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In this manuscript, we define the notion of Geraghty type hybrid contractions in the setting of b-metric spaces. We prove the
existence of a fixed point for such mappings whenever b-metric space is complete. Our observed results not only unify several
existing results but also extend some known results.

1. Introduction and Preliminaries

The distance notion is one of the ancient and most basic con-
cepts in the history of mathematics. In modern mathematics
history, this notion was formally formulated by Frechét as “L
-space.” Later, it was redefined as “metric space” by
Hausdorff. After then, this concept has been extended and
generalized in several ways. From all these generalizations
of metric notions, the b-metric is the most interesting.

In order to introduce the subject clearly, we first fix the
basic concepts and notations. A function δ, defined from X
× X (where X is a nonempty set) to nonnegative reals, is said
to be a distance function, if it is symmetrical, that is δðu, νÞ
= δðν, uÞ, for every u, ν ∈ X and δðu, νÞ = 0 if and only if
u = ν.

Moreover, a distance function δ is a (standard) metric in
case that

δ u, vð Þ ≤ δ u, νð Þ + δ ν, vð Þ, for all u, v, ν ∈ X: ð1Þ

As we mentioned above, the distance notion, as well as the
notion of the metric, has been extended and generalized in
several directions. One of the outstanding generalizations of
metric notion is named b-metric. Indeed, the concept of b
-metric was considered by distinct authors, in various periods
of the time, involving Bakhtin [1] and Czerwik [2]. Later,
many researchers were interested in this topic, and thus, a
series of interesting results were obtained, see, e.g., [3–19].

Definition 1. A distance function b on X is said to be a b
-metric over constant s ≥ 1 if the inequality (weighted trian-
gle inequality)

b u, vð Þ ≤ s b u, νð Þ + b ν, vð Þ½ �, ð2Þ

holds for all u, v, ν ∈ X.

In what follows, we consider that ðX, b, sÞ denotes a b
-metric space.

An immediate observation is that the notion of b-metric
is more general than the concept of metric; for instance,
when s = 1, we recover the notion of metric space. Moreover,
we mention that a b-metric is not necessarily continuous, see,
e.g., [20, 21].

Example 2. The function b on X = ½0,∞Þ, where bðu, νÞ =
ju − νjq, q > 1, is a b -metric over s = 2q, but not a metric.

Definition 3. On a b -metric space ðX, b, sÞ, let fung be a
sequence in X.

(a) The sequence fung is convergent in ðX, b, sÞ to u, if
for every e > 0, there exists n0 ∈ℕ such that bðun, uÞ
< e for all n > n0. (We denote by un → u as n→∞
or lim

n→∞
un = u.)
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(b) The sequence fung is Cauchy, if for every e > 0,
there exists n0 ∈ℕ such that bðun, un+lÞ < e for all
n > n0, l > 0

(c) If every Cauchy sequence in X converges to a point
u ∈ X, then the triplet ðX, b, sÞ is said to be complete

In short, ðX∗, b, sÞ denotes a complete b-metric space
over s.

Recently, Mitrovic et al. [22] introduced the following
type of contractions.

Definition 4 (see [22]). Let ðX, b, sÞ and T : X→ X be a self-
mapping. We say that T is a ðr, aÞ -weight type contraction,
if there exists κ ∈ ½0, 1Þ such that

b Tu, Tνð Þ ≤ κ ·Mr T , u, ν, að Þ, ð3Þ

where r ≥ 0, a = ða1, a2, a3Þ,ai ≥ 0, i = 1, 2, 3 such that a1 + a2
+ a3 = 1 and

Mr T , u, ν, að Þ = a1 b u, νð Þð Þr + a2 b u, Tuð Þð Þr + a3 b ν, Tνð Þð Þr½ �1/r , r > 0
b u, νð Þð Þa1 b u, Tuð Þð Þa2 b ν, Tνð Þð Þa3 , r = 0,

(

ð4Þ

for all u, ν ∈ X \ FixðTÞ, where FixðTÞ = fϖ ∈ X, Tϖ = ϖg.

