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In this paper, we will consider the generalized sextic functional equation ∑7
i=0 7Cið−1Þ7−i f ðx + iyÞ = 0: And by applying the fixed

point theorem in the sense of Cadariu and Radu, we will discuss the stability of the solutions for this functional equation.

1. Introduction

In 1940, Ulam [1] remarked the problem concerning the sta-
bility of group homomorphisms. In 1941, Hyers [2] gave an
answer to this question for additive mappings between
Banach spaces. Subsequently, many mathematicians came
to deal with this question (cf. [3–10]). Let V and W be real
vector spaces, X be a real normed space, Y be a real Banach
space, n ∈ℕ (the set of natural numbers), and f : V ⟶W
be a given mapping. Consider the functional equation

〠
n

i=0
nCi −1ð Þn−i f ix + yð Þ − n!f xð Þ = 0, ð1Þ

for every x, y ∈ V , where nCi = n!/i!ðn − iÞ!. The func-
tional equation (1) is called an n-monomial functional equa-
tion, and every solution of the functional equation (1) is
called to be a monomial mapping of degree n. The function
f : ℝ⟶ℝ given by

f xð Þ = axn, ð2Þ

is a particular solution of the functional equation (1). In
particular, the functional equation (1) is called a sextic func-
tional equation for the case n = 6, and every solution of the
functional equation (1) is called to be a sextic mapping for

the case n = 6. Many mathematicians [11–17] have previ-
ously investigated the stability of the sextic functional
equation, and many authors [18–26] have studied the stabil-
ity of the n-monomial functional equation in various spaces.

The solution of the functional equation

〠
n

i=0
nCi −1ð Þn−i f x + iyð Þ = 0, ð3Þ

is called a generalized polynomial mapping of degree n
∈ℕ (See Baker [27]). The function f : ℝ⟶ℝ given by

f xð Þ = ∑
n

i=0
aix

i,

is a particular solution of the functional equation (3). Some
mathematicians [28–31] have previously investigated the sta-
bility of the functional equation (3) for the cases n = 4, 5, 6, 7.
In particular, the functional equation

〠
7

i=0
7Ci −1ð Þ7−i f x + iyð Þ = 0, ð4Þ

is called a general sextic functional equation, and every solu-
tion of the functional equation (4) is said to be the general
sextic mapping.
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In this paper, we will partially generalize the results in
[31] for the stability of the general sextic functional equation.
For the details, one can refer Corollary 4 and Corollary 7
which are special cases of main theorems. Specifically, in this
paper, we will show that there is only one solution F of the
general sextic functional equation (4) near the function f ,
which approximates the functional equation (4) by using
fixed point theorem [32–35]. Moreover, the solution map-
ping F of the functional equation (4) can be explicitly con-
structed by the formula

F xð Þ = lim
n→∞

〠
n

i=0
nCi〠

i

j=0
iCj

�
−84ð Þn−i1344i

4096n f e 223n−i− j x
� �

+ −42ð Þi−j336j
512n f o 23n−i−jx

� ��
, ð�Þ

or

F xð Þ = lim
n→∞

〠
n

i=0
nCi〠

i

j=0
iCj

�
42j −336ð Þi−j512n−i f o

x

23n−i−j
� �

+ 84j −1344ð Þi−j4096n−i f e
x

23n−i−j
� ��

, ð��Þ

which approximates the mapping f .

2. Main Results

We first recall the following Margolis and Diaz fixed point
theorem, which is necessary to obtain the main results of this
paper.

