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In this paper, we are concerned with the well-posedness of a fractional model of human immunodeficiency virus infection. Namely,
using Grönwall’s lemma and Perov’s fixed point theorem, we obtain sufficient conditions for which the considered model admits a
unique solution.

1. Introduction

The human immunodeficiency virus (HIV) is one of the
world’s leading infectious diseases. A big number of people
have died around the globe due to this disease. HIV infects
vital cells in the human immune system, such as CD4+ T
cells. In this way, the body becomes progressively more sus-
ceptible to opportunistic infections, leading to the develop-
ment of AIDS (acquired immunodeficiency syndrome) (see,
e.g., [1, 2]).

Mathematical models play an important role in under-
standing the dynamics of HIV infection. The dynamical
models for HIV usually consist of systems of ordinary differ-
ential equations which range from two-component models
(see, e.g., [3, 4]) to three-component (see e.g. [5–7]) and
four-component models (see, e.g., [8]). In particular, in [3],
the following two-cell model was proposed to describe the
HIV infection:

u′ tð Þ = κ − σu tð Þ − δu tð Þv tð Þ,
v′ tð Þ = δu tð Þv tð Þ − τv tð Þ,

(
ð1Þ

where u is the density of uninfected CD4+ T cells, v is the
density of virus-producing cells, κ is the rate of production
of CD4+ T cells, σ is their per capita death rate, δ is the rate
of infection of CD4+ T cells, and τ is the rate of disappear-
ance of infected cells.

Due to the importance of fractional calculus in modeling
real-world phenomena (see, e.g., [9–12] and the references
therein), a great attention was paid to the study of fractional
models of HIV infection of CD4+ T cells (see, e.g., [13–17]
and the references therein).

In this paper, a fractional model of (1) is investigated.
Namely, we are concerned with the system of fractional dif-
ferential equations

CDα,ψ
0 u

� �
tð Þ = Iμ,ψ0 κ − σu − δuvð Þ tð Þ, 0 ≤ t ≤ T ,

CDβ,ψ
0 v

� �
tð Þ = Iν,ψ0 δuv − τvð Þ tð Þ, 0 ≤ t ≤ T ,

8<
: ð2Þ

subjet to the initial conditions

u 0ð Þ, v 0ð Þð Þ = u0, v0ð Þ, ð3Þ

where T > 0, u0, v0 ≥ 0, 0 < α, β < 1, μ ≥ 1 − α, ν ≥ 1 − β, ψ ∈
C1ð½0, T�Þ, ψ′ > 0, CDℓ,ψ

0 , ℓ ∈ fα, βg is the ψ-Caputo frac-
tional derivative of order ℓ, Iϰ,ψ0 , ϰ ∈ fμ, νg is the ψ-Rie-
mann-Liouville fractional integral of order u, and
κ, σ, δ, τ > 0. Using Grönwall’s lemma and Perov’s fixed
point theorem, we derive sufficient conditions for which sys-
tem (2) subject to the initial conditions (3) admits a unique
solution. Moreover, we provide a numerical algorithm that
converges uniformly to the unique solution. Notice that
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when ψðtÞ = t, ðα, μÞ→ ð1−, 0+Þ and ðβ, νÞ→ ð1−, 0+Þ, (2)
reduces to (1).

The rest of the paper is organized as follows. In Section 2,
we recall some notions on fractional calculus and Perov’s
fixed point theorem. In Section 3, we state and prove our
main results. In Section 4, some special cases are discussed.

2. Some Preliminaries

Let ða, bÞ ∈ℝ2 be such that a < b.
Given f ∈ Cð½a, b�Þ and θ > 0, the (left-sided) Riemann-

Liouville fractional integral of order θ of f is defined by (see
[10])

Iθa f
� �

tð Þ =
1

Γ θð Þ
ðt
a
t − sð Þθ−1 f sð Þ ds if a < t ≤ b,

0 if t = a,

8><
>:

ð4Þ

where Γ is the Gamma function. It can be easily seen that

f ∈ C a, b½ �ð Þ⟹ Iθa f ∈ C a, b½ �ð Þ: ð5Þ

Lemma 1 (see [10], Property 2.6). Let f ∈ Cð½a, b�Þ and θ, η
> 0. Then,

IθaI
η
a f

� �
tð Þ = Iθ+ηa f

� �
tð Þ, a ≤ t ≤ b: ð6Þ

Given f ∈ C1ð½a, b�Þ and 0 < θ < 1, the (left-sided) Caputo
fractional derivative of order θ of f is defined by (see [10])

