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In this paper, the nonlinear quasilinear elliptic problem with the logarithmic nonlinearity −div ðj∇ujp−2∇uÞ = aðxÞφpðuÞ log juj
+ hðxÞψpðuÞ in Ω ⊂ Rn was studied. By means of a double perturbation argument and Nehari manifold, the authors obtain the
existence results.

1. Introduction

In this paper, we consider the existence of solution to the fol-
lowing problem

−div ∇uj jp−2∇u� �
= a xð Þφp uð Þ log uj j + h xð Þψp uð Þ, inΩ,

ð1Þ

where Ω ⊂ Rn, φpðzÞ = jzjp−2z, ψpðzÞ = jzjp−1z, p > 2, and n ≥
1. We always suppose that aðxÞ is a sign-changing function;
hðxÞ ≥ 0 is a ∈C1 function.

Equations of the above form are mathematical models
occurring in studies of the p-Laplace equation, general-
ized reaction-diffusion theory [1], non-Newtonian fluid
theory [2, 3], non-Newtonian filtration theory [4, 5],
and the turbulent flow of a gas in porous medium [6].
In the non-Newtonian fluid theory, the pair p is a char-
acteristic quantity of the medium. Media with p > 2 are
called dilatant fluids, and those with p < 2 are called
pseudoplastics. If p = 2, they are Newtonian fluids. When

p ≠ 2, the problem becomes more complicated since cer-
tain nice properties inherent to the case p = 2 seem to
be lose or at least difficult to verify. The main differences
between p = 2 and p ≠ 2 can be founded in [7, 8].

In recent years, logarithmic nonlinearity is widely used
in pseudo-parabolic equations which describe the mathe-
matical and physical phenomena. Equations of the type ð
1Þ have been studied by many authors when p = 2 (see,
for example, [9–12] and the reference therein). To do so,
the authors always use the nice properties of Δ, such that,
maximum principle and comparison principle and so on.
Meanwhile, existence and structure of solutions for such
equations with p > 1 in bounded domains have also
attracted much interest (see [13, 14]).

In the following discussion, we consider two different
situations. Firstly, we consider the existence of positive
solution for problem ð1Þ with Neumann boundary condi-
tions. In this case, suppose that Ω = BR = BRð0Þ ⊂ Rn, aðxÞ
> 0, hðxÞ ≥ 0 are also radial functions, aðxÞ = aðjxjÞ, hðxÞ
= hðjxjÞ in BR. Our strategy in the study of problem ð1Þ
is to adopt a double perturbation argument. First, follow-
ing [15, 16] (see also [17]), for each 0 < ε < 1, we consider
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a family of approximate problems

−div ∇uj jp−2∇u� �
= a xð Þφp uð Þ log u2 + εu + ε

u + ε

� �
+ h xð Þψp uð Þ in BR,

u > 0, in BR,
∂vu = 0, on ∂BR:

8>>>><
>>>>:

ð2Þ

Then, it is natural to look for a family of solutions of ð2Þ
and then to pass the limit as ε→ 0 to obtain a solution to ð1Þ.

For each 0 < r < R, defineArR ≔ BR \ �Br . Consider the sec-
ond family of problems

−div ∇uj jp−2∇u� �
= a xð Þφp uð Þ log u2 + εu + ε

u + ε

� �
+ h xð Þψp uð Þ, inArR,

u > 0, inArR,
u = θ, on ∂Br ,
∂vu = 0, on ∂BR:

8>>>>>>><
>>>>>>>:

ð3Þ

Here, θ > 0 is an appropriate constant.When r→ 0+, we get
a solution to ð2Þ. The role of problem ð3Þ is that we cannot use
Poincare inequality to solve ð2Þ directly by variational methods.

Secondly, we consider the multiple solutions for problem ð
1Þ with Dirichlet boundary conditions. In this case, we consider
aðxÞ is a sign-changing function, hðxÞ = 0. The method is based
on Nehari manifold and logarithmic Sobolev inequality.

By modification of the methods given in [18–22], we
obtain the following results.