In 1973, Geraghty [23] introduced a class of auxiliary
functions to refine the Banach contraction principle. Let G
be the set defined as

G = βb : 0,∞½ Þ→ 0, 1½ Þ ∣ lim
n→∞

βb tnð Þ = 1 implies lim
n→∞

tn = 0
n o

:

ð5Þ

Theorem 5 (see Geraghty [23]). On a complete metric space
ðX, dÞ, a mapping T : X→ X admits a unique fixed point pro-
vided that there exists a function β ∈ G such that

d Tu, Tνð Þ ≤ β d u, νð Þð Þd u, νð Þ, for any u, ν ∈ X: ð6Þ

2. Main Results

Let the set Gb = fβb : ½0,∞Þ→ ½0, ð1/sÞÞ ∣ lim sup
n→∞

βbðtnÞ =
ð1/sÞ implies lim

n→∞
tn = 0:g.

Definition 6. On ðX, b, sÞ, a mapping T : X→ X is called
Geraghty type hybrid contraction, if there exists βb ∈ Gb such
that

b Tu, Tνð Þ ≤ βb Mr T , u, ν, að Þð ÞMr T , u, ν, að Þ, ð7Þ

where r ≥ 0, a = ða1, a2, a3Þ ∈ ½0,∞Þ × ½0,∞Þ × ½0,∞Þ, with
a1 < 1, a1 + a2 + a3 = 1 and

Mr T , u, v, að Þ

=
a1 b u, vð Þð Þr + a2 b u, Tuð Þð Þr + a3 b v, Tvð Þð Þr½ �1/r , r > 0, u, v ∈ X

b u, vð Þð Þa1 b u, Tuð Þð Þa2 b v, Tvð Þð Þa3 , r = 0, u, v ∈ X \ Fix Tð Þ:

8<
:

9=
;

ð8Þ

Theorem 7. On ðX∗, b, sÞ, a Geraghty type hybrid contraction
T : X→ X admits a unique fixed point ϖ ∈ X if one of the
following hypotheses is satisfied:

(i) T is continuous at ϖ

(ii) a2 < 1

(iii) a3 < 1

Moreover, for any u0 ∈ X the sequence fTnu0g converges
to ϖ.

Proof. We take an arbitrary point u0 ∈ X. Starting from this
initial point, we shall construct a recursive sequence fung
with the following formula:

un+1 = Tun for all n ≥ 0: ð9Þ

It is evident that if there exists k0 such that uk0 = uk0+1,
then uk0 becomes a fixed point of T . Therefore, from now,
we assume that

un ≠ un+1for all n ≥ 0: ð10Þ

We shall discuss all possible situations.

Case 8. Suppose that r > 0: From (7), we have that

b Tun, Tun−1ð Þ ≤ βb Mr T , un, un−1, að Þð ÞMr T , un, un−1, að Þ,
ð11Þ

where

Mr T , un, un−1, að Þ = a1 b un, un−1ð Þð Þr + a2 b un, un+1ð Þð Þr½
+ a3 b un−1, unð Þð Þr�1/r:

ð12Þ

It yields

b un+1, unð Þ ≤ βb a1 + a3ð Þ b un, un−1ð Þð Þr + a2b un, un+1ð Þr½ �1/r
� �

· a1 + a3ð Þ b un, un−1ð Þð Þr + a2b un, un+1ð Þr½ �1/r
ð13Þ

which is equivalent to
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b un+1, unð Þ
a1 + a3ð Þ b un, un−1ð Þð Þr + a2b un, un+1ð Þ�r½ �1/r

≤ βb a1 + a3ð Þ b un, un−1ð Þð Þr + a2b un, un+1ð Þr½ �1/r
� �

< 1
s
:

ð14Þ

Therefore, we have

b un+1, unð Þ < a1 + a3ð Þ
sr − a2

� �1/r
b un, un−1ð Þ ≤ b un, un−1ð Þ: ð15Þ

It yields fbðun+1, unÞg is nonincreasing sequence
bounded by 0. Thus, the sequence fbðun+1, unÞg converges
to a nonnegative real number, say L. We assert that L is 0.
On the one hand, by taking the lim sup of all sides of (13),
we deduce that

L ≤ lim sup βb
n→∞

a1 + a3ð Þ b un, un−1ð Þð Þr + a2b un, un+1ð Þr½ �1/r
� �

L < 1
s
L:

ð16Þ

Suppose on the contrary, that L > 0, we obtain

1
s
≤ 1 ≤ lim sup

n→∞
βb a1 + a3ð Þ b un, un−1ð Þð Þr + a2b un, un+1ð Þr½ �1/r
� �

< 1
s
:

ð17Þ

Thus, the limit limn→∞½ða1 + a3Þðbðun, un−1ÞÞr + a2b
ðun, un+1Þr�1/r = 0. Consequently, L = 0.

