i � 1, 2, 3, 4, 5).

Proof. Without loss of generality, we suppose that a1 � 0,
a2 � 1, a3 �∞, a4 � a, and a5 � b, in which a, b are two
distinct complex numbers such that a, b≠ 0, 1,∞. Other-
wise, a Möbius transformation as

f − a1

f − a3

a2 − a3

a2 − a1
, (10)

will be done. -en, set

h � h1 − h2, (11)

where

h1 �
(f − g)f′g′

f(f − 1)g(g − 1)(g − a)
,

h2 �
(f − g)f′g′

g(g − 1)f(f − 1)(f − a)
.

(12)

Noting that h1 can be expressed by

f′
f − 1

g′
ag

+
g′

a(a − 1)(g − a)
−

g′
(a − 1)(g − 1)

  +
1

a − 1
f′
f

−
f′

f − 1
 

g′
g − a

−
g′

g − 1
 . (13)

By Lemma 1, we have m0(r, h1) � S(r, f) + S(r, g).
Similarly, we get m0(r, h2) � S(r, f) + S(r, g), and thus,

m0(r, h) � S(r, f) + S(r, g), (14)

holds.
Next, we will estimate the counting function N0(r, h). A

simple computation yields

h � (f − g)
2 f′g′
f(f − 1)(f − a)g(g − 1)(g − a)

. (15)

-en, it is easy to see that the poles of h only come from
the zeros of f, g, f − 1, g − 1, f − a, andg − a and the poles
of f andg onA. Now, let z0 be a common zero of f and g on
A with multiplicity p and q, respectively. Without loss of
generality, assume that p≥ q. -en, it follows that z0 is a zero
of (f − g)2 with multiplicity at least 2q and that z0 is a pole
of

f′g′
f(f − 1)(f − a)g(g − 1)(g − a)

, (16)

with multiplicity 2. We consequently know that z0 is not a
pole of h, and hence the poles of h cannot occur at the
common zeros of f and g. By similar methods, we can
conclude that the poles of h cannot occur at the common
zeros of f − 1 and g − 1, the common zeros of f − a and
g − a, and the common poles of f and g, so the poles of h only
come from the different zeros of f, g, f − 1, g − 1,

f − a, andg − a and the different poles of f andg on A. In
order to analyze these different zeros and different poles, we
distinguish the following distinct cases.

Case 1: let z1 be a zero of f which is not a zero of g.
-en, by using the equation (15), we find that z1 is a
pole of h with multiplicity at most 1 if g(z1)≠ 1,∞, a;

otherwise, z1 is a pole of h with multiplicity at most 2.
Case 2: let z2 be a zero of f − 1, which is not a zero of
g − 1. It is clear that z2 is a pole of h with multiplicity at

most 1 if g(z2)≠ 0,∞, a; otherwise, z2 is a pole of h
with multiplicity at most 2.
Case 3: let z3 be a pole of f, which is not a pole of g. It is
clear that z2 is a pole of h with multiplicity at most 1 if
g(z3)≠ 0, 1, a; otherwise, z3 is a pole of h with mul-
tiplicity at most 2.
Case 4: let z4 be a zero of f − a, which is not a zero of
g − a. It is clear that z4 is a pole of h with multiplicity at
most 1 if g(z4)≠ 0, 1,∞; otherwise, z4 is a pole of h
with multiplicity at most 2.
Case 5: let z5 be a zero of g, which is not a zero of f. It is
clear that z5 is a pole of h with multiplicity at most 1 if
f(z5)≠ 1,∞, a; otherwise, z5 is a pole of h with
multiplicity at most 2.
Case 6: let z6 be a zero of g − 1, which is not a zero of
f − 1. It is clear that z6 is a pole of h with multiplicity at
most 1 if f(z6)≠ 0,∞, a; otherwise, z6 is a pole of h
with multiplicity at most 2.
Case 7: let z7 be a pole of g, which is not a pole of f. It is
clear that z7 is a pole of h with multiplicity at most 1 if
f(z7)≠ 0, 1, a; otherwise, z7 is a pole of h with mul-
tiplicity at most 2.
Case 8: let z8 be a zero of g − a, which is not a zero of
f − a. It is clear that z8 is a pole of h with multiplicity at
most 1 if f(z8)≠ 0, 1,∞; otherwise, z8 is a pole of h
with multiplicity at most 2.

In view of these cases, we obtain

N0(r, h)≤N
D

0 (r, 0) + N
D

0 (r, 1) + N
D

0 (r,∞) + N
D

0 (r, a),

(17)

which means

N0(r, h)≤ 
4

i�1
N

D

0 r, ai( . (18)

Combining (14) with (18), we get
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T0(r, h)≤ 
4

i�1
N

D

0 r, ai(  + S(r, f) + S(r, g). (19)

If h ≡ 0, then h1 ≡ h2. -is implies that f ≡ g, which is
impossible, so h ≡ 0 holds. Furthermore, it follows from (15)
that the common zeros of f − b and g − b must be the zeros
of h. -is implies that

N
E

0(r, b)≤N0 r,
1
h

 ≤T0(r, h), (20)

which further implies that

N
E

0 r, a5( ≤ 
4

i�1
N

D

0 r, ai(  + S(r, f) + S(r, g), (21)

combined with (19). Similarly, we can derive other
inequations as

N
E

0 r, ai( ≤ 

5

j�1,j≠i
N

D

0 r, aj  + S(r, f)

+ S(r, g), (i � 1, 2, 3, 4).

(22)

-erefore, we have proved Lemma 3. □

3. The Proof of Theorem 4

On the contrary, we suppose that f ≡ g, and then it follows
from Lemma 3 that

N
E

0 r, ai( ≤ 

5

j�1,j≠i
N

D

0 r, aj  + S(r, f) + S(r, g), (23)

for i � 1, 2, 3, 4, 5. -us, noting that

N0 r,
1

f − ai

  + N0 r,
1

g − ai

  � 2N
E

0 r, ai(  + N
D

0 r, ai( ,

(24)

we know

N0 r,
1

f − ai

  + N0 r,
1

g − ai

 

≤N
D

0 r, ai(  + 
5

j�1,j≠i
2N

D

0 r, aj  + S(r, f) + S(r, g).

(25)

-is yields that

N0 r,
1

f − ai

  + N0 r,
1

g − ai

 

≤ 
5

j�1
2N

D

0 r, aj  − N
D

0 r, ai(  + S(r, f) + S(r, g),

(26)

for i � 1, 2, 3, 4, 5, which further yields that



5

i�1
N0 r,

1
f − ai

  + 
5

i�1
N0 r,

1
g − ai

 

≤ 9
5

i�1
N

D

0 r, ai(  + S(r, f) + S(r, g).

(27)

On the other hand, by utilizing Lemma 2, we find

3T0(r, f)< 

5

i�1
N0 r,

1
f − ai

  + S(r, f),

3T0(r, g)< 
5

i�1
N0 r,

1
g − ai

  + S(r, f).

(28)

-erefore, it follows from (27) that

3T0(r, f) + 3T0(r, g)≤ 9
5

i�1
N

D

0 r, ai(  + S(r, f) + S(r, g),

(29)

which means

1
3
≤ 

5

i�1

N
D

0 r, ai( 

T0(r, f) + T0(r, g)
+

S(r, f) + S(r, g)

T0(r, f) + T0(r, g)
. (30)

Consequently, from (30), we have



5

i�1
δD
0 aj ≤

14
3

, (31)

which is a contradiction. Hence, the proof is completed.
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