Theorem 1. Let aðxÞ > 0, hðxÞ ≥ 0 be any radial C1 function.
Then, problem ð1Þ has a positive radial solution u ∈ C1ð�BR \
f0gÞ ∩ Cð�BRÞ.

Remark 2. Theorem 1 is valid even if we change the logarithm
by a more general singular function. In fact, suppose g : ð0,
1Þ→ R is a smooth function such that

lim
s→0+

g sð Þ = −∞,

lim
s→0+

g sð Þ
sm

= 1,
ð4Þ

for some m ∈ ð0, 1Þ. Then, we can perturb g by a family gε of
smooth functions decreasing in ε, such that gεð0Þ = 0 and gε
ðsÞ→ gðsÞ pointwise in s ∈ ð0,∞Þ as ε→ 0. This perturbation
can be done in such a way that gε0 ≥ 0 for some εn > 0, and
then, all the results in Section 2 hold with little modification.

Theorem 3. Let hðxÞ = 0, aðxÞ ∈ Cð�ΩÞ and changes sign in �Ω,
satisfying

max
�Ω

a xð Þj j ≤ 1
μ
, ð5Þ

where μ = ðnLp/peÞ exp ððmp2jΩjnÞ/neÞ, jΩjn is the volume of
Ω in Rn. Then, ð1Þ possesses at least two nontrivial solutions.

The paper is organized as follows. In Section 2, we con-
struct a sub- and a supersolution for 3 and finish the proof of
Theorem 1. In Section 3, we prove Theorem 3 by the method
of Nehari manifold and logarithmic Sobolev inequality.

2. Proof of Theorem 1

2.1. Sub- and Supersolution for 3

Lemma 4. Suppose that θ > 1. Then, the function u ≡ 1 is a
subsolution for 3 which does not depend on 0 < ε ≤ 1 and θ.

Proof.We just need to see that, since aðxÞ > 0, hðxÞ ≥ 0 inBR, the
following inequality holds independently of 0 < ε ≤ 1 and θ > 1:

a xð Þ log 1 + ε1 + ε

1 + ε

� �
+ h xð Þ ≥ log 1 = 0, ð6Þ

We proceed to find a supersolution for 3. Denote by Xr, the fol-
lowing subspace of H1ðArRÞ:

Xr ≔ u ∈H1 ArRð Þ u = 0 on ∂Brj� �
: ð7Þ

For υ ∈ Xr, we define the expression:

vj jr ≔
ð
ArR

∇vj j2dx
 !1/2

: ð8Þ

Remark.The expression j⋅jr defines a norm onXr, and ðXr , j⋅jrÞ is
a reflexive Banach space. Furthermore, by ([23], (7.44)), the Poin-
care inequality holds on Xr, that is, there exists η > 0 such that

ð
ArR

vpdx ≤ η
ð
ArR

∇vj jpdx: ð9Þ

Next, we work with the radial formulation for Eε,r in the spe-
cific case that ε = 1,

− sn−1op u′
� 	� 	

′ = sn−1a sð Þop uð Þ log u2 + u + 1
u + 1

� �
+ sn−1h sð Þψp uð Þ, in r < s < R,

u > 0,
u rð Þ = θ,

in r < s < R,
u′ Rð Þ = 0,

8>>>><
>>>>:

ð10Þ
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where ϕpðsÞ = jsjp−2s. Notice that

log u2 + u + 1
u + 1

� �
≥ 0 for u ≥ 0: ð11Þ

For simplicity, denote

f s, zð Þ = a sð Þop zð Þ log z2 + z + 1
z + 1

� �
+ h sð Þψp zð Þ: ð12Þ

Then, if υ solves

− sn−1op υ′
� 	� 	

′ = sn−1 f s, υ + θð Þ, in r < s < R,

υ > 0,
υ rð Þ = θ,

in r < s < R,
υ′ Rð Þ = 0,

8>>><
>>>:

ð13Þ

we will have that υ + θ is a solution of Eq. (10). In order to
prove existence of such υ, we find a minimum of the func-
tional in the sequel. Let S ⊂ Xr denote the set of symmetric
functions with respect to the origin. We define Φ : S→ R by

Φ vð Þ = 1
p

ðR
r
sn−1 v′


 

pds + ðR

r
sn−1F s, v sð Þð Þsn−1ds, ð14Þ

where Fðs, υðsÞÞ = Ð t0 f ðs, ðz + θÞ+Þdz and z+ ≔max fz, 0g.