Proposition 1 (see [36]). Suppose ðX, dÞ is a complete gener-
alized metric space, which means that the metric d may
assume infinite values, and J : X⟶ X is a strictly contractive
mapping with the Lipschitz constant 0 < L < 1. Then, for each
given element x ∈ X, either

d Jnx, Jn+1x
� �

= +∞ for all n ∈ℕ ∪ 0f g, ð5Þ

or there exists an integer k ≥ 0 such that:

(i) dðJnx, Jn+1xÞ < +∞ for all n ≥ k

(ii) The sequence fJnxg converge to a fixed point y∗ of J

(iii) y∗ is a unique fixed point of J in Y = fy ∈ X : dðJk
x, yÞ<+∞g

(iv) dðy, y∗Þ ≤ 1/ð1 − LÞdðy, JyÞ for every y ∈ Y
In this paper, we let V andW be real vector spaces, X be a

real normed space, and Y be a real Banach space. For a map-
ping g : V ⟶W, we use the following abbreviations

ge xð Þ = g xð Þ + g −xð Þ
2

,

go xð Þ = g xð Þ − g −xð Þ
2

,

Dg x, yð Þ = 〠
7

i=0
7Ci −1ð Þ7−ig x + iyð Þ,

for every x, y ∈ V .

Now, we will see useful lemma for the proof of main
theorem.

Lemma 2. Let θ be a real constant such that 0 < θ < π/4 and
cos ð3θÞ = −17/ð21 ffiffiffiffiffi

21
p Þ. Let φ : V2 ⟶ ½0,∞Þ be a function

for which there exists a constant 0 < L < 1 such that

φ 2x, 2yð Þ ≤ 4
ffiffiffiffiffi
21

p
cos θ − 14

� �
Lφ x, yð Þ, ð6Þ

for all x, y ∈ V . Then, 1 < 4
ffiffiffiffiffi
21

p
cos θ − 14 < 2,

4
ffiffiffiffiffi
21

p
cos θ − 14

� �3
+ 42 4

ffiffiffiffiffi
21

p
cos θ − 14

� �2
+ 336 4

ffiffiffiffiffi
21

p
cos θ − 14

� �
512

= 1,

ð7Þ

and the equality

lim
n→∞

1
512n

〠
n

i=0
nCi 〠

i

j=0
iCj42

i−j336 jφe 23n−i−jx, 23n−i−jy
� � !

= 0,

ð8Þ

holds for all x, y ∈ V .

Proof. When 0 < θ < π/4 and cos 3θ = −17/ð21 ffiffiffiffiffi
21

p Þ, it is not
difficult to see that 1:74837 < 3θ < 1:7484 and 0:83493 < cos
θ < 0:834925 in the trigonometric function table. So 1:3 < 4ffiffiffiffiffi
21

p
cos θ − 14 < 1:4.

We can also obtain the equality (7) by the following cal-
culation:

336 4
ffiffiffiffiffi
21

p
cos θ − 14

� �
512 +

42 4
ffiffiffiffiffi
21

p
cos θ − 14

� �
512

2

+
4
ffiffiffiffiffi
21

p
cos θ − 14

� �
512

3

= 1344
ffiffiffiffiffi
21

p
cos θ − 4704
512 + 14112 cos2θ − 4704

ffiffiffiffiffi
21

p
cos θ + 8232

512

+ 1344
ffiffiffiffiffi
21

p
cos3θ − 14112 cos2θ + 2352

ffiffiffiffiffi
21

p
cos θ − 2744

512

= 336
ffiffiffiffiffi
21

p
4 cos3θ − 3 cos θ
� �

+ 784
512

= 336
ffiffiffiffiffi
21

p
cos 3θ + 784
512

=
336

ffiffiffiffiffi
21

p
× −17/ 21

ffiffiffiffiffi
21

p� �� �
+ 784

512 = 1: ð9Þ
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And, to obtain the equality (8), by (7), we obtain the fol-
lowing calculation:

In the following main theorem, we will prove the general-
ized Hyers-Ulam stability of the functional equation (4) by
using the direct method.

