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The incomplete version of the Macdonald function has various appellations in literature and earns a well-deserved reputation of
being a computational challenge. This paper ties together the previously disjoint literature and presents the basic properties of
the incomplete Macdonald function, such as recurrence and differential relations and series and asymptotic expansions. This
paper also shows that the incomplete Macdonald function, as a simple closed-form expression, is a particular solution to a
parabolic partial differential equation, which arises naturally in a wide variety of transient and diffusion-related phenomena.

1. Introduction

As a particular solution to the modified Bessel equation [1],
the Macdonald function [2] (also known as the modified
Bessel function of the second kind, the Basset function, or
the modified Hankel function) has been employed in wide-
ranging fields to provide analytical solutions for many physi-
cal phenomena. The Macdonald function can be expressed in
the form of integrals. A new class of incomplete special func-
tion, called the incomplete Macdonald function, is defined by
having the variable endpoint of integration and arises in wide-
ranging contexts such as viscous flow [3], heat conduction [4],
groundwater hydrology [5], electromagnetism [6], galaxy [7],
nuclear reactor [8], and doubly special relativity [9].

The several distinct incomplete versions of theMacdonald
function are possible since various integral representations of
the Macdonald function often seem unrelated under the
variable endpoint of integration. In literature, the specific
definition chosen among various forms of the incomplete
Macdonald function is directed by the particular application.
These various forms and interrelationships of the incomplete
Macdonald function are summarized in Table 1.

The difference in the names assigned to various forms of
the incomplete Macdonald function is worth noting (as listed

in Table 1). They are the Shu function of viscous flow, gener-
alized incomplete gamma function of heat conduction, leaky
aquifer function of groundwater hydrology, and incomplete
modified Bessel function of electromagnetism. It is pretty
apparent that there is a lack of communication among differ-
ent research communities. The Shu function was first
employed by Shu and Chwang [3] in the expression of the
hydrodynamic force acting on a rigid circular cylinder trans-
lating in a time-dependent rotating flow field. The motivation
of studying the generalized incomplete gamma function [4]
was the role it played in the closed-form solution to several
problems in heat conduction. Groundwater hydrologists
commonly refer to the leaky aquifer integral as the leaky aqui-
fer function [5], which is useful for determining the hydraulic
properties of leaky-confined aquifers. The incomplete modi-
fied Bessel function [6] was introduced to express the solution
of electromagnetic problems in truncated cylindrical struc-
tures. It is worth mentioning at this end that these Shu func-
tion, generalized incomplete gamma function, leaky aquifer
function, and incomplete modified Bessel function have a
well-deserved reputation of being a computational challenge
due to their integral representations. The increasing number
of applications calls for a rigorous analysis of various forms
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of the incompleteMacdonald function. To avoid redundancy,
the special function analyzed in this paper is mainly referred
to as the Shu function, which is a representative of a large class
of time-dependent problems.

In this paper, the key properties of the Shu function, such
as recurrence and differential relations and series and asymp-
totic expansions, are derived. It is also shown that the Shu
function is a particular solution to a parabolic partial differ-
ential equation (PDE), which occurs in various transient
problems, for example, transient flow in porous media [10],
electromagnetic waves in a cylindrical waveguide [11, 12],
and diffusion-related phenomena [8].

2. Definition

The integral form of the Macdonald function is given [13] by

Kν zð Þ = 1
2

z
2
� �ν ð∞

0

e−τ− z2/4 τð Þ
τν+1

dτ: ð1Þ

As an incomplete version of the Macdonald function, the
definition of the Shu function [3] is adopted for investigation
in this paper and obtained by restricting the upper endpoint
of the integral in (1) to t,

Sν z, tð Þ = 1
2

z
2
� �ν ðt

0

e−τ− z2/4 τð Þ
τν+1

dτ, Re tð Þ > 0 and Re zð Þ > 0,

ð2Þ

in which Re denotes the real part of a complex number, the
symbols ν, z, and t are, respectively, termed the order, argu-
ment, and endpoint of the Shu function and are generally
taken to be complex quantities. Hereafter, the symbols n
and x > 0 are, respectively, annotated to denote integer order
ν and real argument z. The behavior of the Shu function Sn
ðx, tÞ of integer order n, real argument x > 0, and real end-
point t > 0 is depicted in Figures 1 and 2. In view of that
the Shu function has infinite when Re ðzÞ = 0, we restrict
attention to the complex argument Re ðzÞ > 0 and the com-
plex endpoint Re ðtÞ > 0.