Lemma 5. The functional Φ is C1, weakly lower semicontinu-
ous and coercive so that there exist υ ∈ Xr such that

Φ vð Þ =min
u∈Xr

Φ uð Þ andΦ′ vð Þ ≡ 0: ð15Þ

The proof is standard by (9). Also, since υ is a weak solu-
tion of (13), we have

v sð Þ =
ðs
r
o−1p t1−n

ðR
t
zn−1 f z, v zð Þ + θð Þdz

� �
dt, ð16Þ

in which

o−1p uð Þ = u1/ p−1ð Þ, if u ≥ 0,
− −uð Þ1/ p−1ð Þ, if u < 0:

(
ð17Þ

Then, we define

ur ≔ υ + 0: ð18Þ

Lemma 6. Suppose that θ > 1. Then, the function �u ≡ ur is a
supersolution for ð3Þ which does not depend on 0 < ε ≤ 1.

Lemma 7. There exists a constant M > 0 such that jurj∞ ≤M
and the constant M does not depend on r ∈ ð0, RÞ. Moreover,
for each ρ ∈ ð0, RÞ, there exist a constant Cρ and rρ ∈ ð0, RÞ

such that we have the following estimates:

urj jc0 ρ, R½ �, urj jc1 ρ, R½ �, op ur′
� 	


 


c1 ρ, R½ � ≤ Cρ: ð19Þ

Proof or Lemmas 6 and 7 can be found in [18], we omit
them here.

2.2. Existence of Solution for 3. In this section, we use the sub-
and supersolution from Section 2.1 (u and ur , respectively) to
obtain a solution for the problem 3. Define the function

gε s, uð Þ≔ sn−1a sð Þop uð Þ log u2 + εu + ε

u + ε

� �
+ sn−1h sð Þψp uð Þ

+ bu, s ∈ r, R½ �, u ≥ 0,
ð20Þ

where we choose b in such a way that the function u→ gεðs
, uÞ is increasing in u for all s ∈ ½r, R�. Now, starting with u0
= u, we define a sequence un such that each un satisfies

− sn−1op un+1′
� 	� 	

′ + bun+1 = gε s, unð Þ, in r < s < R,

un+1 > 0,
un+1 rð Þ = θ,

in r < s < R,
un+1′ Rð Þ = 0:

8>>><
>>>:

ð21Þ

Let us now recall Lemma 2.1 in [24],

Lemma 8 (weak comparison principle). Let Ω be a bounded
domain in RNðN ≥ 2Þ with smooth boundary ∂Ω and θ : ð0,
+∞Þ→ ð0,+∞Þ is continuous and nondecreasing, let u1, u2
∈W1,pðΩÞ satisfy

ð
Ω

∇u1j jp−2∇u1∇υdx

+
ð
Ω

θ u1ð Þυdx ≤
ð
Ω

∇u2j jp−2∇u2∇υdx

+
ð
Ω

θ u2ð Þυdx:

ð22Þ

For all nonnegative υ ∈W1,m
0 ðΩÞ. Then, the inequality

u1 ≤ u2, on ∂Ω, ð23Þ

implies that

u1 ≤ u2, inΩ: ð24Þ

Lemma 9. The sequence fung is nondecreasing and satisfies
u0ðsÞ ≤ unðsÞ ≤ un+1ðsÞ ≤ urðsÞ for all s ∈ ½r, R� and all n ∈N .
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Proof. We just need to see that u0 ≤ u1 ≤ ur and the general
case follows by induction in an analogous way. We have