Theorem 3. Let θ, L, and φ be as in Lemma 2. If f : V ⟶ Y
is a mapping satisfying f ð0Þ = 0 and the inequality

Df x, yð Þk k ≤ φ x, yð Þ, for all x, y ∈ V , ð11Þ

then there exists the unique solution mapping F : V ⟶ Y
of (4) such that

f xð Þ − F xð Þk k ≤ Φ xð Þ
1 − L

, ð12Þ

for all x ∈ V , where

Φ xð Þ = 9φe −6x, 2xð Þ + 56φe −x, xð Þ + 392φe −2x, xð Þ + 1008φe −3x, xð Þ
4096

:

In particular, F is represented by

F xð Þ = lim
n→∞

〠
n

i=0
〠
i

j=0
nCiiCj

−84ð Þi−j1344j
4096n

f e 23n−i−jx
� � 

+ −42ð Þi−j336 j
512n

f o 23n−i−jx
� �!

,

ð13Þ

for all x ∈ V .

Proof.We let the set S be the set of the functions g : V ⟶ Y
with gð0Þ = 0. And we define a generalized metric on Sby

d g, hð Þ = inf K ∈ R+j g xð Þ − h xð Þk k ≤ KΦ xð Þ for all x ∈ Vf g:

Then, it is not so difficult to show that ðS, dÞ is a complete
generalized metric space (see ([34], Theorem 2.5) or the
proof of ([37], Theorem 3.1)). Next, we see the mapping
J : S⟶ S, which is defined by

Jg xð Þ = 4032g 2xð Þ
8192 −

1344g −2xð Þ
8192 −

420g 4xð Þ
8192

+ 252g −4xð Þ
8192 + 9g 8xð Þ

8192 −
7g −8xð Þ
8192 ,

for all x ∈ V :
And, by using the oddness and the evenness of go and ge

and nCi−1+nCi= n+1Ci, due to mathematical induction, we
can get

Jng xð Þ = 〠
n

i=0
nCi 〠

i

j=0
iCj

−84ð Þi−j1344j
4096n ge 23n−i−jx

� � 

+ −42ð Þi−j336j
512n go 23n−i−jx

� �!
,

holds for all n ∈ℕ and x ∈ V .
Let g, h ∈ S and we choose K ∈ ½0,∞� as an arbitrary con-

stant with dðg, hÞ ≤ K . Due to the definition of d and (7) in

lim
n→∞

1
512n 〠

n

i=0
nCi 〠

i

j=0
iCj42i−j336jφe 23n−i−jx, 23n−i−jy

� � !

≤ lim
n→∞

1
512n 〠

n

i=0
nCi 〠

i

j=0
iCj42i−j336j 4

ffiffiffiffiffi
21

p
cos θ − 14

� �2n−i−j
L2n−i−jφe 2nx, 2nyð Þ

 !

≤ lim
n→∞

1
512n〠

n

i=0
nCi 4

ffiffiffiffiffi
21

p
cos θ − 14

� �2n−2i
〠
i

j=0
iCj42i−j 4

ffiffiffiffiffi
21

p
cos θ − 14

� �i−j
336j

 !
× φe 2nx, 2nyð Þ

= lim
n→∞

1
512n 〠

n

i=0
nCi 4

ffiffiffiffiffi
21

p
cos θ − 14

� �2n−2i
42 4

ffiffiffiffiffi
21

p
cos θ − 14

� �
+ 336

� �i
φe 2nx, 2nyð Þ

≤ lim
n→∞

1
512n 4

ffiffiffiffiffi
21

p
cos θ − 14

� �2
+ 42 4

ffiffiffiffiffi
21

p
cos θ − 14

� �
+ 336

� �n

φe 2nx, 2nyð Þ

= lim
n→∞

Ln
4
ffiffiffiffiffi
21

p
cos θ − 14

� �3
+ 42 4

ffiffiffiffiffi
21

p
cos θ − 14

� �2
+ 336 4

ffiffiffiffiffi
21

p
cos θ − 14

� �
512

0
B@

1
CA

n

× φe x, yð Þ

= lim
n→∞

Lnφe x, yð Þ = 0, for all x, y ∈ V :