By using (1), the Shu function can be written as

Sν z, tð Þ = Kν zð Þ − 1
2

z
2
� �ν ð∞

t

e−τ− z2/4 τð Þ
τν+ 1 dτ: ð3Þ

Substituting ew = z/2τ in (2), we get [14]

Sν z, tð Þ = 1
2

ð∞
ln z/2tð Þ

e−z cosh wð Þ+νw dw: ð4Þ

By using the substitution: y = z2/4τ in (2), we get the
alternate form

Sν z, tð Þ = 1
2

2
z

� �ν ð∞
z2/4 t

yν−1 e−y− z2/4 yð Þ dy: ð5Þ

This can be expressed in the form of the generalized
incomplete gamma function [4] (Table 1) as

Sν z, tð Þ = 1
2

2
z

� �ν

Γ ν, z
2

4 t ;
z2

4

� �
: ð6Þ

Furthermore, the Shu function can be related to the leaky
aquifer function [5] (Table 1) by

Sν z, tð Þ = 1
2

z
2 t
� �ν

L−ν
z2

4 t , t
� �

: ð7Þ

Using this relation, the algorithm [15] proposed for the
computation of the numerical value of Lνðz, tÞ can be used
for the computation of Sνðz, tÞ.

3. Recurrence Relations

Two recurrence relations of the Shu function are derived in
this section.

Table 1: Various distinct incomplete versions of the Macdonald function.

Function Definition

Shu function [3] Sν z, tð Þ = 1
2

z
2
� �νðt

0

e−τ− z2/4τð Þ
τν+1

dτ

Generalized incomplete gamma function [4] Γ ν, t ; zð Þ =
ð∞
t
τν−1e−τ− z/τð Þdτ = 2zν/2Sν 2

ffiffiffi
z

p
, z
t

� �

Leaky aquifer function [5] Lν z, tð Þ =
ð∞
1

e−zτ− t/τð Þ

τν+1
dτ = 2 z

t

� �ν/2
S−ν 2

ffiffiffiffi
zt

p
, t

� �

Incomplete modified Bessel function [6] 1/2
ð∞
t
e−z cosh τð Þ cosh ν τð Þ dτ = 1/2 Sν + S−νð Þ z, z e−t/2

� �� �
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3.1. The First Recurrence Relation. Integrating (2) by parts,
we obtain

Sν z, tð Þ = −
1
2

z
2
� �ν e−τ− z2/4 τð Þ

ν τν

					
t

0+
+ 1
2

z
2
� �ν ðt

0

e−τ− z2/4 τð Þ
ν τν

� −1 + z2

4 τ2
� �

dτ:

ð8Þ

Here, note that

∂ Sν−1
∂ t

= 1
2

z
2
� �ν−1 e−t− z2/4 tð Þ

tν
: ð9Þ

Hence, we obtain

Sν = −
z
2 ν

∂ Sν−1
∂ t

−
z
2 ν Sν−1 +

z
2 ν Sν+1: ð10Þ

On simplifying this expression, we obtain the first

recurrence relation,

−
2 ν
z

Sν =
∂ Sν−1
∂ t

+ Sν−1 − Sν+1: ð11Þ

3.2. The Second Recurrence Relation. We differentiate (2)
with respect to z,

∂ Sν
∂ z

= ν

4
z
2
� �ν−1 ðt

0

e−τ− z2/4 τð Þ
τν+1

dτ −
1
2

z
2
� �ν+1 ðt

0

e−τ− z2/4 τð Þ
τν+2

dτ:

ð12Þ

Here,

ðt
0

e−τ− z2/4 τð Þ
τν+1

dτ = −
e−t− z2/4 tð Þ

ν tν
+
ðt
0

e−τ− z2/4 τð Þ
ν τν

−1 + z2

4 τ2
� �

dτ:

ð13Þ

Hence, we obtain

∂ Sν
∂ z

= −
1
4

z
2
� �ν−1 e−t− z2/4 tð Þ

tν
+ 1
4

z
2
� �ν−1 ðt

0

e−τ− z2/4 τð Þ
τν

� −1 + z2

4 τ2
� �

dτ −
1
2

z
2
� �ν+1 ðt

0

e−τ− z2/4 τð Þ
τν+2

dτ:

ð14Þ

On simplifying, we obtain the second recurrence relation,

−2 ∂ Sν
∂ z

= ∂ Sν−1
∂ t

+ Sν−1 + Sν+1: ð15Þ

4. Differential Relations

Two differential relations of the Shu function are derived in
this section.

4.1. The First Differential Relation. Adding the two recur-
rence relations (11) and (15), we obtain

−
∂ Sν
∂ z

−
ν

z
Sν = Sν−1 +

∂ Sν−1
∂ t

: ð16Þ

Premultiplying by zν, we get

∂
∂ z

zν Sνð Þ = − 1 + ∂
∂ t

� �
zν Sν−1ð Þ: ð17Þ

This differential relation may be extended as

1
z

∂
∂ z

� �k

zν Sνð Þ = −1ð Þk 1 + ∂
∂ t

� �k

zν−k Sν−k
� �

, k ∈ 0, 1, 2,⋯f g:

ð18Þ

4.2. The Second Differential Relation.We subtract the second
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Figure 1: Snðx, tÞ against real endpoint t > 0 for various values of
integer order n at x = 3.
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Figure 2: Snðx, tÞ against real argument x > 0 for various values of
integer order n at t = 3.
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recurrence relation (15) from (11),

−
∂ Sν
∂ z

+ ν

z
Sν = Sν+1: ð19Þ

Premultiplying by z−ν,

∂
∂ z

Sν
zν

� �
= −

Sν+1
zν

, ð20Þ

or

1
z

∂
∂ z

� �k Sν
zν

� �
= −1ð Þk Sν+k

zν+k

� �
, k ∈ 0, 1, 2,⋯f g: ð21Þ

5. Partial Differential Equation

Replacing ν by ν + 1 in (16), we obtain

−z Sν = z
∂ Sν
∂ t

+ z
∂ Sν+1
∂ z

+ ν + 1ð Þ Sν+1: ð22Þ

On differentiating (19) with respect to z, we get

ν
∂ Sν
∂ z

= Sν+1 + z
∂ Sν+1
∂ z

+ ∂ Sν
∂ z

+ z
∂2 Sν
∂ z2

: ð23Þ

From (19), (22), and (23), it is a straightforward exercise
to obtain the following PDE:

z2
∂2 Sν
∂ z2

+ z
∂ Sν
∂ z

− z2 + ν2
� �

Sν − z2
∂ Sν
∂ t

= 0: ð24Þ

The PDE can also be written as

Ω −
∂
∂ t

� �
Sν = 0, ð25Þ

where Ω represents the modified Bessel operator:

Ω ≡
1
z

∂
∂ z

z
∂
∂ z

� �
− 1 + ν2

z2

� �
: ð26Þ

This elegant parabolic PDE (25) arises naturally in a wide
variety of transient and diffusion-related phenomena.

6. Series Expansions

Two expansions as jtj⟶ 0 and jzj⟶ 0, respectively, are
derived in this section, in which jj denotes the modulus of a
complex number.

6.1. Series Expansion as jtj⟶ 0. We substitute the expan-
sion e−z

2/4y =∑∞
k=0ðð−1Þk/k!Þðz/2Þ2kð1/ykÞ as jyj⟶∞ in

(5) to obtain

Sν z, tð Þ = 〠
∞

k=0

−1ð Þk
2 k!