We assert that the sequence fung is b-Cauchy.
On contrary, supposing that the sequence fung is not b

-Cauchy, we can find e > 0 and two sequences of positive
integers fqig and fpig, pi > qi ≥ i such that

b uqi , upi
� �

≥ e and b uqi , upi−1
� �

< e, ð18Þ

e ≤ lim inf
i→∞

b uqi , upi
� �

≤ lim sup
i→∞

b uqi , upi
� �

≤ se

e
s
≤ lim inf

i→∞
b uqi+1, upi
� �

≤ lim sup
i→∞

b uqi+1, upi
� �

≤ s2e

e
s
≤ lim inf

i→∞
b uqi , upi+1
� �

≤ lim sup
i→∞

b uqi , upi+1
� �

≤ s2e

e
s2

≤ lim inf
i→∞

b uqi+1, upi+1
� �

≤ lim sup
i→∞

b uqi+1, upi+1
� �

≤ s3e:

ð19Þ
On the other hand,

e
s
≤ b uqi+1, upi
� �

= b Tuqi , Tupi−1
� �

≤ βb Mr T , uqi , upi−1, a
� �� �

Mr T , uqi , upi−1, a
� �

< 1
s
Mr T , uqi , upi−1, a
� � ð20Þ

where

Mr T , uqi , upi−1, a
� �

= a1 b uqi , upi−1
� �� �r

+ a2 b uqi , Tuqi
� �� �rh

+ a3 b upi−1, Tupi−1
� �� �ri1/r

= a1 b uqi , upi−1
� �� �r

+ a2 b uqi , uqi+1
� �� �rh

+ a3 b upi−1, upi
� �� �ri1/r

ð21Þ

Taking lim sup of (21), we find

lim sup
i→∞

Mr T , uqi , upi−1, a
� �

≤ a1/r1 e < e: ð22Þ

If we combine the observed inequalities above, in partic-
ular, (20) and (22), we have

e
s
≤ lim sup

i→∞
b uqi+1, upi
� �

≤ lim sup
i→∞

βb Mr T , uqi , upi−1, a
� �� �

Mr T , uqi , upi−1, a
� �

< elim sup
i→∞

βb Mr T , uqi , upi−1, a
� �� �

< e
s
,

ð23Þ

since a1 < 1. It implies that

1
s
≤ lim sup

i→∞
βb Mr T , uqi , upi−1, a

� �� �
≤
1
s
: ð24Þ

Since βb ∈ Gb, we conclude limi→∞MrðT , uqi , upi−1, aÞ = 0.
Attendantly,

lim
i→∞

n uqi , upi−1
� �

= 0: ð25Þ

Under these observations, by employing the weighted
triangle axiom together with (18), we get

e ≤ b uqi , upi
� �

≤ s b uqi , upi−1
� �

+ b upi−1, upi
� �h i

→ 0asi→∞:

ð26Þ

Therefore, fung is a b-Cauchy sequence in ðX∗, b, sÞ, so we
can find a point ϖ ∈ X such that

lim
n→∞

un = ϖ: ð27Þ

We assert now that this point, ϖ is a fixed point of T.

(i) Assuming that the mapping T is continuous at ϖ ∈ X,
since lim

n→∞
bðϖ, un+1Þ = 0, we have
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lim
n→∞

b Tun, Tϖð Þ = b Tϖ, Tϖð Þ = 0 ð28Þ

and from (49), we get bðϖ, TϖÞ = 0, i.e., Tϖ = ϖ.
For the other cases, we consider the inequality,

b ϖ, Tϖð Þ ≤ s b ϖ, un+1ð Þ + b Tun, Tϖð Þ½ �, ð29Þ

for any n ∈ℕ.