CDθ
a f

� �
tð Þ = I1−θa f ′

� �
tð Þ, a ≤ t ≤ b: ð7Þ

Lemma 2 (see [10], Lemma 2.22). Let f ∈ C1ð½a, b�Þ and 0 <
θ < 1. Then,

Iθa
C
Dθ
a f

� �
tð Þ = f tð Þ − f að Þ, a ≤ t ≤ b: ð8Þ

Lemma 3 (see [10], Lemma 2.21). Let f ∈ Cð½a, b�Þ and 0 <
θ < 1. Then,

CDθ
aI

θ
a f

� �
tð Þ = f tð Þ, a ≤ t ≤ b: ð9Þ

Let T > 0 be fixed. We introduce the set of functions

Ψ = ψ ∈ C1 0, T½ �ð Þ: ψ′ tð Þ > 0 for all 0 ≤ t ≤ T
n o

: ð10Þ

Given f ∈ Cð½0, T�Þ, θ > 0, and ψ ∈Ψ, the (left-sided) ψ
-Riemann-Liouville fractional integral of order θ of f is
defined by (see [10, 18])

Iθ,ψ0 f
� �

tð Þ =
1

Γ θð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þθ−1ψ′ sð Þf sð Þ ds if 0 < t ≤ T ,

0 if t = 0:

8><
>:

ð11Þ

It can be easily seen that

f ∈ C 0, T½ �ð Þ⇒ Iθ,ψ0 f ∈ C 0, T½ �ð Þ: ð12Þ

Remark 4. In the special case ψðtÞ = t, one observes that Iθ,ψ0
= Iθ0.

Remark 5. Using the change of variable z = ψðsÞ, one deduces
from ((11)) that

Iθ,ψ0 f
� �

tð Þ = Iθψ 0ð Þ f ∘ ψ
−1

� �
ψ tð Þð Þ, 0 ≤ t ≤ T: ð13Þ

Using Lemma 1 and Remark 5, one deduces the following
result.

Lemma 6. Let f ∈ Cð½0, T�Þ, θ, η > 0 and ψ ∈Ψ . Then

Iθ,ψ0 Iη,ψ0 f
� �

tð Þ = Iθ+η,ψ0 f
� �

tð Þ, 0 ≤ t ≤ T: ð14Þ

Given f ∈ C1ð½0, T�Þ, 0 < θ < 1, and ψ ∈Ψ, the (left-sided)
ψ-Caputo fractional derivative of order θ of f is defined by
(see [18])

CDθ,ψ
0 f

� �
tð Þ = I1−θ,ψ0

f ′
ψ′

 !
tð Þ, 0 ≤ t ≤ T: ð15Þ

Remark 7. In the special case ψðtÞ = t, one observes that C

Dθ,ψ
0 = CDθ

0.

Remark 8. Using the change of variable z = ψðsÞ, one deduces
from ((15)) that

CDθ,ψ
0 f

� �
tð Þ = CDθ

ψ 0ð Þ f ∘ ψ
−1

� �
ψ tð Þð Þ, 0 ≤ t ≤ T: ð16Þ

Using Lemma 2, Remark 5, and Remark 8, one deduces
the following result.

Lemma 9. Let f ∈ C1ð½0, T�Þ, 0 < θ < 1 and ψ ∈Ψ . Then

Iθ,ψ0
C
Dθ,ψ
0 f

� �
tð Þ = f tð Þ − f 0ð Þ, 0 ≤ t ≤ T: ð17Þ

Similarly, using Lemma 3, Remark 5, and Remark 8, one
deduces the following result.

Lemma 10. Let f ∈ Cð½0, T�Þ, 0 < θ < 1 and ψ ∈Ψ . Then,

CDθ,ψ
0 Iθ,ψ0 f

� �
tð Þ = f tð Þ, 0 ≤ t ≤ T: ð18Þ

2 Journal of Function Spaces



Now, we recall some concepts on fixed point theory that
will be used later. Let n be a positive natural number and
define the partial order °n in ℝn by

y =

y1

y2

⋮

yn

0
BBBBB@

1
CCCCCA≺nz =

z1

z2

⋮

zn

0
BBBBB@

1
CCCCCA⇔ yi ≤ zi, i = 1, 2,⋯, n,

ð19Þ

for all y, z ∈ℝn. We denote by 0ℝn the zero vector in ℝn, i.e.,

0ℝn =

0
0
⋮
0

0
BBBB@

1
CCCCA: ð20Þ

LetX be a nonempty set and d : X ×X →ℝn be a given
mapping. We say that d is a vector-valued metric on X (see,
e.g., [19]), if for all x, y, z ∈X ,

0ℝn≺nd x, yð Þ,

d x, yð Þ = 0ℝn ⇔ x = y,

d x, yð Þ = d y, xð Þ,

d x, zð Þ≺nd x, yð Þ + d y, zð Þ: ð21Þ

In this case, the pair ðX , dÞ is called a generalized metric
space. In such spaces, the notions of convergent sequence,
Cauchy sequence, and completeness are similar to those for
usual metric spaces.