2
z

� �ν−2 k ð∞
z2/4 t

yν−k−1 e−y dy, ð27Þ

or

Sν z, tð Þ = 〠
∞

k=0

−1ð Þk
2 k!

2
z

� �ν−2 k
Γ ν − k, z

2

4 t

� �
: ð28Þ

The asymptotic expansion of the incomplete gamma
function Γðν, tÞ = Ð∞t τν−1e−τdτ for large jtj is given [4] by

Γ ν, tð Þ = tν−1 e−t 〠
∞

m=0
−1ð Þm 1 − νð Þm

1
t

� �m

, ð29Þ

where ðνÞm ≡ Γðm + νÞ/ΓðνÞ is the Pochhammer polynomial
and ΓðνÞ = Γðν, 0Þ = Ð∞0 τν−1e−τdτ is the gamma function.
We substitute the expansion (28) to get

Sν z, tð Þ = 〠
∞

m=0
〠
∞

k=0

−1ð Þm+k

2 k! 1 − ν + kð Þm
z
2
� �ν−2m−2 e−z

2/4t

tν−m−k−1 :

ð30Þ

The leading term approximation is given by

Sν z, tð Þ ~ 1
2

z
2
� �ν−2 e− z2/4t

tν−1
1 +O tj jð Þ½ � as tj j⟶ 0: ð31Þ

The leading term approximation to the actual value of
the Shu function Snðx, tÞ of integer order n and real argu-
ment x > 0 for small endpoint t is shown in Figure 3. As
can be observed, the agreement is better for higher integer
order n.

6.2. Series Expansion as jzj⟶ 0. We substitute the expan-

sion e−z
2/4τ =∑∞

k=0ðð−1Þk/k!Þð1/τkÞðz/2Þ
2k

as jzj⟶ 0 in (3)
to get

Sν z, tð Þ = Kν zð Þ − 〠
∞

k=0

−1ð Þk
2 k!

z
2
� �ν+2 k ð∞

t

e−τ

τν+k+1
dτ: ð32Þ

This expansion can be expressed in a more compact form
by using the incomplete gamma function Γðν, tÞ:

Sν z, tð Þ = Kν zð Þ − 〠
∞

k=0

−1ð Þk Γ −ν − k, tð Þ
2 k!

z
2
� �ν+2 k

: ð33Þ

By using the approximation [4] of KνðzÞ for small jzj,
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in which the signum function

sgn yð Þ =
1 y > 0
0 y = 0
−1 y < 0

8>><
>>: = 2

π

ð∞
0

sin yτð Þ
τ

dτ: ð35Þ

The leading term approximation is given by

which agrees with the known result by Shu and Chwang [3]
for the case of ν = 0. The leading term approximation to the
actual value of the Shu function Snðx, tÞ of integer order n

and real endpoint t > 0 for small argument x is shown in
Figure 4. As can be observed, the agreement is better for
lower integer order n.

Actual value
Leading term approximation

t

S2 (3, t)

S3 (3, t)

S
n
 (x

, t
)

S1 (3, t)

S0 (3, t)

0.03
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0.01

0
0 0.2 0.4 0.6 0.8 1

Figure 3: Leading term approximation for t⟶ 0+.

Kν zð Þ ~
−ln zð Þ 1 +O

1
ln zj jð Þ
� �
 �

, ν = 0,

2ν sgn Re νð Þð Þ−1 Γ ν sgn Re νð Þð Þð Þ
zν sgn Re νð Þð Þ 1 +O zj j2 ln zj jð Þ +O zj j2 Re νð Þj j

� �� �h i
, ν ≠ 0,

8>>><
>>>:

 as zj j⟶ 0, ð34Þ

Sν z, tð Þ ~
−ln zð Þ 1 +O

1
ln zj jð Þ
� �
 �

, ν = 0,

2ν sgn Re νð Þð Þ−1 Γ ν sgn Re νð Þð Þð Þ
zν sgn Re νð Þð Þ 1 +O zj j2 ln zj jð Þ +O zj j2 Re νð Þj j

� �� �h i
, ν ≠ 0,

8>>><
>>>:

 as zj j⟶ 0, ð36Þ
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7. Asymptotic Expansions

Two asymptotic expansions for both large jtj with fixed z and
large jzj with fixed t, respectively, are derived in this section.