(ii) Suppose that a2 < 1. If Tϖ ≠ ϖ, we have

0 < b Tϖ, ϖð Þ ≤ s b Tϖ, un+1ð Þ + b un+1, ϖð Þ½ �
= s b Tϖ, Tunð Þ + b un+1, ϖð Þ½ �
≤ s βb Mr T , ϖ, un, að Þð ÞMr T , ϖ, un, að Þ + b un+1, ϖð Þ½ �
<Mr T , ϖ, un, að Þ + sb un+1, ϖð Þ
= a1 b ϖ, unð Þð Þr + a2 b ϖ, Tϖð Þð Þr + a3 b un, Tunð Þð Þr½ �1/r

+ sb un+1, ϖð Þ
ð30Þ

and when n→∞, we get

0 < b Tϖ, ϖð Þ ≤ a2ð Þ1/rb Tϖ, ϖð Þ: ð31Þ

Since a2 < 1, we get a contradiction, that is, Tϖ = ϖ.

(iii) Suppose that a3 < 1:Assuming that bðTϖ, ϖÞ > 0, we
have

0 < b ϖ, Tϖð Þ ≤ s b ϖ, un+1ð Þ + b un+1, Tϖð Þ½ �
= s b ϖ, un+1ð Þ + b Tun, Tϖð Þ½ �
≤ s b ϖ, un+1ð Þ + βb Mr T , un, ϖ, að Þð ÞMr T , un, ϖ, að Þ½ �
< sb ϖ, un+1ð Þ +Mr T , un, ϖ, að Þ� ≤ sb ϖ, un+1ð Þ

+ a1 b un, ϖð Þð Þr + a2 b un, un+1ð Þð Þr + a3 b ϖ, Tϖð Þð Þr½ �1/r:
ð32Þ

Taking n→∞, we have

0 < b Tϖ, ϖð Þ ≤ a3ð Þ1/rb Tϖ, ϖð Þ, ð33Þ

which is a contradiction, since a3 < 1. Therefore, Tϖ = ϖ.

Case 9. r = 0: Here, (7) and (8) become

b Tu, Tνð Þ ≤ βb I T , u, ν, að Þð ÞI T , u, ν, að Þ, ð34Þ

for every u, ν ∈ X, where

I T , u, ν, að Þ≔ b u, νð Þð Þa1 b u, Tuð Þð Þa2 b ν, Tνð Þð Þ1−a1−a2
ð35Þ

κ ∈ ½0, 1Þ and a1, a2 ∈ ð0, 1Þ.

As in the proof of the case r > 0, we shall consider a recur-
sive sequence fun = Tun−1g, starting with an arbitrary point
u ∈ X where u0 = u. By using the same argument of this part
of the proof, we presume that

un ≠ un+1 for all n ≥ 0: ð36Þ

Employing u = un−1 and ν = un in (34), we find that

b un, un+1ð Þ = b Tun−1, Tunð Þ ≤ βb b un−1, unð Þð Þa1ð
� b un−1, Tun−1ð Þð Þa2 b un, Tunð Þð Þ1−a1−a2�
· b un−1, unð Þð Þa1 b un−1, Tun−1ð Þð Þa2
� b un, Tunð Þð Þ1−a1−a2

= βb b un−1, unð Þð Þa1+a2 b un, un+1ð Þð Þ1−a1−a2� �
� b un−1, unð Þð Þa1+a2 b un, un+1ð Þð Þ1−a1−a2

< 1
s
b un−1, unð Þð Þa1+a2 b un, Tunð Þð Þ1−a1−a2

≤ b un−1, unð Þð Þa1+a2 b un, Tunð Þð Þ1−a1−a2
ð37Þ

It yields that

b un, un+1ð Þð Þa1+a2 ≤ b un−1, unð Þð Þa1+a2 if f b un, un+1ð Þ
≤ b un−1, unð Þ, ð38Þ

for each n ∈ℕ. Attendantly, we deduce that the sequence of
nonnegative numbers fbðun−1, unÞg is a nonincreasing
sequence. Ergo, there is a real number L ≥ 0 such that
limn→∞bðun−1, unÞ = L.