− sn−1op u0′
� 	� 	

′ + b u0ð Þ≤− sn−1op u1′
� 	� 	

′ + b u1ð Þ, in r < s < R,

u0 − u1ð Þ rð Þ ≤ 0,  u0 − u1ð Þ′ Rð Þ = 0:

8<
:

ð25Þ

So, we can apply Lemma 8 and obtain that u0 ≤ u1 in
½r, R�. On the other hand,

− sn−1op u1ð Þ′
� 	

′ + b u1ð Þ≤− sn−1op urð Þ′
� 	

′ + b urð Þ, in r < s < R,

u1 − urð Þ rð Þ ≤ 0,  u1 − urð Þ′ Rð Þ = 0:

8<
:

ð26Þ

Again, Lemma 8 implies u1 ≤ ur in ½r, R�.
By Lemma 9, we define the pointwise limit

uεr sð Þ≔ lim
n→∞

un sð Þ, s ∈ r, R½ �, ð27Þ

and we see that

1 ≤ uεr ≤ ur sð Þ, s ∈ r, R½ �: ð28Þ

The function uεr is in fact a solution of 3.

Lemma 10. The function uεr is a solution of 3, and it belongs to
C1½r, R�.

Proof. For each n ∈N , we have

un sð Þ = θ +
ðs
r
o−1p t1−n

ðR
t
zn−1 a zð Þop unð Þ log u2n + εun+ε

un + ε

� ���
+ h zð Þυp unð Þ�dz�dt:

ð29Þ

Since we have

1 ≤ un ≤M, for all n ∈N, ð30Þ

we obtain, as in Lemma 7, that jϕpðu′pÞjC1½ρ, R� is bounded.
Then, for a subsequence that we still denote by un, we have
the convergence

un → uεr inC1 ρ, R½ �: ð31Þ

2.3. Obtaining a Solution for Eε. In this section, we pass the
limit as r→ 0+ and then obtain a solution for 2.

Lemma 11. For a fixed 0 < ε ≤ 1, the problem ð2Þ has a solu-
tion uε which is obtained as the limit of uεr as r→ 0+.

Proof. For simplicity, we omit the dependence on ε > 0 for uεr .
We know that

ur sð Þ = θ +
ðs
r
o−1p t1−n

ðR
t
zn−1 a zð Þop urð Þ log u2r + εur + ε

ur + ε

� ���
+ h zð Þυp urð Þ�dz�dt:

ð32Þ

Also, we have

1 ≤ ur ≤M, in r, R½ �,
1 ≤ ur ≤M, in r, R½ �:

ð33Þ

As in Lemma 7, we can prove, for each ρ ∈ ð0, RÞ, there
exist a constant Cρ > 0 and rρ ∈ ð0, RÞ such that we have the
following estimates:

urj jc0 ρ, R½ �, urj jc1 ρ, R½ �, op ur′
� 	


 


c1 ρ, R½ � ≤ Cρ: ð34Þ

Then, from the compact imbedding C1½ρ, R�→ C0½ρ, R�,
we see that there exist a sequence rn and uε defined on ð0, R
� such that, if we define wn ≔ urn , then

wn → uε in C1
loc 0, Rð Þ,

wn → uε in C1 ρ, Rð Þ:
ð35Þ

2.4. Concluding the Proof of Theorem 1. Now, we would like
to pass the limit in the family uε obtained in Section 2.3
and get a solution to ð1Þ. In order to do that, we need some
estimates like the ones in Lemma 7 independently of ε.