Let us denote byMnðℝ+Þ the set of square matrices of size
n with nonnegative coefficients. Given M ∈Mnðℝ+Þ, we
denote by ρðMÞ its spectral radius.

Lemma 11 (Perov’s fixed point theorem). Let ðX , dÞ be a com-
plete generalizedmetric space and F : X →X be a givenmapping.
Suppose that there existsM ∈Mnðℝ+Þ with ρðMÞ < 1 such that

d F xð Þ, F yð Þð Þ≺nMd x, yð Þ, ð22Þ

for all x, y ∈X. Then,

(i) the mapping F admits a unique fixed point inX, say x∗

(ii) for all x0 ∈X , the sequence fxmg ⊂X defined by
xm+1 = FðxmÞ converges to x∗

We end this section by recalling the Grönwall’s lemma.

Lemma 12. (see [20]) Let K ≥ 0 and f , g be nonnegative func-
tions on ½0, T� such that f ∈ L∞ð0, TÞ and g ∈ L1ð0, TÞ . If

f tð Þ ≤ K +
ðt
0
g sð Þf sð Þ ds, 0 ≤ t ≤ T , ð23Þ

then,

f tð Þ ≤ K exp
ðt
0
g sð Þ ds

� �
, 0 ≤ t ≤ T: ð24Þ

3. Main Results

Problem (2) and (3) is investigated under the following
assumptions:

(i) T > 0 and ψ ∈Ψ, where Ψ is the functional space
defined by (10).

(ii) u0, v0 ≥ 0 and κ, σ, δ, τ > 0
(iii) 0 < α < 1 and μ ≥ 1 − α

(iv) 0 < β < 1 and ν ≥ 1 − β

3.1. Integral Formulation of Problem (2) and (3). Let

V = u, vð Þ ∈ C 0, T½ �ð Þ × C 0, T½ �ð Þ: u, v ≥ 0f g

W = u, vð Þ ∈ C1 0, T½ �ð Þ × C1 0, T½ �ð Þ: u, v ≥ 0
� 	

: ð25Þ

Suppose that ðu, vÞ ∈W is a solution to problem (2) and
(3). Using the first equation in (2), one obtains

Iα,ψ0
C
Dα,ψ
0 u

� �
tð Þ = Iα,ψ0 Iμ,ψ0 κ − σu − δuvð Þ� �

tð Þ, 0 ≤ t ≤ T:

ð26Þ

Hence, by Lemma 6 and Lemma 9, it holds that

u tð Þ − u 0ð Þ = Iα+μ,ψ0 κ − σu − δuvð Þ tð Þ, 0 ≤ t ≤ T: ð27Þ

Using the initial conditions (3), one obtains

u tð Þ = u0 +
1

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ

� κ − σu sð Þ − δu sð Þv sð Þð Þ ds, 0 ≤ t ≤ T:

ð28Þ

Similarly, using the second equation in (2), one obtains

Iβ,ψ0
C
Dβ,ψ
0 v

� �
tð Þ = Iβ,ψ0 Iν,ψ0 δuv − τvð Þ

� �
tð Þ, 0 ≤ t ≤ T , ð29Þ

which yields

v tð Þ − v 0ð Þ = Iβ+ν,ψ0 δuv − τvð Þ tð Þ, 0 ≤ t ≤ T: ð30Þ
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By the initial conditions (3), it holds that

v tð Þ = v0 +
1

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ

� δu sð Þv sð Þ − τv sð Þð Þ ds, 0 ≤ t ≤ T:

ð31Þ

Therefore, one deduces that, if ðu, vÞ ∈W is a solution to
problem (2) and (3), then ðu, vÞ ∈ V is a solution to the sys-
tem of integral equations

u tð Þ = u0 +
1

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ κ − σu sð Þ − δu sð Þv sð Þð Þ ds,

v tð Þ = v0 +
1

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ δu sð Þv sð Þ − τv sð Þð Þ ds,

8>>><
>>>:

ð32Þ

for all 0 ≤ t ≤ T .
Conversely, suppose that ðu, vÞ ∈ V is a solution to (32).