As in the previous case, we assert that L = 0. Supposing
on the contrary, that L > 0, by taking lim sup in (37), we
derive that

L ≤ lim sup
n→∞

βb b un−1, unð Þð Þa1 b un−1, Tun−1ð Þð Þa2ð

� b un, Tunð Þð Þ1−a1−a2�L: ð39Þ

Since L > 0, we obtain

1
s
≤ 1 ≤ lim sup

n→∞
βb b un−1, unð Þð Þa1 b un−1, unð Þð Þa2ð

� b un, un+1ð Þð Þ1−a1−a2� 1
s
:

ð40Þ

Thus, limn→∞ððbðun−1, unÞÞa1+a2ðbðun, un+1ÞÞ1−a1−a2Þ = 0
and consequently, L = 0.

We claim that fung is a b-Cauchy sequence. On contrary,
if we suppose that fung is not a b-Cauchy sequence, that is,
we can find e > 0 and the sequences fqig, fpig of positive
integers with pi > qi ≥ i such that

b uqi , upi
� �

≥ e and b uqi , upi−1
� �

< e: ð41Þ
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By the weighted triangle inequality, we have

e ≤ b uqi , upi
� �

≤ s b uqi , uqi+1
� �

+ b uqi+1, upi
� �h i

: ð42Þ

Since

b uqi+1, upi
� �

= b Tuqi , Tupi−1
� �

≤ βb I T , uqi , upi−1, a
� �� �

I T , uqi , upi−1, a
� �

< 1
s
I T , uqi , upi−1, a
� �

ð43Þ

where

I T , uqi , upi−1, a
� �

= b uqi , upi−1
� �� �a1

b uqi , Tuqi
� �� �a2

� b upi−1, Tupi−1
� �� �1−a1−a2

= b uqi , upi−1
� �� �a1

b uqi , uqi+1
� �� �a2

� b upi−1, upi
� �� �1−a1−a2 ,

ð44Þ

taking lim sup of (43), we find

lim sup
i→∞

I T , uqi , upi−1, a
� �

= 0 and hence lim sup
i→∞

b uqi+1, upi
� �

= 0:

ð45Þ

If we combine the observed inequalities above, in partic-
ular, (42) and (45), we get that we get

e ≤ b uqi , upi
� �

≤ s b uqi , uqi+1
� �

+ b uqi+1, upi
� �h i

→ 0, asi→∞:

ð46Þ

Therefore, the sequence fung is b-Cauchy in ðX∗, b, sÞ, so
it is convergent at a point ϖ ∈ X, that is

lim
n→∞

un = ϖ: ð47Þ

Now, we assert that ϖ is a fixed point of T .
If the assumption (i) holds, since lim

n→∞
bðϖ, un+1Þ = 0 we

get

lim
n→∞

b Tun, Tϖð Þ = b Tϖ, Tϖð Þ = 0 ð48Þ

and from the inequality

b ϖ, Tϖð Þ ≤ s b ϖ, un+1ð Þ + b Tun, Tϖð Þ½ , ð49Þ

for any n ∈ℕ, we obtain bðϖ, TϖÞ = 0, i.e., Tϖ = ϖ.

Suppose that a2 < 1 or a3 < 1. Assuming that Tϖ ≠ ϖ, we
have

0 < b Tϖ, ϖð Þ ≤ s b Tϖ, un+1ð Þ + b un+1, ϖð Þ½ �
= s b Tϖ, Tunð Þ + b un+1, ϖð Þ½ �
≤ s βb I T , ϖ, un, að Þð ÞI T , ϖ, un, að Þ + b un+1, ϖð Þ½ �
< I T , ϖ, un, að Þ + sb un+1, ϖð Þ
= b ϖ, unð Þð Þa1 b ϖ, Tϖð Þð Þa2 b un, Tunð Þð Þ1−a1−a2� 	

+ sb un+1, ϖð Þ:

ð50Þ

At the limit as n→∞, we have bðTϖ, ϖÞ = 0: So, Tϖ = ϖ.

Example 10. We shall derive several distinct contractions
from Definition 6. Some examples are given below. Let T
be a self-mapping on X.