First, we observe that the following estimate holds in ð0
, R�

1 ≤ uε ≤M: ð36Þ

Notice that the family ðuεÞ0<ε≤1 satisfies ε > 0 for uεr . We
know that

uε sð Þ = uε
R
2

� �
+
ðs
R/2

o−1p t1−n
ðR
t
zn−1

�

� a zð Þop uεð Þ log uε2 + εuε + ε

uε + ε

� ��
+ h zð Þυp uεð Þ�dz�dt,

ð37Þ

if s ∈ ½R/2, R�,and

uε sð Þ = uε
R
2

� �
−
ðR/2
s

o−1p t1−n
ðR
t
zn−1

�

� a zð Þop uεð Þ log uε2 + εuε + ε

uε + ε

� ��
+ h zð Þυp uεð Þ�dz�dt,

ð38Þ

if s ∈ ð0, R/2�.
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From Eqs. (36)–(38) we see, as in Lemma 7 that, for each
for each ρ ∈ ð0, RÞ, there exist a constant Cρ > 0 and ερ ∈ ð0,
RÞ such that we have the following estimates:

uεj jc0 ρ, R½ �, uεj jc1 ρ, R½ �, op uε′
� 	


 


c1 ρ, R½ � ≤ Cp for all ε ∈ 0, ερ

� �
:

ð39Þ

Now, arguing as in Section 2.4, we can find a function u
which satisfies

− sn−1op u′
� 	� 	

′ = sn−1 log u + sn−1h sð Þuq, in r < s < R,

u > 0,
u′ Rð Þ = 0:

in r < s < R,

8>>><
>>>:

ð40Þ

that is, u is a radial solution for the problem ð1Þ.
We see that u ∈ C1ð0, RÞ ∩ Cð0, R�. Now, extend continu-

ously u to the whole interval ð0, R�. Indeed, let ri be a
sequence in ð0, R/2Þ with ri → 0 as i→∞. From Eq. (13)
(after we have passed the limit in ε)

u rið Þ = u
R
2

� �
−
ðR/2
ri

o−1p t1−n
ðR
t
zn−1 a zð Þop uð Þ log u + h zð Þυp uð Þ� �

dz
� �

dt:

ð41Þ

Then, if r j > ri, we get

u rj
� �

− u rið Þ

 

 = ðr j
ri

o−1p t1−n
ðR
t
zn−1 a zð Þop uð Þ log u + h zð Þop uð Þ� �

dz
� �

dt












:

ð42Þ

From Eq. (36), we obtain that there exists a constant C
> 0 such that

u rj
� �

− u rið Þ

 

 ≤ C rj − ri


 

, ð43Þ

so uðriÞ is a Cauchy sequence in R. Let L be the limit of such
sequence. By a similar argument, we conclude that if si is
another sequence in ð0, R/2Þ converging to 0, then we neces-
sarily have uðsiÞ→ L. So, we have proved that

lim
r→0

u rð Þ = L, ð44Þ

finishing the proof of Theorem 1.

3. Proof of Theorem 3

3.1. Preliminaries. In this section, we consider the multiple
solutions for problem ð1Þ with Dirichlet boundary condi-
tions. In this case, we consider aðxÞ is a sign-changing func-
tion, hðxÞ = 0. Moreover, it is necessary to note that the
presence of the logarithmic nonlinearity leads to some diffi-
culties in deploying the potential well method. In order to

handle this situation, we need the following logarithmic
Sobolev inequality which was introduced by [25].

Proposition 12. Let p > 1, μ > 0, and u ∈W1,pðΩÞ \ f0g.
Then, we have

p
ð
Rn

u xð Þj jp log u xð Þj j
uk kLp Rnð Þ

 !
dx + n

p
log

� pμe
nLp

 !ð
Rn

u xð Þj jpdx ≤ μ
ð
Rn

∇u xð Þj jpdx,
ð45Þ

where

Lp =
p
n

p − 1
e

� �p−1

π− p/2ð Þ Γ n/2ð Þ + 1ð Þ
Γ n p − 1/pð Þ + 1ð Þ
� �p/n

: ð46Þ

Remark. If u ∈W1,p
0 ðΩÞ then, by defining uðxÞ = 0 for x ∈ Rn

\ fΩg, we derive

p
ð
Ω

u xð Þj jp log u xð Þj j
uk kp

 !
dx + n

p
log

� pμe
nLp

 !ð
Ω

u xð Þj jpdx ≤ μ
ð
Ω

∇u xð Þj jpdx,
ð47Þ

for any real number μ > 0.