By assumptions (iii) and (iv), one deduces that ðu, vÞ ∈W.
Moreover, by (32), one has uð0Þ = u0 and vð0Þ = v0. On the
other hand, using the first equation in (32), Lemma 6, and
Lemma 10, one obtains

CDα,ψ
0 u

� �
tð Þ = CDα,ψ

0 Iα+μ,ψ0 κ − σu − δuvð Þ� �
tð Þ

= CDα,ψ
0 Iα,ψ0 Iμ,ψ0 κ − σu − δuvð Þ� �

tð Þ
= Iμ,ψ0 κ − σu − δuvð Þ tð Þ:

ð33Þ

Similarly, using the second equation in (32), one obtains

CDβ,ψ
0 v

� �
tð Þ = CDβ,ψ

0 Iβ+ν,ψ0 δuv − τvð Þ
� �

tð Þ
= CDβ,ψ

0 Iβ,ψ0 Iν,ψ0 δuv − τvð Þ
� �

tð Þ
= Iν,ψ0 δuv − τvð Þ tð Þ:

ð34Þ

Therefore, one deduces that, if ðu, vÞ ∈ V is a solution to
the system of integral equation (32), then ðu, vÞ ∈W is a solu-
tion to problem (2) and (3).

From the above study, the following result holds.

Lemma 13. The following statements are equivalent:

(I) ðu, vÞ ∈W is a solution to problem (2) and (3).

(II) ðu, vÞ ∈ V is a solution to the system of integral equa-
tions (32).

By the above lemma, the study of problem (2) and (3) in
W reduces to the study of the system of integral equation (32)
in V .

3.2. Uniqueness. In this part, using Grönwall’s lemma, we
shall prove that the system of integral equations (32) admits
at most one solution ðu, vÞ ∈ V .

Proposition 14. Suppose that the assumptions (i)–(iv) are sat-
isfied. Then the system of integral equation ((32)) admits at
most one solution ðu, vÞ ∈ V .

Proof. Suppose that ðu1, v1Þ, ðu2, v2Þ ∈ V are two solutions to
(32). Then, for all 0 ≤ t ≤ T , one has

u2 tð Þ − u1 tð Þ = u0 +
1

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ

� κ − σu2 sð Þ − δu2 sð Þv2 sð Þð Þ ds − u0

−
1

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ

� κ − σu1 sð Þ − δu1 sð Þv1 sð Þð Þ ds

= σ

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ

� u1 sð Þ − u2 sð Þð Þ ds

+ δ

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ

� u1 sð Þv1 sð Þ − u2 sð Þv2 sð Þð Þ ds,
ð35Þ

which yields

∣u2 tð Þ − u1 tð Þ∣ ≤ σC1

ðt
0
ψ′ sð Þ∣u1 sð Þ − u2 sð Þ∣ds

+ δC1

ðt
0
ψ′ sð Þ∣u1 sð Þv1 sð Þ − u2 sð Þv2 sð Þ∣ds

= σC1

ðt
0
ψ′ sð Þ∣u1 sð Þ − u2 sð Þ∣ds

+ δC1

ðt
0
ψ′ sð Þ u1 sð Þ v1 sð Þ − v2 sð Þð Þj

+ v2 sð Þ u1 sð Þ − u1 sð Þð Þj ds

≤ σC1

ðt
0
ψ′ sð Þ∣u1 sð Þ − u2 sð Þ∣ds

+ δC1C2

ðt
0
ψ′ sð Þ∣v1 sð Þ − v2 sð Þ∣ds

+ δC1C3

ðt
0
ψ′ sð Þ∣u1 sð Þ − u2 sð Þ∣ ds

= C1 σ + δC3ð Þ
ðt
0
ψ′ sð Þ∣u1 sð Þ − u2 sð Þ∣ ds

+ δC1C2

ðt
0
ψ′ sð Þ∣v1 sð Þ − v2 sð Þ∣ ds,

ð36Þ

where

C1 =
ψ Tð Þ − ψ 0ð Þð Þα+μ−1

Γ α + μð Þ , C2 = max
0≤x≤T

u1 xð Þ, C3 = max
0≤x≤T

v2 xð Þ:

ð37Þ
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Hence, one deduces that