(1) If r = 2, a = ð1/3, 1/3, 1/3Þ, we obtain the following
condition

b Tu, Tνð Þ ≤ βb
1ffiffiffi
3

p b2 u, νð Þ + b2 u, Tuð Þ + b2 ν, Tνð Þ� 	1/2� �

� 1ffiffiffi
3

p b2 u, νð Þ + b2 u, Tuð Þ + b2 ν, Tνð Þ� 	1/2� �
ð51Þ

(2) If r = 1, a = ð1/3, 1/3, 1/3Þ, we obtain the following
condition

b Tu, Tνð Þ ≤ βb
1
3 b u, νð Þ + b u, Tuð Þ + b ν, Tνð Þ½ �
� �

� 1
3 b u, νð Þ + b u, Tuð Þ + b ν, Tνð Þ½ �
� � ð52Þ

(3) If r = 0, a = ð0, a1, 1 − a1Þ with a1 ∈ ð0, 1Þ, we obtain

b Tu, Tνð Þ ≤ βb b u, Tuð Þð Þa1b ν, Tνð ÞÞ1−a1� �
� b u, Tuð Þð Þa1 b ν, Tνð Þð Þ1−a1

ð53Þ

which means that T is an interpolative Kannan type
Geraghty-contraction;

(4) If r = 0, a = ða1, a2, 1 − a1 − a2Þwith a1, a2 ∈ ð0, 1Þ, we
have

b Tu, Tνð Þ ≤ βb b u, νð Þð Þa1 b u, Tuð Þð Þa2 b ν, Tνð Þð Þ1−a1−a2� �
� b u, νð Þð Þa1 b u, Tuð Þð Þa2 b ν, Tνð Þð Þ1−a1−a2

ð54Þ
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that is T is an interpolative Reich-Rus-C′iric′ type Geraghty-
contraction.

Related to these examples, we can establish some conse-
quences, by choosing proper values for r, a1, a2, a3 in
Theorem 15.

Corollary 11. Let ðX∗, b, sÞ and a self-mapping T on X. If
there exists a function βb ∈ Gb such that

b Tu, Tνð Þ ≤ βb

b2 u, νð Þ + b2 u, Tuð Þ + b2 ν, Tνð Þ� 	1/2ffiffiffi
3

p
 !

� b2 u, νð Þ + b2 u, Tuð Þ + b2 ν, Tνð Þ� 	1/2ffiffiffi
3

p ,

ð55Þ

for all u, ν ∈ X then T admits a unique fixed point ϖ ∈ X.

Corollary 12. Let ðX∗, b, sÞ and a self-mapping T on X. If
there exists a function βb ∈ Gb such that

b Tu, Tνð Þ ≤ βb
b u, νð Þ + b u, Tuð Þ + b ν, Tνð Þ

3

� �

� b u, νð Þ + b u, Tuð Þ + b ν, Tνð Þ
3

,
ð56Þ

for all u, ν ∈ X then T admits a unique fixed point ϖ ∈ X.

Corollary 13. Let ðX∗, b, sÞ be a complete b -metric space, a
self-mapping T on X and a1 ∈ ð0, 1Þ. If there exists a function
βb ∈ Gb such that

b Tu, Tνð Þ ≤ βb b u, Tuð Þð Þa1 b ν, Tνð Þð Þ1−a1� �
� b u, Tuð Þð Þa1 b ν, Tνð Þð Þ1−a1� �

,
ð57Þ

for all u, ν ∈ XFixðTÞ, then T admits a fixed point ϖ ∈ X.

Corollary 14. Let ðX∗, b, sÞ be a complete b-metric space, a
self-mapping T on X and a1, a2 ∈ ð0, 1Þ. If there exists a func-
tion βb ∈ Gb such that

b Tu, Tνð Þ ≤ βb b u, νð Þð Þa1 b u, Tuð Þa2ð b ν, Tνð Þð Þ1−a1−a2� �
� b u, νð Þð Þa1 b u, Tuð Þa2ð b ν, Tνð Þð Þ1−a1−a2� �

,
ð58Þ

for all u, ν ∈ X \ FixðTÞ, then T admits a fixed point ϖ ∈ X.

3. Immediate Consequences

By letting βbðtÞ = κ, we shall observe the Definition 4, [22].

Theorem 15 (see [22]). Let ðX∗, b, sÞ. A ðr, aÞ -weight type
contraction mapping T : X→ X admits a fixed point ϖ ∈ X
if one of the following holds:

(i) T is continuous at such point ϖ

(ii) sra2 < 1

(iii) sra3 < 1

Moreover, for any u0 ∈ X the sequence fTnu0g converges
to ϖ:

We list the following corollaries.