ð10Þ
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Lemma 2, we have

Jg xð Þ − Jh xð Þk k
≤
4032
8192 g 2xð Þ − h 2xð Þk k + 1344

8192 g −2xð Þ − h −2xð Þk k

+ 420
8192 g 4xð Þ − h 4xð Þk k + 252

8192 g −4xð Þ − h −4xð Þk k

+ 9
8192 g 8xð Þ − h 8xð Þk k + 7

8192 g −8xð Þ − h −8xð Þk k

≤ K
336
512Φ 2xð Þ + 42

512Φ 4xð Þ + 1
512Φ 8xð Þ

� �

≤ K
336 4

ffiffiffiffiffi
21

p
cos θ − 14

� �
L

512 +
42 4

ffiffiffiffiffi
21

p
cos θ − 14

� �2
L2

512

0
B@

+
4
ffiffiffiffiffi
21

p
cos θ − 14

� �3
L3

512

1
CAΦ xð Þ

≤ K
336 4

ffiffiffiffiffi
21

p
cos θ − 14

� �
512 +

42 4
ffiffiffiffiffi
21

p
cos θ − 14

� �2
512

0
B@

+
4
ffiffiffiffiffi
21

p
cos θ − 14

� �3
512

1
CALΦ xð Þ ≤ LKΦ xð Þ,

for every x ∈ V , which implies that

d Jg, Jhð Þ ≤ Ld g, hð Þ,

for all g, h ∈ S, where 0 < L < 1. That is, with the Lipschitz
constant L, J is a strictly contractive self-mapping of S, where
0 < L < 1.

Now, after long and tedious calculation, we have

f xð Þ − J f xð Þ = 1
4096 ðDf e −6x, 2xð Þ + 8Df e −x, xð Þ

+ 56Df e −2x, xð Þ + 112Df e −3x, xð ÞÞ

+ 1
512 ðDf o −6x, 2xð Þ + 6Df o −x, xð Þ

+ 42Df o −2x, xð Þ + 112Df o −3x, xð ÞÞ:

And, by (11) we obtain

f xð Þ − J f xð Þk k
≤

1
4096 ?Df e −6x, 2xð Þ + 8Df e −x, xð Þ
+ 56Df e −2x, xð Þ + 112Df e −3x, xð Þ?
+ 1
512 ?Df o −6x, 2xð Þ + 6Df o −x, xð Þ

+ 42Df o −2x, xð Þ + 112Df o −3x, xð Þ?

≤
9φe −6x, 2xð Þ + 56φe −x, xð Þ + 392φe −2x, xð Þ + 1008φe −3x, xð Þ

4096
=Φ xð Þ,

for every x ∈ V . It implies that dð f , J f Þ ≤ 1 <∞ from the
definition of d and due to Proposition 1, the sequence fJn f g
converges to only one fixed point F : V ⟶ Y of J in the set
T = fg ∈ S : dð f , gÞ<∞g which implies (13). Moreover, by
Proposition 1, we have

d f , Fð Þ ≤ 1
1 − L

d f , J fð Þ ≤ 1
1 − L

,

which implies (12).
Also, by the equality (8) in Lemma 2, since one has

lim
n→∞

1
4096n 〠

n

i=0
nCi 〠

i

j=0
iCj −84ð Þi−j1344 jDf e 23n−i−jx, 23n−i−jy

� �0
@

1
A

						
						

≤ lim
n→∞

1
4096n〠

n

i=0
nCi 〠

i

j=0
iCj84i−j1344jφe 23n−i−jx, 23n−i−jy

� �0
@

1
A

≤ lim
n→∞

1
512n〠

n

i=0
nCi 〠

i

j=0
iCj42i−j336 jφe 23n−i−jx, 23n−i−jy

� �0
@

1
A = 0,

and

lim
n→∞

1
512n 〠

n

i=0
nCi 〠

i

j=0
iCj −42ð Þi−j336jDf o 23n−i−jx, 23n−i−jy

� �0
@

1
A

						
						