We start by considering the energy functional J by

J uð Þ = 1
p

∇uk kpp −
1
p

ð
Ω

a xð Þ uj jp log uj jdx + 1
p2

ð
Ω

a xð Þ uj jpdx,

ð48Þ

in which kukp = kukLpðΩÞ.

Lemma 13. For u ∈H1
0ðΩÞ and

Ð
Ω
aðxÞjujpdx = 0, let M =

max�ΩjaðxÞj, then it holds

J uð Þ ≥ 1
p
−
Mμ

p

� �
∇uk kpp, ð49Þ

in which μ = ðnLp/peÞ exp ððmp2jΩjnÞ/neÞ.

Proof. Using the fact
Ð
Ω
aðxÞjujpdx = 0, we have

J uð Þ = 1
p

∇uk kpp −
1
p

ð
Ω

a xð Þ uj jp log u xð Þj j
uk kp

 !
dx: ð50Þ
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Let �uðxÞ = uðxÞ/kukp, then

ð
Ω

a xð Þ uj jp log u xð Þj j
uk kp

 !
dx

=
ð
Ω1

a xð Þ uj jp log �uj jdx +
ð
Ω2

a xð Þ uj jp log �uj jdx,
ð51Þ

where

Ω1 = x ∈Ω, �u xð Þj j < 1f g, andΩ2 = x ∈Ω, �u xð Þj j ≥ 1f g:
ð52Þ

By direct calculations, we know

ð
Ω1

a xð Þ uj jp log �uj jdx ≤ M Ωj jn
2e uk kpp: ð53Þ

Also, by logarithmic Sobolev inequality (47) and (51), we
have

ð
Ω2

a xð Þ uj jp log �uj jdx ≤M
ð
Ω

uj jp log �uj jdx + Ωj jn
2e uk kpp

� �

≤M
μ

p

ð
Ω

∇u xð Þj jpdx − n
p2

log pμe
nLp

 !
−
M Ωj jn
2e

 !
uk kpp

" #
:

ð54Þ

Then, combining (50), (51), (53), and (54), we have

J uð Þ ≥ 1
p
−
Mμ

p

� �
∇uk kpp +

n
p3

log pμe
nLp

 !
−

Ωj jn
pe

 !
M uk kpp:

ð55Þ

Taking μ = ðnLp/peÞ exp ððmp2jΩjnÞ/neÞ in (55), then

n
p3

log pμe
nLp

 !
−

Ωj jn
pe

= 0, ð56Þ

we know (49).

Lemma 14. [19] Let fumg be a sequence in W1,p
0 ðΩÞ. If um

⇀ u0 and um↛u0 in W1,p
0 ðΩÞ, then

J u0ð Þ < limm→∞ J umð Þ: ð57Þ

If um → u0 in W1,p
0 ðΩÞ, then

J u0ð Þ = lim
m→∞

J umð Þ: ð58Þ

3.2. Multiple Solutions. Inspired by [19], we seek the weak
solutions of ðEÞ by Nehari manifold. First, a simple calcula-
tion shows that JðuÞ ∈ C1ðW1,p

0 ðΩÞ, RÞ, and its derivative is

given by

J ′ uð Þ, v
D E

=
ð
Ω

∇uj jp−2∇u ⋅ ∇vdx −
ð
Ω

a xð Þφp uð Þv log uj jdx,

ð59Þ

for all u, v ∈W1,p
0 ðΩÞ.

From (49), JðuÞ is not bounded on W1,p
0 ðΩÞ, but we can

prove that JðuÞ is bounded from below on Nehari manifold

N = u ∈W1,p Ωð Þ \ 0f g: J ′ uð Þ, u
D E

= 0
n o

, ð60Þ

where h,i denotes the usual duality.
It is clear that all nontrivial critical points of J must lie on

N , and as we will see below, local minimizers onN are usually
critical points of J . Also, we can see that

u ∈N ⇔
ð
Ω

∇uj jpdx −
ð
Ω

a xð Þ uj jp log uj jdx = 0: ð61Þ

Let u ∈W1,pðRnÞ \ f0g and consider the real function j
: λ→ JðλuÞ for λ > 0 defined by

jðλÞ≔ JðλuÞ = λ p/pk∇ukpp − λp/pÐ
Ω
aðxÞjujp log jujdx −

ðλp/pÞ log λÐ
Ω
aðxÞjujpdx + ðλp/p2ÞÐ

Ω
aðxÞjujpdx:Such maps

are known as fibering maps which were introduced by Dra-
bek and Pohozaev [26].