∣u2 tð Þ − u1 tð Þ∣ ≤ C4

ðt
0
ψ′ sð Þ ∣u1 sð Þ − u2 sð Þ∣ð

+∣v1 sð Þ − v2 sð Þ ∣ Þ ds,
ð38Þ

where

C4 = C1 max σ + δC3, δC2f g: ð39Þ

Similarly, for all 0 ≤ t ≤ T , one has

v2 tð Þ − v1 tð Þ = v0 +
1

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ

� δu2 sð Þv2 sð Þ − τv2 sð Þð Þ ds − v0

−
1

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ

� δu1 sð Þv1 sð Þ − τv1 sð Þð Þ ds

= δ

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ

� u2 sð Þv2 sð Þ − u1 sð Þv1 sð Þð Þ ds

+ τ

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ

� v1 sð Þ − v2 sð Þð Þ ds,
ð40Þ

which yields

∣v2 tð Þ − v1 tð Þ∣ + τC5

ðt
0
ψ′ sð Þ∣v1 sð Þ − v2 sð Þ∣ds

≤ δC5C6

ðt
0
ψ′ sð Þ∣v1 sð Þ − v2 sð Þ∣ds

+ δC5C7

ðt
0
ψ′ sð Þ∣u2 sð Þ − u1 sð Þ∣ds

+ τC5

ðt
0
ψ′ sð Þ∣v1 sð Þ − v2 sð Þ∣ ds

= C5 δC6 + τð Þ
ðt
0
ψ′ sð Þ∣v1 sð Þ − v2 sð Þ∣ds

+ δC5C7

ðt
0
ψ′ sð Þ∣u2 sð Þ − u1 sð Þ∣ds,

ð41Þ

where

C5 =
ψ Tð Þ − ψ 0ð Þð Þβ+ν−1

Γ β + νð Þ , C6 = max
0≤x≤T

u2 xð Þ, C7 = max
0≤x≤T

v1 xð Þ:

ð42Þ

Therefore, one obtains

∣v2 tð Þ − v1 tð Þ∣ ≤ C8

ðt
0
ψ′ sð Þ ∣u1 sð Þ − u2 sð Þ∣+∣v1 sð Þ − v2 sð Þ ∣ð Þ ds,

ð43Þ

where

C8 = C5 max τ + δC6, δC7f g: ð44Þ

Next, combining (38) with (43), it holds that

∣u2 tð Þ − u1 tð Þ∣ + ∣v2 tð Þ − v1 tð Þ∣ ≤ C4 + C8ð Þ
ðt
0
ψ′ sð Þ

� ∣u2 sð Þ − u1 sð Þ∣+∣v2 sð Þ − v2 sð Þ ∣ð Þ ds:
ð45Þ

Finally, using Grönwall ‘s lemma (see Lemma 12), it
holds that ðu1, v1Þ = ðu2, v2Þ.
3.3. Well-Posedness. We first fix some notations. Let

aT = ψ Tð Þ − ψ 0ð Þð Þα+μ
Γ α + μ + 1ð Þ ,

bT = ψ Tð Þ − ψ 0ð Þð Þβ+ν
Γ β + ν + 1ð Þ :

ð46Þ

We introduce the function f : ½0,∞Þ→ ½0,∞Þ defined by

f rð Þ = aTσ + bTτ + aT + bTð Þδr + aTσ − bTτð Þð½
+ aT − bTð ÞδrÞ2 + 4aTbTδ2r2


1/2, r ≥ 0:
ð47Þ

We denote by ∥·∥∞ the norm in Cð½0, T�Þ defined by

∥ξ∥∞ = max
0≤x≤T

ξ xð Þj j, ξ ∈ C 0, T½ �ð Þ: ð48Þ

In addition to the assumptions (i)–(iv), suppose that

(v) aT ≤ τ/δκ and bT ≤ 1/ð√ðσ2 + 4δκÞ − σÞ

4τ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + 4δκ

p
− σ ð49Þ

(vi) There exists

2τ
δ

≤ r ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + 4δκ

p
− σ

2δ ð50Þ

such that

τ

δ
≤ u0 ≤

r
2 , 0 ≤ v0 ≤

r
2 , f rð Þ < 2: ð51Þ
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Theorem 15. Suppose that the assumptions (i)–(vii) are satis-
fied. Then, the system of integral equation ((32)) admits one
and only one solution ðu∗, v∗Þ ∈ V . Moreover, for all f0, g0
∈ V satisfying u0 ≤ f0, ∥f0∥∞ ≤ r and ∥g0∥∞ ≤ r , the sequence
fð f n, gnÞg ⊂ V defined by

f n+1 tð Þ = u0 +
1

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ κ − σf n sð Þ − δf n sð Þgn sð Þð Þ ds,

gn+1 tð Þ = v0 +
1

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ δf n sð Þgn sð Þ − τgn sð Þð Þ ds,

8>>><
>>>:

ð52Þ

for all 0 ≤ t ≤ T , converges uniformly to ðu∗, v∗Þ.