≤ lim
n→∞

1
512n〠

n

i=0
nCi 〠

i

j=0
iCj42i−j336jφe 23n−i−jx, 23n−i−jy

� �0
@

1
A = 0,

for all x, y ∈ V , we obtain

DF x, yð Þ = lim
n→∞

〠
n

i=0
nCi 〠

i

j=0
iCj

−84ð Þi−j1344 j
4096n Df e 23n−i−jx

� �  

+ −42ð Þi−j336j
512n Df o 23n−i−jx, 23n−i−jy

� �!!
= 0,

for every x, y ∈ V .
Therefore, F is the unique solution of the functional

equation (4) with (12). Finally, we see that if F is a solution
of the sextic functional equation (4) with Fð0Þ = 0, then we
can derive that F is a fixed point of J from the equality

F xð Þ − JF xð Þ = 1
4096 DFe −6x, 2xð Þ + 8DFe −x, xð Þð

+ 56DFe −2x, xð Þ + 112DFe −3x, xð ÞÞ 1
512

� DFo −6x, 2xð Þ + 6DFo −x, xð Þ + 42DFoð
� −2x, xð Þ + 112DFo −3x, xð ÞÞ:

ð14Þ

In next corollary, we will consider special function φðx,
yÞ = ∥x∥p + ∥y∥p in Theorem 3 to compare with the results
in [31].

4 Journal of Function Spaces



Corollary 4. Let X be a real normed space, θ be as in Lemma
2, and p be a fixed real number such that 0 < p < log2ð4

ffiffiffiffiffi
21

p
− 14Þ. If f : X⟶ Y satisfies the equality f ð0Þ = 0 and the
inequality

Df x, yð Þk k ≤ xk kp + yk kp, ð15Þ

for all x, y ∈ X, then there exists a unique solution map-
ping F : V ⟶ Y of (4) satisfying the inequality

f xð Þ − F xð Þk k ≤
1512 + 401 · 2p + 1008 · 3p + 9 · 6pð Þ 2

ffiffiffiffiffi
21

p
− 7

� �
xk kp

8192 4
ffiffiffiffiffi
21

p
− 14 − 2p

� � ,

ð16Þ

for all x ∈ X.

Proof. If we put φðx, yÞ = kxkp + kykp and L = 2p/4
ffiffiffiffiffi
21

p
− 14,

then we have the equalities φð2x, 2yÞ = 2pφðx, yÞ = ð4 ffiffiffiffiffi
21

p
−

14ÞLφðx, yÞ for all x, y ∈ X. So the condition (6) in Lemma
2 holds for all x, y ∈ X. According to Theorem 3, there exists
a unique solution mapping F : V ⟶ Y of (4) satisfying the
inequality (16) for all x, y ∈ X.

Next, we will try to prove the stability of the sextic func-
tional equation (4) from another point of view. For that, we
first will introduce useful facts in the following lemma.

Lemma 5. Let θ be a real constant such that 0 < θ < π/4 and
cos ð3θÞ = 637/77

ffiffiffiffiffi
77

p
. Let φ : V2 ⟶ ½0,∞Þ be a function

for which there exists a constant 0 < L < 1 such that

Lφ 2x, 2yð Þ ≥ 8
ffiffiffiffiffi
77

p
cos θ + 28

� �
φ x, yð Þ, ð17Þ

for all x, y ∈ V . Then, we have 97 < 8
ffiffiffiffiffi
77

p
cos θ + 28 <

97:8,

84

8
ffiffiffiffiffi
77

p
cos θ + 28

� � + 1344

8
ffiffiffiffiffi
77

p
cos θ + 28

� �2 + 4096

8
ffiffiffiffiffi
77

p
cos θ + 28

� �3 = 1,

ð18Þ

and the equality

lim
n→∞

〠
n

i=0
nCi 〠

i

j=0
iCj84

j1344i−j4096n−iφe
x

23n−i−j
, y

23n−i−j

� �
= 0,

ð19Þ

holds for all x, y ∈ V .