Then, by direct calculations, we have

j′ λð Þ = λp−1

p − 1 ∇uk kpp −
λp−1

p − 1

ð
Ω

a xð Þ uj jp log λuj jdx, ð62Þ

j′ ′ λð Þ = λp−2

p − 2 ∇uk kpp −
λp−2

p − 2

ð
Ω

a xð Þ uj jp log λuj jdx

−
λp−2

p − 1

ð
Ω

a xð Þ uj jpdx:
ð63Þ

Lemma 15. Let u ∈W1,pðΩÞ \ f0g and λ > 0. Then, λu ∈N if
and only if j′ðλÞ = 0.

Proof. First, by direct calculations, we know

λu ∈N ⇔ λp−1

p − 1 ∇uk kpp −
ð
Ω

a xð Þ uj jp log λuj jdx
� �

= 0⇔ λj′ λð Þ = 0:
ð64Þ

Since λ > 0, then λu ∈N if and only if j′ðλÞ = 0.

Then, if u ∈N , we have j′ð1Þ = 0 and j″ð1Þ = −ð1/ðp − 1
ÞÞÐ

Ω
aðxÞjujpdx:
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Thus, we can divide N into three subsets N+, N−, and N0,
where

N+ = u ∈N :

ð
Ω

a xð Þ uj jpdx > 0

 �

,

N− = u ∈N :

ð
Ω

a xð Þ uj jpdx > 0

 �

,

N0 = u ∈N :

ð
Ω

a xð Þ uj jpdx > 0

 �

:

ð65Þ

Lemma 16. If u0 is a local minimizer for J on N and u0 ∉N0.
Then, J ′ðu0Þ = 0.

Proof. If u0 is a local minimizer for J on N , by Lagrange mul-
tipliers, there exists κ ∈ R such that

J ′ u0ð Þ = κχ′ u0ð Þ, ð66Þ

where χðuÞ = k∇ukpp −
Ð
Ω
aðxÞjujp log jujdx.

Since u0 ∈N , then

J ′ u0ð Þ, u0
D E

= 0, and κ χ′ u0ð Þ, u0
D E

= 0: ð67Þ

On the other hand, from u0 ∉N0, we can see

χ′ u0ð Þ, u0
D E

= ju0″ 1ð Þ = −
λp−2

p − 1

ð
Ω

a xð Þ uj jpdx ≠ 0: ð68Þ

Then, κ = 0 and J ′ðu0Þ = 0.

Proposition 17. Both N+ and N− are nonempty.

Proof. From (62), j′ðλÞ has a unique turning point at

λ uð Þ = exp
∇uk kpp −

Ð
Ω
a xð Þ uj jp log uj jdxÐ

Ω
a xð Þ uj jpdx

 !
: ð69Þ

Since aðxÞ is sign-changing, then we can take u1 such thatð
Ω

a xð Þ u1j jpdx < 0, and then λ u1ð Þu1 ∈N+: ð70Þ

Also, we can take u2 such that

ð
Ω

a xð Þ u2j jpdx < 0, and then λ u2ð Þu2 ∈N−: ð71Þ

Then, both N+ and N− are nonempty.

Just like [19], by Lemmas 13–16, we can get the following
results.

Lemma 18. [19] N+ is bounded; J is bounded below on N+.

Lemma 19. [19] Every minimizing sequence for J on N− is
bounded, 0 ∉N−, infu∈N − JðuÞ > 0.

Proposition 20. J has a minimizer on N+.