Proof. We first introduce the functional space

Vr = u, vð Þ ∈ V : u0 ≤ u,∥u∥∞ ≤ r,∥v∥∞ ≤ rf g: ð53Þ

Let F : Vr → Cð½0, T�Þ × Cð½0, T�Þ be the mapping
defined by

F u, vð Þ tð Þ = F1 u, vð Þ tð Þ, F2 u, vð Þ tð Þð Þ, 0 ≤ t ≤ T , ð54Þ

where

F1 u, vð Þ tð Þ = u0 +
1

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ

� κ − σu sð Þ − δu sð Þv sð Þð Þ ds,

F2 u, vð Þ tð Þ = v0 +
1

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ

� δu sð Þv sð Þ − τv sð Þð Þ ds:
ð55Þ

We shall prove that

F Vrð Þ ⊂Vr: ð56Þ

Let ðu, vÞ ∈ Vr . Then, for all s ∈ ½0, T�, one has

κ − σu sð Þ − δu sð Þv sð Þ ≥ κ − σr − δr2 ≔ P rð Þ: ð57Þ

On the other hand, an elementary calculation shows that
the polynomial function PðrÞ admits two roots

r1 =
−σ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + 4δκ

p

2δ < 0 < r2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + 4δκ

p
− σ

2δ : ð58Þ

Since −δ < 0 and (by (vii))

0 < r ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + 4δκ

p
− σ

2δ = r2, ð59Þ

one obtains

P rð Þ ≥ 0, ð60Þ

which yields

κ − σu sð Þ − δu sð Þv sð Þ ≥ 0, 0 ≤ s ≤ T: ð61Þ

Therefore, since ψ ∈Ψ and u0 ≥ 0 (see (vii)), one deduces
that

F1 u, vð Þ ≥ u0 ≥ 0: ð62Þ

Moreover, for all s ∈ ½0, T�, one has

δu sð Þv sð Þ − τv sð Þ = v sð Þ δu sð Þ − τð Þ ≥ v sð Þ δu0 − τð Þ: ð63Þ

Since by (vii), u0 ≥ τ/δ, one obtains

δu sð Þv sð Þ − τv sð Þ ≥ 0, 0 ≤ s ≤ T: ð64Þ

Using the above inequality and the fact that v0 ≥ 0 (by
(vii)), one deduces that

F2 u, vð Þ ≥ 0: ð65Þ

On the other hand, by (62), for all 0 ≤ t ≤ T , one has

∣F1 u, vð Þ tð Þ∣ = F1 u, vð Þ tð Þ
≤ u0 +

κ

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ ds

= u0 + κ
ψ tð Þ − ψ 0ð Þð Þα+μ
Γ α + μ + 1ð Þ ≤ u0 + κaT :

ð66Þ

Since aT ≤ τ/δκ (by (v)) and τ/δ ≤ u0 ≤ r/2 (by (vii)), one
has

u0 + κaT ≤
r
2 + τ

δ
≤
r
2 + r

2 = r: ð67Þ

Hence, it follows from (66) and (67) that

∥F1 u, vð Þ∥∞ ≤ r: ð68Þ

Similarly, by (65), for all 0 ≤ t ≤ T , one has

∣F2 u, vð Þ tð Þ∣ = F2 u, vð Þ tð Þ

≤ v0 +
δr2

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ ds

= v0 + δr2
ψ tð Þ − ψ 0ð Þð Þβ+ν
Γ β + ν + 1ð Þ ≤ v0 + δr2bT :

ð69Þ

Since v0 ≤ r/2 (by (vii)), bT ≤ 1/ð√ðσ2 + 4δκÞ − σÞ (by
(v)) and r ≤ ð√ðσ2 + 4δκÞ − σÞ/2δ (by (vii)), one has

v0 + δr2bT ≤
r
2 + δr2

1
2δr = r

2 + r
2 = r: ð70Þ
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Therefore, it follows from (69) and (70) that

∥F2 u, vð Þ∥∞ ≤ r: ð71Þ

Hence, by (62), (65), (68), and (71), one deduces that F
ðu, vÞ ∈ Vr . This proves (56).