Corollary 16. On the complete b -metric space ðX∗, b, sÞ let
T : X→ X be a mapping. If there exists κ ∈ ½0, 1Þ such that

b Tu, Tνð Þ ≤ κ · ba1 u, νð Þ · ba2 u, Tuð Þ · ba3 ν, Tνð Þ, ð59Þ

for all u, ν ∈ X \ FixðTÞ, a1, a2, a3 ≥ 0 and ∑3
i=1 ai = 1, then T

has a fixed point ϖ ∈ X. u0 ∈ X the sequence fTnu0g converges
to ϖ.

Proof. Put in Theorem 15, r = 0 and a = ða1, a2, a3Þ:

Corollary 17. On the complete b -metric let T : X→ X be a
mapping such that

b Tu, Tνð Þ ≤ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b u, νð Þb u, Tuð Þb ν, Tνð Þ3

p
, ð60Þ

for all u, ν ∈ X \ FixðTÞ, where κ ∈ ½0, 1Þ: Then, T has a fixed
point ϖ ∈ X.

Proof. Put in Theorem 15, r = 0 and a = ð1/3, 1/3, 1/3Þ:

Corollary 18. Let ðX∗, b, sÞ be a complete b -metric space and
T : X→ X be a mapping such that for every u, ν ∈ X \ FixðTÞ

b Tu, Tνð Þ ≤ κ

3
b u, νð Þ + b u, Tuð Þ + b ν, Tνð Þ½ �, ð61Þ

where κ ∈ ½0, 1Þ: The mapping T has a fixed point ϖ provided
that one of the following hold:

(i) T is continuous at ϖ ∈ X

(ii) s < 3

Then, T has a fixed point ϖ. Moreover for any u0 ∈ X, the
sequence fTnu0g converges to ϖ.

Proof. Let r = 1 and a = ð1/3, 1/3, 1/3Þ in Theorem 15.

Corollary 19. Let ðX∗, b, sÞ be a complete b -metric space and
T : X→ X be a mapping such that

b Tu, Tνð Þ ≤ κffiffiffi
3

p b2 u, νð Þ + b2 u, Tuð Þ + b2 ν, Tνð Þ� 	1/2, ð62Þ

for all u, ν ∈ XFixðTÞ, where κ ∈ ½0, 1Þ: Assume that one of the
following conditions hold:

(i) T is continuous at ϖ ∈ X
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(ii) s2 < 3

Then, T has a fixed point ϖ and for any u0 ∈ X, the
sequence fTnu0g converges to ϖ.

Proof. Take r = 2 and a = ð1/3, 1/3, 1/3Þ in Theorem 15.

Corollary 20 (see [24]). Let ðX∗, b, sÞ, T be a self-mapping on
X and a1 ∈ ð0, 1Þ. If there exists a function βb ∈ Gb such that

b Tu, Tνð Þ ≤ κ · ba1 u, Tuð Þ b1−a1 ν, Tνð Þ, ð63Þ

for all u, ν ∈ inX \ FixðTÞ; then, T admits a unique fixed point
ϖ ∈ X.

Proof. Choose βbðtÞ = κ in Corollary 13.

Corollary 21 (see [25]). Let ðX∗, b, sÞ, T be a self-mapping on
X and a1, a2 ∈ ð0, 1Þ. If there exists κ ∈ ð0, 1Þ such that

b Tu, Tνð Þ ≤ κ · ba1 u, νð Þ ba2 u, Tuð Þ b1−a1−a2 ν, Tνð Þ, ð64Þ

for all u, ν ∈ inX \ FixðTÞ; then, T admits a unique fixed point
ϖ ∈ X.

Proof. Choose βbðtÞ = κ in Corollary 14.

4. Conclusions

In this paper, we combine linear and nonlinear contractions
to unify and extend the several existing results. This
approach may bring new frames to the topic of metric fixed
point theory. In particular, interpolative contraction may
extend several results in the setting of Banach space.

We also mention that, for the case s = 1, we find a
series of results known in the context of metric spaces,
see, e.g., [25–36].
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