Proof. Let fumg ⊆N+ be a minimizing sequence, i.e.,
limm→∞ JðumÞ = infu∈N+ JðuÞ < 0.

By Lemma 18, N+ is bounded; we may assume that

um ⇀ u0, inW
1,p
0 Ωð Þ, and so um → u0 in Lp Ωð Þ: ð72Þ

Since fumg ⊆N+, we can get

ð
Ω

a xð Þ umj jpdx < 0,
ð
Ω

a xð Þ u0j jpdx

= lim
m→∞

ð
Ω

a xð Þ umj jpdx = lim
m→∞

p2
ð
Ω

a xð Þ umj jpdx < 0,

∇umk kpp −
ð
Ω

a xð Þ umj jp log umj jdx = 0: ð73Þ

Suppose um↛u0 in W1,p
0 ðΩÞ, then

∇u0k kpp −
ð
Ω

a xð Þ u0j jp log u0j jdx

< lim
m→∞

∇umk kpp −
ð
Ω

a xð Þ umj jp log umj jdx
� �

= 0:
ð74Þ

Then, there exists

λ u0ð Þ = exp
∇u0k kpp −

Ð
Ω
a xð Þ u0j jp log u0j jdxÐ

Ω
a xð Þ u0j jpdx

 !
> 1, ð75Þ

such that λðu0Þu0 ∈N+, and then, J attains minimum at
λðu0Þu0.

Hence

J λ u0ð Þu0ð Þ < J u0ð Þ ≤ lim
m→∞

J umð Þ = inf
u∈N+

J uð Þ, ð76Þ

which is impossible. Hence, um → u0 in W1,p
0 ðΩÞ, u0 ∈N+,

and Jðu0Þ = infu∈N+ JðuÞ < 0, this means that u0 is a mini-
mizer for J on N+.

Proposition 21. There exists a minimizer of J on N−.

Proof. Let fumg ⊆N− be a minimizing sequence. By Lemma
19, fumg is bounded; we may assume that

um ⇀ u0, inW
1,p
0 Ωð Þ, and so um → u0 in Lp Ωð Þ: ð77Þ

Since JðumÞ = 1/p2
Ð
Ω
aðxÞjumjpdx, by Lemma 19, we can

get ð
Ω

a xð Þ u0j jpdx = lim
m→∞

ð
Ω

a xð Þ umj jpdx > 0: ð78Þ
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Suppose um↛u0 in W1,p
0 ðΩÞ, then

∇u0k kpp −
ð
Ω

a xð Þ u0j jp log u0j jdx

< lim
m→∞

∇umk kpp −
ð
Ω

a xð Þ umj jp log umj jdx
� �

= 0:

ð79Þ

Then, there exists

λ u0ð Þ = exp
∇u0k kpp −

Ð
Ω
a xð Þ u0j jp log u0j jdxÐ

Ω
a xð Þ u0j jpdx

 !
< 1, ð80Þ

such that λðu0Þu0 ∈N−, λðu0Þum ⇀ λðu0Þu0, but λðu0Þum↛
λðu0Þu0 in W1,p

0 ðΩÞ.
Hence

J λ u0ð Þu0ð Þ < lim
m→∞

J λ u0ð Þumð Þ: ð81Þ

Since the map λ→ JðλumÞ attains its maximum at t = 1,

lim
m→∞

J λ u0ð Þumð Þ ≤ lim
m→∞

J umð Þ = inf
u∈N−

J uð Þ: ð82Þ

This means Jðλðu0Þu0Þ < infu∈N− JðuÞ is impossible.
Hence, um → u0 in W1,p

0 ðΩÞ, and this means that u0 is a
minimizer for J on N−.

Proof of Theorem 3. Propositions 20 and 21 show that the
energy functional J has two minimizers u1 on N+ and u2
on N−. Next, by Lemma 16, J has two critical points u1 and
u2 onW

1,p
0 ðΩÞ, which means that the problem ð1Þ has at least

two nontrivial solutions under the condition hðxÞ = 0.
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