Proof. When 0 < θ < π/4 and cos ð3θÞ = 637/77
ffiffiffiffiffi
77

p
, it is not

difficult to see that 0 < 3θ < 0:33997 and 97 < 8
ffiffiffiffiffi
77

p
cos θ +

28 < 97:8 in the trigonometric function table. Also, we obtain
the equality (18) from the following calculation:

4096 + 1344 8
ffiffiffiffiffi
77

p
cos θ + 28

� �
+ 84 8

ffiffiffiffiffi
77

p
cos θ + 28

� �2

− 8
ffiffiffiffiffi
77

p
cos θ + 28

� �3
= 4096 + 10752

ffiffiffiffiffi
77

p
cos θ + 37632 + 413952 cos2θ

+ 37632
ffiffiffiffiffi
77

p
cos θ + 65856 − 39424

ffiffiffiffiffi
77

p
cos3θ

− 413952 cos2θ − 18816
ffiffiffiffiffi
77

p
cos θ − 21952

= −9856
ffiffiffiffiffi
77

p
4 cos3θ − 3 cos θ
� �

+ 81536
= −9856

ffiffiffiffiffi
77

p
cos 3θð Þ + 81536 = 0:

ð20Þ

And by (17) and (18), we have

〠
n

i=0
nCi 〠

i

j=0
iCj84j1344i−j4096n−iφe

x

23n−i−j ,
y

23n−i−j
� �

≤ 〠
n

i=0
nCi 〠

i

j=0
iCj84j

1344L
8
ffiffiffiffiffi
77

p
cos θ + 28

� �i−j

4096n−iφe

� x

23n−2i ,
y

23n−2i
� �

= 〠
n

i=0
nCi 84 + 1344L

8
ffiffiffiffiffi
77

p
cos θ + 28

� �i

4096n−iφe
x

23n−2i ,
y

23n−2i
� �

≤ 〠
n

i=0
nCi 84 + 1344L

8
ffiffiffiffiffi
77

p
cos θ + 28

� �i 4096L2

8
ffiffiffiffiffi
77

p
cos θ + 28

� �2
0
B@

1
CA

n−i

� φe
x
2n ,

y
2n

� �

≤ 84 + 1344L
8
ffiffiffiffiffi
77

p
cos θ + 28

+ 4096L2

8
ffiffiffiffiffi
77

p
cos θ + 28

� �2
0
B@

1
CA

n

� L

8
ffiffiffiffiffi
77

p
cos θ + 28

� �n

φe x, yð Þ

≤

 
84

8
ffiffiffiffiffi
77

p
cos θ + 28

+ 1344

8
ffiffiffiffiffi
77

p
cos θ + 28

� �2

+ 4096

8
ffiffiffiffiffi
77

p
cos θ + 28

� �3
!n

Lnφe x, yð Þ = Lnφe x, yð Þ,

ð21Þ

for all x, y ∈ V . Therefore, by taking the limit, we com-
plete the proof of (19).

In the following theorem, we will prove the stability of the
solution for the sextic functional equation (4) with different
types of functions compared to Theorem 3.

Theorem 6. Let θ, L, and φ be as in Lemma 5. If f : V ⟶ Y
is a mapping such that the inequality (11) in Theorem 3 holds
for every x, y ∈ V , then there exists only one solution F : V
⟶ Y of (4) satisfying the following inequality
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f xð Þ − F xð Þk k ≤ Ψ xð Þ
1 − L

, ð22Þ

for every x ∈ V , where

Ψ xð Þ = 2φe
−3x
4

, x
4

� �
+ 14φe

−x
8
, x
8

� �
+ 98φe

−x
4
, x
8

� �

+ 224φe
−3x
8

, x
8

� �
:

In particular, F is represented by

F xð Þ = lim
n→∞

〠
n

i=0
nCi 〠

i

j=0
iCj



42j −336ð Þi−j512n−i f o

x

23n−i−j

� �

+ 84j −1344ð Þi−j4096n−i f e
x

23n−i−j

� ��
,

ð23Þ

for any x ∈ V .