Consider now the self-mapping,

F : Vr →Vr: ð72Þ

By the definition of F, one observes that, if ðu, vÞ ∈ Vr is a
fixed point of F; then, ðu, vÞ ∈ V is a solution to the system of
integral equation (32). In order to prove that F admits a fixed
point in Vr , we shall use Perov’s fixed point theorem (see
Lemma 11). Namely, we define the vector-valued metric d
: Vr ×Vr →ℝ2 by

d u1, v1ð Þ, u2, v2ð Þð Þ =
∥u1 − u2∥∞
∥v1 − v2∥∞

 !
, u1, v1ð Þ, u2, v2ð Þ ∈ Vr:

ð73Þ

Notice that ðVr , dÞ is a complete generalized metric
space. On the other hand, for all ðu1, v1Þ, ðu2, v2Þ ∈ Vr and
0 ≤ t ≤ T , one has

∣F1 u2, v2ð Þ tð Þ − F1 u1, v1ð Þ tð Þ∣

≤
σ

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ∣u1 sð Þ − u2 sð Þ∣ds

+ δ

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ∣u1 sð Þv1 sð Þ

− u2 sð Þv2 sð Þ∣ds ≤ σaT∥u1 − u2∥∞

+ δ

Γ α + μð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þα+μ−1ψ′ sð Þ

� u1 sð Þj j v1 sð Þ − v2 sð Þj j + v2 sð Þj j u2 sð Þ − u1 sð Þj jð Þ ds
≤ σaT∥u1 − u2∥∞ + δaTr ∥v2 − v1∥∞+∥u2 − u1∥∞ð Þ,

ð74Þ

which yields

∥F1 u2, v2ð Þ − F1 u1, v1ð Þ∥∞ ≤ aT δr + σð Þ∥u1 − u2∥∞
+ δaTr∥v1 − v2∥∞:

ð75Þ

Similarly, one has

F2 u2, v2ð Þ tð Þ − F2 u1, v1ð Þ tð Þj j
≤

δ

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ

� u2 sð Þj j v2 sð Þ − v1 sð Þj j + v1 sð Þj j u2 sð Þ − u1 sð Þj jð Þ ds

+ τ

Γ β + νð Þ
ðt
0
ψ tð Þ − ψ sð Þð Þβ+ν−1ψ′ sð Þ v1 sð Þ − v2 sð Þj jds

≤ δbTr ∥v2 − v1∥∞+∥u2 − u1∥∞ð Þ + τbT∥v1 − v2∥∞,
ð76Þ

which yields

∥F2 u2, v2ð Þ − F2 u1, v1ð Þ∥∞
≤ δbTr∥u1 − u2∥∞ + bT δr + τð Þ∥v1 − v2∥∞:

ð77Þ

Hence, it follows from (75) and (77) that for all ðu1, v1Þ
, ðu2, v2Þ ∈ Vr ,

d F u1, v1ð Þ, F u2, v2ð Þð Þ°2Md u1, v1ð Þ, u2, v2ð Þð Þ, ð78Þ

where

M =
aT δr + σð Þ δaTr

δbTr bT δr + τð Þ

 !
: ð79Þ

On the other hand, the characteristic polynomial ofM is
given by

Q λð Þ = aT δr + σð Þ − λ½ � bT δr + τð Þ − λ½ � − δ2aTbTr
2: ð80Þ

An elementary calculation shows that the polynomial
function Q admits two roots (which are the eigenvalues of
M) given by

λ1 rð Þ = aT σ + δrð Þ + bT τ + δrð Þ
2

−
1
2 aTσ − bTτð Þ + aT − bTð Þδrð Þ2 + 4aTbTδ2r2
� 
1

2,

λ2 rð Þ = f rð Þ
2 : ð81Þ

It can be easily seen that

0 ≤ λ1 rð Þ ≤ λ2 rð Þ, ð82Þ

which yields

ρ Mð Þ = f rð Þ
2 : ð83Þ

Since f ðrÞ < 2 (by (vii)), it holds that ρðMÞ < 1. There-
fore, by Lemma 11, the mapping F admits a fixed point ðu∗
, v∗Þ ∈ Vr ⊂ V , which is a solution to the system of integral
equation (32). Moreover, for all ð f0, g0Þ ∈ Vr , the Picard
sequence fð f n, gnÞg defined by ð f n+1, gn+1Þ = Fð f n, gnÞ = ð
F1ð f n, gnÞ, F2ð f n, gnÞÞ converges uniformly to ðu∗, v∗Þ. On
the other hand, by Proposition 14, we know that (32) admits
at least one solution in V . Hence, one deduces that ðu∗, v∗Þ is
the only solution to (32) in V .