7.1. Asymptotic Expansion as jtj⟶∞. We use the expan-
sions (29) and (33) to get

Sν z, tð Þ = Kν zð Þ − 〠
∞

m=0
〠
∞

k=0

−1ð Þm+k ν + k + 1ð Þm
2k!

z
2
� �ν+2k e−t

tν+m+k+1 :

ð37Þ

The leading term approximation is given by

Sν z, tð Þ ~ Kν zð Þ 1 +O
e− Re tð Þj j

tj j1+Re νð Þ

 !" #
as tj j⟶∞: ð38Þ

The leading term approximation to the actual value of
the Shu function Snðx, tÞ of integer order n and real argu-
ment x > 0 for large endpoint t is shown in Figure 5. As
can be observed, the agreement is excellent for all integer
order n.

7.2. Asymptotic Expansion as jzj⟶∞. We consider an
integral of the form f ðzÞ = Ð bae−zpðwÞqðwÞdw. If Re ðpðcÞÞ >
Re ðpðaÞÞ, ∀c ∈ ða, bÞ, and qðwÞ =∑∞

k=0qkðw − aÞk, dpðwÞ/d
w =∑∞

k=0ðk + 1Þpkðw − aÞk, then by the generalization of
Laplace’s method [16] for complex integration,

f zð Þ = e−z p að Þ 〠
∞

k=0
Γ k + 1ð Þ ck

zk+1
, ð39Þ

where the first two coefficients c0 and c1 are given by

c0 =
q0
p0

,

c1 =
p0 q1 − 2 p1 q0

p30
:

ð40Þ

We use (4) to derive the asymptotic expansion for large
jzj and note that qðwÞ = eνw and pðwÞ = cosh ðwÞ. The func-
tion Re ðpðwÞÞ = Re ðcosh ðwÞÞ attains minima at ζ = a = ln
ðz/2tÞ. Hence, qðwÞ = eνw ~ eν ζ + ν eν ζ ðw − ζÞ +O½jw − ζj2�
and dpðwÞ/dw = sinh ðwÞ ~ sinh ðζÞ + cosh ðζÞðw − ζÞ +O½
jw − ζj2�. Following (39), the asymptotic expansion as jzj
⟶ +∞ with fixed t can be easily derived:

Sν z, tð Þ ~ eν ζ−z cosh ζð Þ

2 z sinh ζð Þ 1 +O
1
zj j

� �
 �
: ð41Þ

The leading term approximation is given by

Sν z, tð Þ ~ zν e− z2/4tð Þ−t
2 tð Þν−1 z2 − 4 t2ð Þ 1 +O

1
zj j

� �
 �
as zj j⟶∞:

ð42Þ

It is worth mentioning at this end that the incomplete
modified Bessel function,

1
2

ð∞
t
e−z cosh τð Þ cosh ν τð Þ dτ = 1

2 Sν + S−νð Þ z, z e
−t

2

� �

~ cosh ν tð Þ e−z cosh tð Þ

2 z sinh tð Þ 1 +O
1
zj j

� �
 �
as zj j⟶∞,

ð43Þ

which agrees with the result of Cicchetti and Faraone [6], but
their expression is extremely complicated. The leading term
approximation to the actual value of the Shu function Snðx,
tÞ of integer order n and real endpoint t > 0 for large argu-
ment x is shown in Figure 6. As can be observed, the agree-
ment is better for lower integer order n.

8. Conclusions

A number of key properties of the incomplete Macdonald
function have been derived, comprising recurrence and
differential relations and series and asymptotic expansions.
As can be observed graphically, the agreement is found
between the actual value and the corresponding leading term
approximation for all limiting cases. It is also shown that the
incomplete Macdonald function is a particular solution to the
parabolic PDE associated with a wide variety of transient
natural phenomena. The Shu function and other distinct
incomplete versions of the Macdonald function can be used
to find simple closed-form expressions for various natural
phenomena.
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