Proof. Similar to Theorem 3, we consider the set S which con-
tains all functions g : V ⟶ Y with gð0Þ = 0, and we define a
generalized metric on S as

d g, hð Þ = inf K ∈ R+j g xð Þ − h xð Þk k ≤ KΨ xð Þ for all x ∈ Vf g:

We now consider the mapping J : S⟶ S defined by

Jg xð Þ = 63g x
2
� �

+ 21g −
x
2

� �
− 840g x

4
� �

− 504g −
x
4

� �

+ 2304g x
8
� �

+ 1792g −
x
8

� �
,

for every x ∈ V . Then, similar to Theorem 3, by mathe-
matical induction, we obtain that

Jng xð Þ = 〠
n

i=0
nCi 〠

i

j=0
iC j 42j −336ð Þi−j512n−igo

x

23n−i−j
� �

33mm
�

+ 84j −1344ð Þi−j4096n−ige
x

23n−i−j
� ��

,

holds for every n ∈ℕ and x ∈ V .
Let g, h ∈ S and we assume K ∈ ½0,∞� as an arbitrary con-

stant with dðg, hÞ ≤ K . By the definition of d and (18) in
Lemma 5, we have

Jg xð Þ − Jh xð Þk k

≤ 63 g
x
2
� �

− h
x
2
� �			 			 + 21 g −

x
2

� �
− h −

x
2

� �			 			
+ 840 g

x
4
� �

− h
x
4
� �			 			 + 504 g −

x
4

� �
− h −

x
4

� �			 			
+ 2304 g

x
8
� �

− h
x
8
� �			 			 + 1792 g −

x
8

� �
− h −

x
8

� �			 			

≤ 84KΨ x
2
� �

+ 1344KΨ x
4
� �

+ 4096KΨ x
8
� �

≤
84LKΨ xð Þ

8
ffiffiffiffiffi
77

p
cos θ + 28

+ 1344L2KΨ xð Þ
8
ffiffiffiffiffi
77

p
cos θ + 28

� �2

+ 4096L3KΨ xð Þ
8
ffiffiffiffiffi
77

p
cos θ + 28

� �3

≤

 
84

8
ffiffiffiffiffi
77

p
cos θ + 28

+ 1344

8
ffiffiffiffiffi
77

p
cos θ + 28

� �2

+ 4096

8
ffiffiffiffiffi
77

p
cos θ + 28

� �3
!
LKΨ xð Þ

≤ LKΨ xð Þ,

for every x ∈ V , which implies that

d Jg, Jhð Þ ≤ Ld g, hð Þ,

for all g, h ∈ S, where 0 < L < 1. So, with the Lipschitz
constant L, J is a strictly contractive self-mapping of S, where
0 < L < 1.

Moreover, by the definition of Df ðx, yÞ, with long and
tedious calculation, we have

f xð Þ − J f xð Þ =


Df e

−3x
4 , x4

� �
+ 8Df e

−x
8 , x8

� �
+ 56Df e

: −x
4 , x8

� �
+ 112Df e

−3x
8 , x8

� ��

+


Df o

−3x
4 , x4

� �
+ 6Df o

−x
8 , x8

� �
+ 42Df o

: −x
4 , x8

� �
+ 112Df o

−3x
8 , x8

� ��
:

And, by (11) in assumption, we obtain

f xð Þ − J f xð Þk k ≤ ‖Df e −3x
4 , x4

� �
+ 8Df e

−x
8 , x8

� �

+ 56Df e
−x
4 , x8

� �
+ 112Df e

−3x
8 , x8

� �‖
+ ‖Df o

−3x
4 , x4

� �
+ 6Df o

−x
8 , x8

� �

+ 42Df o
−x
4 , x8

� �
+ 112Df o

−3x
8 , x8

� �‖
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≤ 2φe
−3x
4 , x4

� �
+ 14φe

−x
8 , x8

� �
+ 98φe

: −x
4 , x8

� �
+ 224φe

−3x
8 , x8

� �
=Ψ xð Þ,

for every x ∈ V .
It implies that dð f , J f Þ ≤ 1 <∞ by the definition of d.