4. Some Special Cases

Some special cases of Theorem 15 are discussed in this sec-
tion. We first consider the case α + μ = β + ν≔ ξ. In this case,
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one has

aT = bT = ψ Tð Þ − ψ 0ð Þð Þξ
Γ ξ + 1ð Þ ≔ cT : ð84Þ

Corollary 16. Suppose that the following conditions are satis-
fied:

A1ð ÞT > 0, ψ ∈Ψ

A2ð Þ 0 < α, β < 1, α + μ = β + ν≔ ξ ≥ 1

A3ð Þ κ, σ, δ, τ > 0

A4ð Þ 4τ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + 4δκ

p
− σ

A5ð Þ u0 =
τ

δ
, 0 ≤ v0 ≤ u0

A6ð ÞCT <min τ

δκ
, 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 + 4δκ
p

− σ
, 2

σ + 5τ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ − τð Þ2 + 16τ2

q
8><
>:

9>=
>;

ð85Þ

Then, the system of integral equation (32) admits one
and only one solution ðu∗, v∗Þ ∈ V . Moreover, for all f0, g0
∈ V satisfying u0 ≤ f0, ∥f0∥∞ ≤ 2τ/δ and ∥g0∥∞ ≤ 2τ/δ, the
sequence fð f n, gnÞg ⊂V defined by (52) converges uni-
formly to ðu∗, v∗Þ.

Proof. The results follow immediately by taking r = 2τ/δ and
α + μ = β + ν in Theorem 15.

Consider now the special case of Corollary 16 when ψðt
Þ = t.

Corollary 17. Suppose that the following conditions are satis-
fied:

B1ð Þ 0 < α, β < 1, α + μ = β + ν≔ ξ ≥ 1

B2ð Þ κ, σ, δ, τ > 0

B3ð Þ 4τ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + 4δκ

p
− σ

B4ð Þ u0 =
τ

δ
, 0 ≤ v0 ≤ u0

B4ð Þ 0 < T < Γ ξ + 1ð Þ min τ

δκ
, 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 + 4δκ
p

− σ
, 2

σ + 5τ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ − τð Þ2 + 16τ2

q
8><
>:

9>=
>;

0
B@

1
CA

1/ξ

ð86Þ

Then, the system of integral equation (32) admits one and
only one solution ðu∗, v∗Þ ∈ V . Moreover, for all f0, g0 ∈ V sat-
isfying u0 ≤ f0, ∥f0∥∞ ≤ 2τ/δ and ∥g0∥∞ ≤ 2τ/δ, the sequence
fð f n, gnÞg ⊂ V defined by (52) converges uniformly to ðu∗,
v∗Þ.

Proof. In this case, one has

CT = Tξ

Γ ξ + 1ð Þ : ð87Þ

Therefore, the assumption ðA6Þ in Corollary 16 reduces
to the assumption ðB5Þ. Hence, by Corollary 16, the desired
results follow.

We take now ψðtÞ = t and consider the limit cases ðα, μÞ
→ ð1−, 0+Þ and ðβ, νÞ→ ð1−, 0+Þ. Notice that in this case,
the system of integral equation (32) reduces to

u tð Þ = u0 +
ðt
0
κ − σu sð Þ − δu sð Þv sð Þð Þ ds, 0 ≤ t ≤ T

v tð Þ = v0 +
ðt
0
δu sð Þv sð Þ − τv sð Þð Þ ds, 0 ≤ t ≤ T ,

8>>><
>>>:

ð88Þ

which corresponds to the integral representation of the sys-
tem of ordinary differential equations (1) subject to the initial
conditions (3).

Taking ξ = 1 in Corollary 17, one deduces the following
results.

Corollary 18. Suppose that the following conditions are satis-
fied:

C1ð Þ κ, σ, δ, τ > 0

C2ð Þ 4τ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + 4δκ

p
− σ

C3ð Þ u0 =
τ

δ
, 0 ≤ v0 ≤ u0

C4ð Þ 0 < T <min τ

δκ
, 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 + 4δκ
p

− σ
, 2

σ + 5τ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ − τð Þ2 + 16τ2

q
8><
>:

9>=
>;

ð89Þ

Then, the system of integral equation (88) admits one and
only one solution ðu∗, v∗Þ ∈ V . Moreover, for all f0, g0 ∈ V sat-
isfying u0 ≤ f0, ∥f0∥∞ ≤ 2τ/δ and ∥g0∥∞ ≤ 2τ/δ, the sequence
fð f n, gnÞg ⊂V defined by

f n+1 tð Þ = μ0 +
ðt
0
κ − σf n sð Þ − δf n sð Þgn sð Þð Þ ds, 0 ≤ t ≤ T ,

gn+1 tð Þ = v0 +
ðt
0
δf n sð Þgn sð Þ − τgn sð Þð Þ ds, 0 ≤ t ≤ T ,

8>>><
>>>:

ð90Þ

converges uniformly to ðu∗, v∗Þ.
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