Therefore, according to Proposition 1, the sequence fJn f g
converges to only one fixed point F : V ⟶ Y of J in the
set T = fg ∈ S ∣ dð f , gÞ<∞g, which is represented by (23)
for every x ∈ V .

We also due to Proposition 1 obtain that

d f , Fð Þ ≤ 1
1 − L

d f , J fð Þ ≤ 1
1 − L

,

which implies (22).
Now, by (19) in Lemma 5, since we have

lim
n→∞‖〠n

i=0
nCi〠

i

j=0
iCj84j −1344ð Þi−j4096n−iDf e

�
x

23n−i−j
, y

23n−i−j
�
‖

≤ lim
n→∞

〠
n

i=0
nCi〠

i

j=0
iCj84j1344i−j4096n−iφe

�
x

23n−i−j ,
y

23n−i−j
�
= 0,

lim
n→∞‖〠n

i=0
nCi〠

i

j=0
iCj42 j −336ð Þi−j512n−iDf o

�
x

23n−i−j ,
y

23n−i−j
�
‖

≤ lim
n→∞

〠
n

i=0
nCi〠

i

j=0
iCj42j336i−j512n−iφe

�
x

23n−i−j ,
y

23n−i−j
�

≤ lim
n→∞

〠
n

i=0
nCi 〠

i

j=0
iCj84j1344i−j4096n−iφe

�
x

23n−i−j ,
y

23n−i−j
�
= 0,

for all x, y ∈ V , due to the equality (23), we obtain

DF x, yð Þ = lim
n→∞

〠
n

i=0
nCi 〠

i

j=0
iCj42j −336ð Þi−j512n−iDf o

� x

23n−i−j ,
y

23n−i−j
� �

+ lim
n→∞

〠
n

i=0
nCi 〠

i

j=0
iCj84j

� −1344ð Þi−j4096n−iDf e
x

23n−i−j ,
y

23n−i−j
� �

= 0,

which conclude that F is a solution of the sextic func-
tional equation (4).

Finally, we see that if F is a solution of the sextic func-
tional equation (4), then the equality

F xð Þ − JF xð Þ =


DFe

�
−3x
4 , x4

�
+ 8DFe

�
−x
8 , x8

�

+ 56DFe
−x
4 , x8

� �
+ 112DFe

−3x
8 , x8

� ��

+ DFo
−3x
4 , x4

� �
+ 6DFo

−x
8 , x8

� �


+ 42DFo
−x
4 , x8

� �
+ 112DFo

−3x
8 , x8

� ��
,

implies that F is a fixed point of J .

In next corollary, we will consider special function φðx,
yÞ = kxkp + kykp in Theorem 6 to compare with the results
in [31].

Corollary 7. Let X be a real normed space, θ be as in Lemma
5, and p be a fixed real number such that log2ð8

ffiffiffiffiffi
77

p
cosθ +

28Þ < p . If f : X ⟶ Y satisfies the equality f ð0Þ = 0 and the
inequality (15) for all x, y ∈ X, then there exists a unique solu-
tion mapping F : V ⟶ Y of (4) such that

f xð Þ − F xð Þk k ≤ 175 + 50 · 2p + 112 · 3p + 6pð Þ∥x∥p
4p 2p − 8

ffiffiffiffiffi
77

p
cos θ + 28

� � , ð24Þ

for all x ∈ X.

Proof. If we put φðx, yÞ = kxkp + kykp and L = 8
ffiffiffiffiffi
77

p
cos θ +

28/2p, then we have the equalities Lφð2x, 2yÞ = 2pLφðx, yÞ =
ð8 ffiffiffiffiffi

77
p

cos θ + 28Þφðx, yÞ for all x, y ∈ X. So the condition
(17) in Lemma 5 holds for all x, y ∈ X. According to Theorem
6, there exists a unique solution mapping F : V ⟶ Y of (4)
satisfying the inequality (24) for all x, y ∈ X.
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